|
|||
|
|||
Research in Communications |
||
Text to be added. |
||
|
||
Radar, Sonar and Array ProcessingText to be added. |
||
|
||
|
||
|
Target Detection and TrackingText to be added. |
|
||
|
||
Detection EstimationText to be added. |
|
||
|
||
Non-Linear and Kalman Bucy FilteringText to be added. |
|
||
|
||
High Density RecordingTo be added |
|
LDPC & Turbo CodesLow-density parity-check (LDPC) codes were originally introduced in his doctoral thesis by Gallager in 1961. Since the discovery of Turbo codes in 1993 by Berrou, Glavieux, and Thitimajshima, and the rediscovery of LDPC codes by Mackay and Neal in 1995, there has been renewed interest in Turbo codes and LDPC codes, because their error rate performance approaches asymptotically the Shannon limit. Much research is devoted to characterizing the performance of LDPC codes and designing codes that have good performance. Commonly, a graph, the Tanner graph, is associated with the code and an important parameter affecting the performance of the code is the girth of its Tanner graph. In our work, we consider the design of structured regular LDPC codes whose Tanner graphs have large girth. The regularity and structure of LDPC codes utilize memory more efficiently and simplify the implementation of LDPC coders. The Tanner graph is a special type of graph, a bipartite graph, where the nodes divide into two disjoint classes with edges only between nodes in the two different classes. The problem we have been considering is a generic problem in graph theory, namely, that of designing bipartite graphs with large girth. We actually have studied a more special class of this generic problem, in particular, the design of undirected regular bipartite graphs with large girth. Large girth speeds the convergence of iterative decoding and improves the performance of LDPC codes, at least in the high SNR range, by slowing down the onsetting of the error floor. We have developed several types of constructions for LDPC codes with large girth: geometry based (GB) and turbo structured (TS) LDPC codes. Simulations show that in the high SNR regime these codes exhibit better BER performance than random codes. The regularity of the codes provides additional advantages like simplicity of hardware implementation and fast encoding. Current studentsFormer students that worked on this topic
Journal Papers (additional papers in Journal Publications)
Conference Papers (additional papers in Conference Publications)
|
|
Home | Research | Publications
& Seminars | Affiliated Researchers | Professional
Activities
Bio Data & Teaching |  
Site Index
Electrical & Computer Engineering Home | Carnegie Mellon Home
Last updated 02 April 2004.