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e consider the problem of designing unoriented
bipartite graphs with large girth. These graphs are
the Tanner graphs associated with the parity-check
matrix H of low density parity-check (LDPC) codes

or Gallager codes. Larger girth improves the computational and bit
error rate (BER) performance of these codes. The article overviews
several existing methods in the literature and then describes two
new constructions for LDPC codes with large girth—geometry
based and turbo structured LDPC codes. Simulation results show
the potential improvement in the error floor that such codes provide
over randomly generated LDPC codes.

The Origin of LDPC Codes
LDPC codes were originally introduced by Gallager in his doctoral
thesis; see [1]. Since the discovery of turbo codes in 1993 by Berrou
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et al. [2] and the rediscovery of LDPC codes by Mackay
and Neal in 1995 (see [3]), there has been renewed
interest in turbo codes and LDPC codes because their bit
error rate performance approaches asymptotically the
Shannon limit [4]. Much research is devoted to charac-
terizing the performance of LDPC codes and designing
codes that have good performance. Commonly, a graph,
the Tanner graph, is associated with the code and an
important parameter affecting the performance of the
code is the girth of its Tanner graph. In this article we
consider the design of structured regular LDPC codes
whose Tanner graphs have large girth. The regularity and
structure of LDPC codes utilize memory more efficiently
and simplify the implementation of LDPC coders. The
Tanner graph is a special type of graph, a bipartite graph,
where the nodes divide into two disjoint classes with
edges only between nodes in the two different classes.
The problem we consider then is a generic problem in
graph theory, namely, that of designing bipartite graphs
with large girth. We actually consider a more special class
of this generic problem, in particular, the design of undi-
rected regular bipartite graphs with large girth.

Graphs and Codes
In this section we review a few needed concepts in lin-
ear codes, low density parity-check codes, and graphs. 

Linear Block Codes 
In communications, a dataword is a sequence of p user
bits. An (n, p) linear block code C with dataword length
p and codeword (block) length n over the binary field F2
can be regarded as a p-dimensional subspace of the n-
dimensional vector space Vn (F2) over the binary field
F2, [5]. There are 2p datawords ū = [u0, u1, . . . , up−1]
in the code C, and each of them corresponds to a unique
codeword c̄ = [c 0, c 1, . . . , c n−1]. Note that ū and c̄ are
row vectors, not column vectors. Since C is a subspace of
dimension p, there exist p linearly independent vectors
ḡ0, ḡ1, . . . , ḡp−1 that span C. Therefore, each codeword
can be written as a linear combination of these independ-
ent vectors: c̄ = ū G, where G = [ ḡ0 ḡ1 . . . ḡp−1]T is
the p × n generator matrix [6]. The null space of the
subspace C , i.e., the orthogonal subspace of C with
dimension m = n − p , can be spanned by m linearly
independent vectors h̄0, h̄1, . . . , h̄m−1. Each codeword c̄
satisfies the parity-check equations ∀i : c̄ h̄ T

i = 0.  The
m × n parity-check matrix H collects these h̄ i in matrix
format as  H = [h̄0 h̄1 . . . h̄m−1]T , [6].

LDPC Codes 
An LDPC code is a special class of linear block codes
whose parity-check matrix H has a low density of ones,
i.e., is sparse. This sparsity renders low complexity
decoding and leads to simple implementations. We will
emphasize regular (n, j, k) LDPC codes, [7], where
the n columns and m rows of its parity-check matrix H
all have the same number of ones, j and k, respectively,
i.e., the columns have uniform weight j and the rows

have uniform weight k , where k � n and
j � m = n − p . By counting the number of ones in
H, it follows that nj = mk . The code rate of H is
r = p/n = (n − m)/n = (k − j )/k = 1 − j/k . Note
that the equation is true only if H is full rank. If H is
not full rank, the code rate is r = (n − rank(H))/n.

Tanner Graph 
To the LDPC code we can associate a graph G, referred to
as its Tanner graph [8]. For the sake of completeness, we
recall basic definitions from graph theory. Let
G = {(V, E)} be a graph, where V is a set of vertices or
nodes V and E is a set of edges E connecting the vertices.
The degree of a node V is the number of edges incident
on V . In an undirected graph, a series of successive edges
forming a continuous curve passing from one vertex to
another is called a chain. A chain of nodes where the ini-
tial and the terminal nodes are the same and that does not
use the same edge more than once is a cycle. The length
of a cycle is the number of its edges; and the girth g of G
is the length of the shortest cycle. The graph G is bipartite
if the set of vertices V can be decomposed into two dis-
joint sets V1 and V2 such that no two  vertices within
either V1 or V2 are connected by an edge. It is well known
from graph theory that a graph with at least two nodes is
bipartite if and only if all its cycles are of even length.

Tanner graphs are bipartite where the two disjoint
sets V1 or V2 collect the bit nodes and the check nodes:
each bit of a codeword is assigned a bit node, and each
parity-check equation is assigned a check node. We illus-
trate the relation between the m × n parity-check
matrix H and its Tanner graph G with reference to
Figure 1. The figure shows  a 4 × 8 H matrix and its
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� 1. (a) The parity-check matrix H of an LDPC code. (b)
Corresponding Tanner graph G .
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Tanner graph G, respectively. The m rows of H corre-
spond to the check nodes and the n columns to the bit
nodes of the Tanner graph G; they are represented by
filled squares and filled circles in Figure 1, respectively.
A 1 in row Ci and column Vj in H is represented by an
edge in the Tanner graph connecting the associated
check node Ci and the bit node Vj ; for example, the 1
in row 4 and column 8 in H in Figure 1 is illustrated by
the dashed line between C4 and V8 in Figure 1. The
bold solid lines (C1,V3) , (V3,C3) , (C3,V7) , and
(V7,C1) depict a cycle in the Tanner graph; this turns
out to be the shortest cycle in this graph, so that its
girth is g = 4.

Decoding 
The decoding of LDPC codes fits the general frame-
work of Tanner graphs and the sum-product algorithm
[9], which is an iterative message passing algorithm
operating on the Tanner graph; see [10].

Cycles, Girth, and Performance 
It is well known that with a cycle-free Tanner graph,
the sum-product algorithm terminates naturally in a
finite number of steps and yields optimal decoding in
the sense that the symbol error probability is mini-
mized [9], [11]. However, cycle-free Tanner graphs
have poor BER performance: their minimum distance
is two at code rates r > 1/2, and their error floors
occur at unacceptable values of SNR [12]. When
Tanner graphs have cycles, the resulting sum-product
algorithm is suboptimal [9], [11]. Cycles, especially
short cycles in the Tanner graph, lead to inefficient
decoding and prevent the sum-product algorithm from
converging to the optimal decoding result [13], [12],
taxing the performance of the LDPC decoders. We dis-
cuss briefly why the code performance is affected by
short cycles. Intuitively, the girth determines the small-
est number of iterations for a message sent by a node
(in the shortest cycle of the graph) to propagate back
to the node itself. This causes loss of independence in
the extrinsic information merged on a node in the  iter-
ative decoding through the successive iterations;
Gallager [1] showed that the number of independent
iterations M is proportional to the girth g of the
Tanner graph, in particular, M < g/4 ≤ M + 1. A sec-
ond reason relates to the minimum distance of the
code. Tanner [8] derives a lower bound on the mini-
mum distance dmin; this lower bound increases with the
girth g of the code. Therefore, LDPC codes with large
girth are to be preferred.

To increase the girth g and avoid short cycles, the
parity-check matrix H should be sufficiently sparse. In
turn, this means that the block length must be large
enough. In fact, Gallager [1] provides a loose lower
bound on the block length n given the girth g of a
regular LDPC code. For a parity-check matrix H with
column weight j and row weight k, the bound on the
block length n is

� 1) for g = 4m + 2, n ≥ ∑m+1
1 Si where S1 = 1 and

for i ≥ 2, Si = j ( j − 1)(i−2)(k − 1)(i−1)

� 2) for g = 4m , n ≥ ∑m
1 L i , where

L i = k( j − 1)(i−1)(k − 1)(i−1),∀i .

For example, to construct an (n, j = 3, k = 12) LDPC
code with girth g = 12, its block length n should satis-
fy n ≥ 6, 084. Of course, this lower bound is just that;
even if n exceeds the bound for a given g ∗ there might
not exist a regular LDPC code with this block length n
and the desired girth g ∗.

Two alternative approaches to designing LDPC
codes with girth g > 4 are described in later sections.
Due to the overview and introductory nature of the
article, we focus specifically on examples of codes with
column weight j = 2 and 4 < g ≤ 20 and  codes with
j = 3 and 4 < g ≤ 8. Codes with j = 2 are usually of
less interest in digital communications systems because,
as Gallager proved in his original work [1], the corre-
sponding dmin grows only logarithmically fast with the
block size n of the code, while for codes with j ≥ 3,
dmin grows linearly with n.

Constructions for Large Girth LDPC Codes:
Brief Overview of the Literature
Designing LDPC codes with large girth is a combina-
torial design problem. Given four positive integers
m, n, j, k such that mk = nj , we are interested in con-
structing an m × n parity-check matrix H with uniform
column weight j and uniform row weight k such that
the associated Tanner graph has large girth g .

Search Methods 
A straightforward method for designing such  H is
brute force. For an m × n parity-check matrix H with
uniform column weight j , there are 

[(
m
j

)]n

possible
choices, which makes an exhaustive search computa-
tionally infeasible for values of n of practical interest.
Further, a large number of choices are actually isomor-
phic to each other and lead to identical LDPC codes.
Campello, Modha, and Rajagopalan [14], [15] provide
a heuristic method called “bit-filling” to search for
LDPC codes with large girth. The computational com-
plexity of bit-filling is O(kmaxm3) where kmax is the
maximum degree of any check node and m is the num-
ber of rows in H. The polynomial complexity makes
bit-filling feasible to implement. The H matrix generat-
ed by bit-filling has uniform column weight j but non-
uniform row weight k . Hence the LDPC codes
constructed are not regular codes in strict sense. Also,
there is no guarantee that codes with the largest possi-
ble girth g are constructed for a given n. Another
heuristic algorithm (see [16]) searches for a good
LDPC code based on the average of the girth distribu-
tion of the code. The complexity of this algorithm is
shown in [16] to be O(n2). The algorithm described in
[16] is suitable for designing short (10,000 bits or
shorter) codes.
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Finite Geometries 
Kou et al. [17], [18] present a geometric approach to
the design of LDPC codes based on the lines and points
of Euclidean and projective geometries over finite fields
[19], [20]. Codes construted from these finite geome-
tries have no cycles of length four. By casting the design
problem in the context of finite geometries, they obtain
four classes of (quasi-) cyclic LDPC codes with girth
g = 6.

Euclidean and projective geometries [19], [21] with
n points and J lines satisfy the following structural
properties: 
� 1) each line is composed of ρ points
� 2) there is one and only one line between any two
points
� 3) each point lies on γ lines
� 4) any pair of lines has only one common point or no
common point.
Figure 2 gives a simple example of a finite geometry
with n = 4, J = 6, ρ = 2, and γ = 3. 

Associated with a finite geometry G is the J × n
incidence matrix H (1)

G = [h i, j ] where each row and
column correspond to a line and a point, respectively,
and h i, j = 1 if and only if the j th point is on the i th
line in G ; otherwise, h i, j = 0. The row and column
weights ρ and γ correspond to the ρ points in the cor-
responding line and to the γ lines passing the corre-
sponding point, respectively. If ρ � n and γ � J , the
matrix H (1)

G can be regarded as a low-density parity-
check matrix. The codes corresponding to H (1)

G are
called type I geometry-G LDPC codes whose block
length is n. Interchanging the roles of the rows and
columns in the incidence matrix, the codes correspon-
ding to H (2)

G = H (1)T
G are called type II geometry-G

LDPC codes.
References [17] and [18] used these finite-geome-

tries to construct the above two types of LDPC codes.
From the fundamental properties 2) and 4) of  finite-
geometries, these  codes are free of four-cycles; they
have a wide range of block lengths and code rates and
achieve good minimum distances. These codes can be
encoded in linear time and by simple feedback shift
registers, and they can be extended and shortened in
various ways to obtain other good LDPC codes.
Simulation results in [17] show that with iterative
decoding the performance of long extended finite-
geometry LDPC codes are only a few tenths of a dB
away from the Shannon limit.

Balanced Incomplete Block Designs 
Recently,  structured four-cycle-free regular LDPC
codes have been constructed [22]–[28], based on com-
binatorial designs known as balanced incomplete block
designs (BIBD) [29], a concept  thoroughly studied
since the end of the 19th century. 

A BIBD with parameters (v, k, λ, r, b ) is an ordered
pair (X ,A) in which a set X of v points is partitioned
into a collection A of b subsets (blocks) in such a way

that any two points determine λ blocks with k points in
each block and each point is contained in r different
blocks [29]. Since b k = vr and λ(v − 1) = r(k − 1),
only three of the five parameters are independent.
Therefore, the notation (v, k, λ)-BIBD  represents a
BIBD on v points, block size k, and index λ.

Example 1: Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and A
the collection of 12 three-element blocks:
A = {(1, 2, 3) , (4, 5, 6) , (7, 8, 9) , (1, 4, 7) , (2, 5, 8) ,
(3, 6, 9), (1, 5, 9), (2, 6, 7), (3, 4, 8), (1, 6, 8), (2, 4, 9),
(3, 5, 7)}, the pair (X ,A) is a (9, 3, 1)-BIBD [30].

The (v, k, λ)-BIBD with k = 3 and λ = 1 is called a
Steiner triple system. The (9, 3, 1)-BIBD in the previ-
ous example is a Steiner triple system. Steiner triple sys-
tems exist for all v = 1, 3 mod 6. (We use both
notations x = y mod z and x = (y , mod z).)

If a set of blocks partitions the point set X in a
BIBD, the block set is  a parallel class. A resolution of a
BIBD is a partition of the family A of blocks into paral-
lel classes. Clearly, a resolution is composed of exactly r
parallel classes. A BIBD with at least one resolution is
resolvable. A resolvable Steiner triple system is a
Kirkman triple system. Kirkman triple systems exist for
all v = 3 mod 6. For the (9, 3, 1)-BIBD in Example 1,
which is also a Steiner triple system, the set A can be
partitioned into four parallel classes as follows:

{(1, 2, 3), (4, 5, 6), (7, 8, 9)}, {(1, 4, 7), (2, 5, 8), 
(3, 6, 9)}, {(1, 5, 9), (2, 6, 7), (3, 4, 8)}, {(1, 6, 8), 
(2, 4, 9), (3, 5, 7)}

Large girth speeds the
convergence of iterative
decoding and improves the
performance at least in the high
SNR range, by slowing down
the onset of the error floor.
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i.e., this Steiner triple system is resolvable, and so it is
also a Kirkman triple system.

Following [25], define a point-block incidence
matrix H = [h i j ]v×b , where h i j = 1 if the i th-point in
X occurs in the j th-block of A , and h i j = 0 otherwise.
For the (v, k, λ)-BIBD with k ≥ 2 and λ = 1, if each
point is regarded as a parity-check equation and each
block is a bit in a linear block code, then H is a parity-
check matrix of size v × b whose uniform row weight is
r and the uniform  column weight is k. If r � v and
k � b , H is the sparse parity-check matrix of an LDPC
code. Figure 3 shows the parity-check matrix H corre-
sponding to the (9, 3, 1)-BIBD in Example 1, where
the rows from top to bottom correspond to the points
1, 2, . . . , 9 in X , and the columns from left to right
correspond to the blocks in A .

In a parity-check matrix H, two columns that have
two 1’s on the same rows correspond to a four-cycle in
the associated Tanner graph. It is easy to see that for
the point-block incidence matrix H arising from BIBDs
with λ = 1 this cannot happen. Therefore their Tanner
graphs are free of four-cycles.

Mackay and Davey [22] were the first to use BIBDs,
in particular, Steiner triple systems, to design  LDPC
codes. Johnson and Weller [23], [24] present a family
of (n, 3, k) LDPC codes based on Kirkman triple sys-
tems. These codes are systematically constructed and
are free of four-cycles. Vasic et al. [28] do further work
on constructing four-cycle-free (n, 3, k) LDPC codes
based on Kirkman triple systems, present an efficient
encoding algorithm for hardware implementation, and
study their decoding performance by the sum-product
algorithm in perpendicular magnetic read channels with
different partial response targets and different types of
noise. In [25], Vasic constructs structured four-cycle-
free (n, 3, k) LDPC codes based on Steiner triple sys-
tems and dif ference families of Abelian groups,
proposes a hardware efficient encoding algorithm, and
demonstrates that high-rate Steiner codes have a sub-
stantial performance gain over current schemes for
magnetic recording systems. References [26] and [27]
also construct four-cycle-free LDPC codes based on
other BIBD techniques, such as mutually orthogonal
Latin rectangles (MOLR) and anti-Pasch BIBDs. A
Latin rectangle based on a set of n elements S is an
r × s rectangular array, say A , with the property that
each row of A is an s -permutation of elements of S and
each column of A is an r -permutation of elements of S
[31]. The Latin square is of order r if r = s . Two Latin
rectangles are orthogonal, if no ordered pair occurs
more than once when the rectangles are superimposed.
A set of Latin rectangles is said to be mutually orthog-
onal if any two of the rectangles are orthogonal [32].
In [26], Vasic presents a family of LDPC codes based
on MOLR and analyzes their decoding performance in
perpendicular magnetic read channels.

An (n, k) configuration in a BIBD is a subset of k
blocks of A whose union is an n-element subset of X .
A Pasch configuration [33], or a quadrilateral, is a
(6, 4) configuration in a Steiner triple system. Figure 4
shows an example of a Pasch configuration, where
a, b , c ,d, e , f is a six-subset of points of X , and
a, b , c , a,d, e , b ,d, f , c , e , f is a subset of four blocks
in A . Reference [27] constructs LDPC codes with the
minimum distance dmin ≥ 6 based on BIBDs without
Pasch configurations, i.e., anti-Pasch BIBDs, to
increase the minimum distance of the codes. For a lin-
ear block code, any dmin − 1 columns of the associated
parity-check matrix H are linearly independent. If there
exist one or more Pasch configurations in a Steiner
triple system, the four columns of H corresponding to
four blocks in a Pasch configuration, respectively, must
be linearly dependent, since each point occurs exactly
twice in the configuration. Therefore, dmin = 4. If we
can avoid Pasch configurations in a Steiner triple sys-
tem to get an anti-Pasch system, the associated parity-
check matrix has dmin ≥ 6, since dmin must be even for
H when the column weight is j = 3.

The construction of regular LDPC codes based on
anti-Pasch resolvable designs was also independently
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� 3. The H matrix corresponding to a (9, 3, 1)-BIBD.
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proposed by Johnson and Weller [23]. These well-
structured codes are free of four-cycles, achieve very
high code rates, and can have arbitrary column weight,
although this reference focuses on codes with low col-
umn weights. These codes are quasi-cyclic so that their
encoder can be realized by using shift registers. 

All these BIBD based codes  are well structured, free of
four-cycles, i.e., girth g = 6, and  achieve very high code
rate; e.g.,  [28] gives a (n, 3, k) LDPC code with block
length n = 2420 and code rate r = 0.95. However,
BIBD based codes have a great restriction, namely, they
cannot avoid cycles of length greater than four; they
exhibit a large number of six-cycles. New methods are
needed to design LDPC codes with girth g > 6.

Before leaving this section, we note that there are
many other constructions available in the literature that
due to space limitations we cannot address. We refer
briefly to Margulis’ work [34] that designed LDPC
codes with good girth properties based on Cayley
graphs. Margulis presents a construction for (n, 3, 6)

regular LDPC codes whose girth increases linearly as
log n. Constructions for 1/2 rate codes with large girth
using Ramanujan graphs [35] are presented in [36].
Both constructions [34], [36] lead to large girth codes
but are limited to 1/2 rates. Tanner et al. [37] present
a class of group-structured LDPC codes with girth
g ≤ 12 based on subgroups of the multiplicative group
of a prime field G F (p). Their parity-check matrices
have fixed column weight j = 3 and fixed row weight
k = 5. The design rate of these codes is only 0.4. Hu et
al. propose in [38] a nonalgebraic method named pro-
gressive edge-growth (PEG). Their paper presents
examples of irregular codes of girth eight by progres-
sively establishing edges between bit and check nodes
in an edge-by-edge manner. PEG optimizes the place-
ment of a new edge on the Tanner graph with the goal
of maximizing the local girth.

Geometry-Based Designs
Here we present geometry-based constructions for
LDPC codes with girth g ≥ 6. In [39] and [40], we
present constructions for column weight j = 2 LDPC
codes with girth up to 20. Here we illustrate briefly
how to extend these results for column weight j = 3.

We first introduce an alternative graphical represen-
tation for H. Let H be the parity-check matrix of an
LDPC code with v parity-check equations, i.e., H is
v × n. We represent these parity-check equations by a
set X of v points. We call X the point set of the LDPC
H matrix. For LDPC codes with j = 3, each column
of the H matrix is represented by a triangle composed
of three points in X that correspond to the three
nonzero elements in this column. We call the resulting
graph the structure graph for the LDPC H matrix; we
refer to it by GH or simply G. 

Consider a point set X = {a1, . . . , a8, b1, . . . , bp}
and divide it into two subsets X1 = {a1, . . . , ap} and
X2 = {b1, . . . , bp}. The points in each of these subsets

are positioned in a vertical line. We now label sequen-
tially from bottom to top  the points in each subset X1
and X2 by ai and b j , 1 ≤ i, j ≤ p = 8, respectively, as
shown in Figure 5. The reader should note that this
figure repeats twice the set X . Each edge is between a
point ai ∈ X1 and  a point b j ∈ X2. Here we need to
introduce two concepts: slope of an edge and admissi-
ble slope pair.

The slope s of an edge between points ai ∈ X1 and
b j ∈ X2 is  s = j − i . Slopes take values in the range
−(p − 1) ≤ s ≤ (p − 1) , where p is the number of
points in each subset. Hence, there are (2p − 1) possi-
ble slopes. Note that we have assigned the points in
subset X1 as reference points when calculating the
slopes. The number of possible edges with slope s is
(p − |s |). In Figure 5, we give examples of edges with
slope +2 and −6, when p = 8.

A slope pair (s , s ′) is an admissible slope pair (ASP)
iff s ′ = −sgn(s ) · (p − |s |), where the slopes s and s ′

will be referred to as mirror slopes. The two slopes +2
and −6, shown in Figure 5, compose an AS. Each ASP
(s , s ′) allows us to introduce (p − |s |) + (p − |s ′|) = p
edges, and it increases the degree of each point in X by
one.

(n, 3, k) LDPC Codes with Girth Eight
We now consider the construction of codes with column
weight j = 3 girth g = 8. In the structure graph for
(n, 3, k) LDPC codes, each column of the H matrix is
represented by a triangle whose three vertices correspond
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� 5. Edges with specific slopes.
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to the three nonzero elements in the column, the col-
umn triangles. As long as each edge belongs to a single
column triangle, the corresponding LDPC code is free of
four-cycles, since two distinct connection lines between
two nodes in GH stand for a four-cycle. However, six-
cycles  are also represented by  triangles in the structure
graph, the cycle triangles, as shown in Figure 6(a). A tri-
angle is a cycle triangle only when its three edges belong
to three different columns; otherwise, it is a column tri-
angle. In other words, each edge in a cycle triangle is
shared with a column triangle. Figure 6(b) shows several
examples of triangles in the structure graph of an
(n, 3, k) LDPC code: {a, b, f}, {b, c, d}, and {d, e, f} are
column triangles; and {b, d, f} is a cycle triangle, since its
edges are all shared with the previous triangles.

To construct six-cycle-free (n, 3, k) LDPC codes
with high code rates, we introduce as many columns as
possible for a given value of v . The selection of
columns follows two basic rules: each edge is used at
most once to construct column triangles; each new col-
umn should not introduce cycle triangles.

Assume v = 3p , with p an integer. We partition these
points into three subsets X0, X1, and X2 of equal size p.
The points in each subset are aligned in a vertical line,
as shown in Figure 7, for p = 9. Like before, an edge in
the structure graph must connect points in different

subsets. The section Si represents all the edges between
the two neighboring subsets Xi and X mod(i+1,3); it cor-
responds to an ASP set Ai . The slope of each edge in Si
is calculated using a point in Xi as the reference point.
These ASP sets are of the same size. The task is now  to
find an admissible slope set Ai for each section Xi to
obtain as many column triangles as possible without
introducing cycle triangles. The following two facts
underlie our construction of girth g = 8 (n, 3, k)

LDPC codes. The proofs are omitted here.
Fact 1: In a structure graph, any column triangle or

cycle triangle must be composed of three edges in three
different sections with slopes s0, s1, and s2, respectively,
satisfying mod (s0 + s1 + s2, p) = 0.

Fact 2: Assume the three ASPs (s0, s ′
0), (s1, s ′

1), and
(s2, s ′

2) belong to ASP sets A0, A1, and A2, respectively,
and that mod (s0 + s1 + s2, p) = 0. Then, after introducing
all the edges corresponding to all the three ASPs, p trian-
gles occur, and no two of these have a common edge.

To construct (n, 3, k) LDPC codes with girth eight,
we need to find three sets Ai of admissible slope pairs
one for each of the three sections Si , i = 0, 1, 2. These
sets satisfy the following conditions:

� Condition 1: The three ASP sets have the same cardi-
nality Ns , i.e., Ai = {(s i1, s ′

i1), . . . , (s iNs , s ′
iNs

)}.
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� 6. (a) A six-cycle in an H matrix and its structure graph.
(b) Triangles in the structure graph of an (n, 3, k) LDPC code.
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� 7. (a) At the top, a triangle in the structure graph when p = 9;
at the bottom, an example of an eight-cycle. (b) The H matrix of a
Type-I code with n = 6990 and r = 0.9.
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� Condition 2: The slope pairs in each Ai must satisfy
the following conditions:

—Condition 2.1: For 1 ≤ j ≤ Ns , mod (s0 j +
s1 j + s2 j , p) = 0.

—Condition 2.2: If mod(s0i + s1 j + s2k, p) = 0, then
i = j = k.

By Fact 2, condition 2.1 guarantees that the three
slope pairs (s0 j , s ′

0 j ), (s1 j , s ′
1 j ), and (s2 j , s ′

2 j ), one from
each ASP set, introduce p column triangles. Condition
2.2 guarantees that no cycle triangles are introduced.

We developed an algorithm to construct these three
ASP sets, but, due to lack of space, we omit its details
here. The resulting codes are referred to as type I
codes. Figure 7(b) shows the structure of one parity-
check matrix H when v = 699, n = 6, 990, and
r = 0.9. Reference [41] presents a class of LDPC codes
with j = 3 and g = 8 based on permutation matrices
that, for example, for a similar code rate r = 8/9 has
block shorter length n = 4, 509.

Though type I (n, 3, k) LDPC codes with girth
eight have no six-cycles, they will have in general many
eight-cycles. We can eliminate some of these eight-
cycles by introducing additional conditions on the
ASPs. The net effect is to reduce the code rate for a
given v . We refer to the resulting codes as type II
(n, 3, k) LDPC codes with girth g = 8.

The  e ight -cyc le s  we  de le te  have  the  form
shown on the bottom of Figure 7(a). These cycles
occur when the slopes selected s0a, s0b , s1a , and s1b
satisfy mod (s0a + s1a, p) = mod (s0b + s1b , p) , where
(s0a, s ′

0a), (s0b , s ′
0b ) ∈ A0, and (s1a, s′1a), (s1b , s ′

1b ) ∈ A1.

We add this additional condition when searching for
admissible slope sets to avoid these eight-cycles. The H
matrix of a type II code is also well structured, similar
to that of a type I code.

We expect type II codes to have better decoding
performance than type I codes, since they have a small-
er number of eight-cycles. Simulation results confirm
this. This performance gain is at the cost of a lower
code rate for the same parity-check number v, because
there are more strict conditions in searching for the
admissible slope sets.

Turbo-Structured LDPC Codes
In this section, we present LDPC codes whose Tanner
graphs of the associated parity-check matrix H exhibit a
specific architecture that is stimulated by the structure
of turbo codes; see also [42] and [43]. The Tanner
graph of these codes has three components as shown
in Figure 8(a): two height-balanced trees—an upper-
tree TU , whose leaf-nodes are bit nodes (solid circles),
and a lower-tree TL , whose leaf-nodes are check nodes
(solid squares)—and an interleaver that “couples’’ in a
turbo-like manner the leaf-nodes of TU to  the leaf-
nodes of TL . We refer to such codes as turbo-struc-
tured LDPC (TS-LDPC) codes or turbo-like LDPC
codes. The height of each tree, i.e., the number of lay-
ers in each tree, is h . The first layer of the upper tree
TU reduces to a single check node C ∗, the root, as
shown in Figure 8(a), while the root of TL is a bit node
V ∗. We note that either subtree TU or TL , or both, can
be missing. If both are absent, we refer to the codes as
flattened TS-LDPC codes.
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� 8. (a) Turbo-structured LDPC code: h = 4, j = 3, and k = 4. (b) Auxiliary nodes in the upper tree TU.
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The structure formed by the edges connecting  the
leaf-nodes of TL and the leaf nodes of TU is the inter-
leaver I. Because we are interested in regular codes, we
let all the bit nodes have uniform degree j and all the
check nodes have the same degree k; see, for example,
the Tanner graph for a TS-LDPC code with h = 4,
j = 3, and k = 4 in Figure 8(a). To achieve uniform
degree, note that  the roots of TU and  of TL , C ∗, and
V ∗, respectively, are connected to each other by the
dashed line in the TS-LDPC code in Figure 8(a). The
code rate for a TS-LDPC code is  r = 1 − ( j/k). For
example, if a code rate r = 8/9 and column-weight-six
LDPC code is desired, simply let j = 6 and k = 54 in
each of the component trees.

The design of TS-LDPC codes with large girth is
facilitated by their specific architecture. By construc-
tion, each subtree TU and TL is, in isolation, free of
cycles. The cycles  are introduced by the interleaver. We
discuss briefly below the methodology to design TS-
LDPC codes with column weight j = 2 and girth
g = 20 and codes with j ≥ 3 and g = 8.

We comment that the codes we present here are
turbo like from the decoder point of view, i.e., from
the parity-check matrix H and its associated Tanner
graph. This stands in sharp contrast and should not be
confused with the codes presented in [44] and [45]
that combine two LDPC codes as component codes
in the encoder side. We also note that [41] designs
graph based codes for column weight j = 2 and girth
g up to 12 that, in the context of TS-LDPC codes,
have no lower tree. The technique we discuss in this
article can design TS-LDPC codes with arbitrary col-
umn weight j .

Interleaver Design
By construction, each leaf-node in the upper tree TU
is connected to q = j − 1 leaf-nodes in TL . This
means our TS-LDPC interleaver is a 1-to-q mapping
while,  usual ly,  interleavers are a 1-1 mapping
between elements of two sets with the same size. To
get a standard interleaver, we introduce “auxiliary
nodes’’ (solid triangles) as shown in Figure 8(b). For
each leaf-node in TU , we add j − 1 auxiliary nodes as
its children. Similarly, each leaf-node in TL has k − 1
auxiliary nodes as its descendants. Denote by AU
the set containing all the auxiliary nodes in TU and
by AL the set containing all the auxiliary nodes in
TL . Then, designing the interleaver corresponds  to

finding an appropriate 1-1 mapping between ele-
ments of AU and AL . We observe that a cycle con-
tains at least two auxiliary nodes in TU and two
auxiliary nodes in TL . For convenience, and depend-
ing on how many auxiliary nodes a cycle involves, we
group the cycles into two disjoint categories: type I
and type II cycles. Type I cycles contain four and
only four auxiliary nodes, two from TU and two
from TL ; type II cycles contain more than four auxil-
iary nodes. In the sequel, by the girth of a type I or
of a type II cycle we mean the length of the shortest
type I or type II cycle, respectively, present in the
graph.

To design large-girth LDPC codes, we proceed as
follows. First, we develop a method, the symbol-wise
reversal and shift, that maximizes the girth of type I
cycles as determined from the height h of the subtrees.
Second, we present conditions to eliminate type II
cycles of length four and six. We note that for flattened
TS-LDPC codes only type II cycles are present.

(p–q)-Alternate-Decimal Format
Let the subtrees TU and TL have height h , the bit
nodes degree j , and the check nodes  degree k. Let
p = k − 1 and q = j − 1. Each subtree has
[(k − 1)( j − 1)]h/2 auxiliary nodes that are indexed
from 0 to [(k − 1)( j − 1)]h/2 − 1. The nodes in the
upper subtree TU are indexed in a p − q-alternate-dec-
imal format, labeled by Xp−q , that we introduce now.
In this format, we need only h digits, where h is the
height of the tree, to represent the label Xp−q . These
digits xi are numbered from one to h , starting from
the rightmost digit; we refer to the position of the
digit xi as the i th-coordinate in the (p − q)-alternate-
decimal format. The odd coordinates take values zero
to q − 1, and the even coordinates take values zero to
p − 1. Similarly, we index all the auxiliary nodes of TL
in a (q − p)-alternate-decimal; we label these digits
from left to right and refer to the position of the digit
xi as the i th-coordinate of  the (q − p)-alternate-deci-
mal representation. We provide an example. With ref-
erence to  Figure 8(b) where the upper tree has height
h = 4, the index Xp−q of an auxiliary node in the
upper tree TU is 

Xp−q = x4︸︷︷︸
p

x3︸︷︷︸
q

x2︸︷︷︸
p

x1︸︷︷︸
q

= (
x4 × p1q2 + x3 × p1q1

+ x2 × p0q1 + x1 × p0q0)
10, (1)

where (·)10 represents the decimal value of Xp−q .

Symbol-Wise Reversal and Shift Operators 
The symbol-wise reversal operator πs (·) applied to the
label Xp−q represented in (p − q)-alternate-decimal
form with h coordinates exchanges the digits at the
i th- and  (h + 1 − i)th-coordinates, i.e., 
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An LDPC code is a special class
of linear block codes whose
parity-check matrix has a low
density of ones, i.e., is sparse.



πs (Xp−q) = x1︸︷︷︸
q

x2︸︷︷︸
p

x3︸︷︷︸
q

x4︸︷︷︸
p

.

We now introduce symbol-wise shifts. We represent
by +̇ the symbol-wise addition. Using this addition, we
add in (q − p)-alternate-decimal format the shift Sq−p
to the index πs (Xp−q) to obtain a new index. For exam-
ple, let πs (Xp−q) = x1x2x3x4 and Sq−p = s1s2s3s4, then

πs
(
Xp−q

) +̇ Sq−p = y1y2y3y4,

where y i = xi +̇ s i = mod (xi + s i , divi ) .

where divi = p if i is even and divi = q if i is odd.
Note that with symbol-wise addition there is no carry.
Similarly, we define symbol-wise subtraction −̇.

Type I Cycles 
Type I cycles are avoided by choosing an arbitrary shift
S in (q − p)-alternate-decimal notation and by simply

connecting the auxiliary node Xp−q in TU to the auxil-
iary node πs (Xp−q) +̇ S in TL . It can be shown that
this rule maximizes the girth of type I cycles.

Type II Cycles 
To avoid type II cycles, we start by clustering the auxil-
iary nodes of TU that have the same digit at the left-
most coordinate in their (p − q)-alternate-decimal
index in k − 1 groups. Likewise, we assemble the auxil-
iary nodes of TL according to the values of their  left-
most coordinates into ( j − 1) groups.  We now discuss
the shift Si,m connecting (any of the) nodes in group i
in TL to (any of the) nodes in group m in TU . For dif-
ferent i and m, the shifts Si,m may be the same or dif-
ferent. Hence, there are ( j − 1)(k − 1) shifts Si,m to
adjust to prevent type II cycles of short length.

Fact 3: Consider two groups of nodes m and n in
TU and two groups i and j in TL . If  the correspon-
ding shifts satisfy Si,m +̇ Sj,n �= Si,n +̇ Sj,m ,  then no
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� 9. (a) Type-II four-cycle. (b)–(d) three type-II six-cycles.
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type II 4-cycle is formed among these four groups.
To prevent type II six-cycles, we first note that the only

possible type II six-cycles are the ones displayed in Figure
9(b)–(d). Fact 3 is then extended such that these type II
six-cycles are avoided. Due to lack of space, we present
only the conditions on the shifts that prevent the type II
six-cycles in Figure 9(c): Si,n−̇Sj,n+̇Sj,m
−̇Si,m > pq = (k − 1)( j − 1). Similar conditions can be
derived for the other type II six-cycles and, in general, for
type II 2l -cycles.

By choosing suitable shifts Su,v for u = 1, . . . , (k − 1)

and v = 1, . . . , ( j − 1), we can prevent type II cycles
of length 4, 6, and so on up to g − 2 where g is the
desired girth of the code. Figure 10(a) illustrates the
1, 521 × 6, 084 matrix H designed by this method and
that corresponds to a (6,084, 3, 12) TS-LDPC code
with girth g = 8. Matrix H clearly exhibits the upper
and lower trees TU (thick dashed line) and TL (thin

solid line) and the interleaver (cloud of points). Along
the solid (thin) lines in H there is a single one in each
row, while along the dashed thicker diagonals there are
11 ones in each row, so that per row there are 12 ones.
Each row in the cloud in H has 11 ones also.

Designing LDPC codes with column weight j = 2
is a much simpler task, and details are found in [43];
Figure 10(b) shows a (13,120, 2, 4) TS-LDPC with
rate r = 1/2 and girth g = 20.

TS-LDPC codes provide efficient memory utiliza-
tion. Generically, an (n, j, k)-LDPC code is represent-
ed by an m × n parity-check matrix H. An efficient
direct representation of H exploits its sparseness to
record only the nonzero column indices in each row,
hence, n × j indices are recorded.  In contrast, with
TS-LDPC codes, we only need to record the
(k − 1) × ( j − 1) matrix S of shifts. For example, for
the j = 3 LDPC code with H shown in Figure 10(a),
rather than storing the 6, 084 × 3 = 18, 252 column
indices where the ones are located, we need to store
only the (12 − 1) × (3 − 1) = 22 shifts, which signifi-
cantly reduces the memory required to store the parity-
check matrix H.

Simulation Results
We compare by simulation the BER of the geometry-
based designs of LDPC codes (GB-LDPC) and of the
turbo-structured LDPC codes (TS-LDPC) with the
BER of randomly constructed LDPC codes in addi-

tive white Gauss noise (AWGN) channels.
The codes are decoded with the sum-prod-
uct algorithm [9], and we adopt the rate-
adjusted signal to noise ratio (SNR) defined
in [46] SNR1 = 10 log10

[
Eb /

(
2rσ 2

)]
,

where SNR2 = 10 log10[Eb /2σ 2] is the
usual SNR. The dif ference
SNR1 − SNR2 =−10 log r may be signifi-
cant because r < 1.

Figure 11(a) compares the BER perform-
ance for three (n = 4368, 2, k) LDPC codes
with rate r = 1/2: a random, a GB-, and a
TS-LDPC code. The GB- and the TS-LDPC
codes both have girth g = 16. In the high
SNR region, the GB- and the TS-LDPC
codes outperform the random code: at
BER = 10−5 this gain is 1.1 and 1.2 dB,
respectively. In the low SNR regime, the
GB-LDPC code exhibits a small perform-
ance loss, while the TS-LDPC code has  per-
formance similar to that of the random code.
Figure 11(b) compares the BER perform-
ance for an (n, 2, k) GB-LDPC code with
girth 20 with a random (n, 2, k) LDPC
code. The GB-LDPC code outperforms the
random LDPC code by 1.4 dB at
BER = 10−5 . These plots show that
(n, 2, k) LDPC codes with large girth out-
perform random codes in the high SNR

� 10. Parity-check matrix H for (n, j, k) TS-LDPC code with rate r and girth g. (a)
(6,084, 3, 12), r = 3/4, g = 8 and (b) (13,120, 2, 4), r = 1/2, g = 20.
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region. This is well explained by the fact that, for
LDPC codes with column weight j = 2, the minimum
distance dmin = g/2, where g is the girth, and that, in
the high SNR region, dmin is a dominant factor in
determining the code BER performance.

Figure 12(a) compares the BER performance of two
(n = 6, 990, 3, k) codes with rate r = 9/10: a GB-
LDPC code with girth g = 8 and a random LDPC
code. These codes show similar BER performance across
the SNR region tested, though the GB-LDPC code out-
performs the random LDPC code by 0.02 dB at
BER = 10−5. At higher SNR, we expect the GB-LDPC
code to outperform the random code.

Figure 12(b) compares the BER performance for
two (n = 6, 986, 3, k) codes with rate r = 11/14: a
type II GB-LDPC code with girth g = 8 and a random
LDPC code. The codes show similar BER performance
in the low SNR region; however, in the high SNR
region, the GB-LDPC code outperforms the random
LDPC code by 0.15 dB at BER = 10−5.

� 11. Comparison of BER performance for random code with 
(n, 2, k) GB- and TS-LDPC codes: (a) girth 16 and (b) girth 20 
(GB-LDPC code only).
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Figure 12(a) and (b) confirms that the BER per-
formance of LDPC codes depends not only on the
girth but also on the cycle distribution. Both type I and
type II (n, 3, k) GB-LDPC codes have roughly the
same block length (n = 6, 990 and n = 6, 984, respec-
tively) and the same girth g = 8, but the type II code
has a much smaller number of eight-cycles in their
Tanner graph. A small price paid in the code rate
(down from r = 0.9 for the type I code to
r = 11/14 = 0.786 for the type II code) gained
roughly 1.3 dB in BER performance as can be seen
from Figure 12: for BER = 10−6 , the type I code
requires SNR = 4.4 dB while the type II code
requires SNR = 3.1 dB.

Figure 12(c) shows the BER performance for a col-
umn weight j = 3 TS-LDPC code with girth eight
(solid line). For comparison, we also show the BER
performance of a randomly constructed LDPC code
with column weight j = 3 (dashed line). Both codes
have the same block length 6084 and the same code
rate 3/4. From Figure 12, it can be seen that the BER
performance of the TS-LDPC code is 0.08 dB better
than that of the random LDPC code at BER = 10−6

while at low SNR both codes have comparable error-
correcting performance. 

Comparing the performance of codes with j = 2 with
codes with j = 3, we see that the j = 3 codes exhibit at
least a 3 dB gain over j = 2 codes. This is in line with
the expected loss in performance for j = 2 codes.

Conclusion
This article addresses methods to design regular LDPC
codes with large girth. In graph terms, this corresponds
to designing bipartite undirected regular graphs with
large girth. Large girth speeds the convergence of itera-
tive decoding and improves the performance at least in
the high SNR range, by slowing down the onsetting of
the error floor. We reviewed several existing construc-
tions from exhaustive search to highly structured
designs based on Euclidean and projective finite
geometries and combinatorial designs such as balanced
incomplete block designs. We described GB and TS
LDPC codes and compared the BER performance of
GB- and TS-LDPC codes with large girth to the BER
performance of random codes. These studies confirm
that in the high SNR regime these codes with high
girth exhibit better BER performance. The regularity
of the codes provide additional advantages that we did
not explore in this article like the simplicity of their
hardware implementation and fast encoding.
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