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ABSTRACT
In this paper we construct three types of low-density

parity-check codes with column weight j = 3 based on
geometries in graphical models. Low-density parity-check
codes with j > 2 are desired because their minimum dis-
tance improves linearly with the code block length n. The
codes we present here have girth 8 and girth 10. All codes
are regular and well-structured. These codes have flexi-
ble block lengths and code rates, and may be used in the
area of communications and data storage. Our simulation
results show that they have better bit-error-rate decoding
performance and lower error floors in additive white Gaus-
sian noise channels than randomly constructed low-density
parity-check codes.

1. INTRODUCTION

Low-density parity-check (LDPC) codes [1] can perform
very close to the Shannon limit when iteratively decoded
by the sum-product algorithm [2]. Since it has been well
known that the existence of cycles in the Tanner graphs of
LDPC codes taxes the computing effort of the sum-product
decoding algorithm and prevents it from converging to the
optimal result [3], cycles, especially short cycles, affect neg-
atively the performance of LDPC decoders. Therefore, LDPC
codes with large girth are desired.

Much work has been devoted to the construction of large-
girth LDPC codes. Kou, Lin, and Fossorier, see[4], present
a geometric approach to construct four classes of (quasi-
)cyclic LDPC codes with girth g = 6. The construction of
these codes are based on the lines and points of Euclidean
and projective geometries over finite fields. Recently, struc-
tured regular LDPC codes have been constructed from bal-
anced incomplete block designs (BIBD), a thoroughly stud-
ied concept of combinatorial designs. Please refer to [5,
6] for details. Song presents in his Ph.D. thesis [7] sev-
eral classes of regular LDPC codes with column weight
j = 2 and girth g ≤ 12 and j = 3 and g ≤ 8 based
on disjoint-difference sets (DDS) and permutation matrices
(PM). These codes are quasi-cyclic and well structured.
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We present in [8, 9, 10] three classes of structured regu-
lar LDPC codes with column weight j = 2 and girth g =
12, 16, 20, respectively. In this paper, we extend these re-
sults and focus on the design of LDPC codes with j = 3
and g = 8, 10. LDPC codes with column weight j > 2 are
desirable since their minimum distance grows linearly with
the code block length n, in contrast with LDPC codes with
j = 2, where the minimum distance grows only logarith-
mically with n. In Section 2, we describe the construction
of three classes of LDPC codes with column weight j = 3:
two of them have girth 8, and the other one has girth 10.
Simulation results and analysis are provided in Section 3.
Finally, Section 4 concludes the paper.

2. CODE CONSTRUCTIONS

Preliminaries Our construction is based on geometries
in graphical models. We give here a brief description of
the graphical model that is also used in [8, 9, 10] to design
LDPC codes with column weight j = 2. Let H be the
parity check matrix of an LDPC code with v parity check
equations, i.e., H is v × n. We represent these parity check
equations by a set X of v points. We call X the point set of
the LDPC H matrix. For LDPC codes with j = 3, each col-
umn of the H matrix is represented by a triangle composed
of three points in X that correspond to the three nonzero el-
ements in this column. We refer to this as column triangle
for reasons to be explained shortly. We call the resulting
graph the structure graph for the LDPC H matrix.
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Fig. 1. A 6-cycle in an H matrix and its structure graph.

The structure graph helps to identify easily cycles in the
LDPC H matrices. Two distinct connection lines between
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two nodes in a structure graph stand for a 4-cycle. A 6-cycle
is just a triangle comprising three points and three connec-
tion lines between any two of them. Figure 1 shows the
relationship between the H matrix of an LDPC code with
column weight 3 and its structure graph for a 6-cycle. To
distinguish this from the column triangle, we refer to it as
cycle triangle. A triangle is a cycle triangle when its three
edges belong to three different columns; otherwise it is a
column triangle. Figure 2 shows several examples of tri-
angles in a structure graph for LDPC codes with j = 3:
{a,b,f}, {b,c,d}, and {d,e,f} are column triangles; {b,d,f} is
a cycle triangle, since its edges are all shared with the previ-
ous triangles. An 8-cycle is a loop composed of four points
and four tail-biting connection lines. It is similar for cycles
with length greater than 8.
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Fig. 2. Triangles in the structure graph.

Before presenting our constructions, we introduce two
needed concepts: slope of an edge and admissible slope
pair.

Consider a set of points X = {a1, ..., ap, b1, ..., bp} that
we divide into two subsets X1 = {a1, ..., ap} and X2 =
{b1, ..., bp}. Position the points in X1 and X2 in a vertical
line, as shown in Figure 3 for p = 8. Label sequentially
from bottom to top the points in subsets X1 and X2. Note
that Figure 3 repeats twice the set X .
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Fig. 3. Edges with specific slopes.

The slope s of an edge between points ai ∈ X1 and
bj ∈ X2 is s = j − i. Slopes take values in the range
−(p − 1) ≤ s ≤ (p − 1), where p is the number of points
in each subset. Hence, there are (2p − 1) possible slopes.
Figure 3 illustrates on the left s = +2 and on the right s =
−4. We assign the points in X1 as reference points when

calculating the slopes. The number of possible edges with
slope s is (p − |s|).

A slope pair (s, s′) is an admissible slope pair (ASP)
iff s′ = −sgn(s) ·mod (p − |s|). The slopes s and s′ are
referred to as mirror slopes. Each ASP (s, s′) introduces
(p− |s|) + (p− |s′|) = p edges and increases the degree of
each point in X by 1.

(n, 3, k) LDPC codes with girth 8 To obtain LDPC codes
with girth 8, we eliminate 4-cycles and 6-cycles. Cycles of
length 4 are avoided as long as each edge belongs to a single
column triangle. This can be accomplished easily. There-
fore, the major task is to avoid 6-cycles.

To construct 6-cycle-free (n, 3, k) LDPC codes with high
code rates, we should introduce as many columns in H as
possible for the same number v of parity checks. The selec-
tion of columns follows two basic rules: each edge is used
at most once to construct column triangles; each new intro-
duced column should not give rise to cycle triangles.
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Fig. 4. A triangle in the structure graph when p = 5.

Assume v = 3p, with p an integer. We partition these
points into three subsets X0, X1, and X2 of equal size p.
The points in each subset are aligned in a vertical line, as
shown in Figure 4, for p = 5, and labelled as indicated in
the figure. We only consider edges in the structure graph
that connect points in different subsets. We introduce the
concept of section. The section Si represents all the edges
that are introduced between two neighboring subsets Xi

and Xmod(i+1,3); it corresponds to an ASP set Ai. The
slope of each edge in section Si is calculated using a point
in Xi as the reference point. We can prove that these ASP
sets are of the same size. To avoid 6-cycles in j = 3 LDPC
codes with high code rates, the task is to construct an ad-
missible slope set Ai for each section Xi that introduces
as many column triangles as possible without introducing
cycle triangles in the code structure graph.

The following two facts underlie our construction of girth g =
8 (n, 3, k) LDPC codes. The proofs are omitted here.

Fact 1 In a structure graph as described above, any col-
umn triangle or cycle triangle must be composed of three
edges in three different sections with slopes s0, s1, and s2,
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respectively, satisfying mod (s0+s1+s2, p) = 0, as shown
in Figure 4.

Fact 2 Assume the three ASPs (s0, s
′
0), (s1, s

′
1), and (s2, s

′
2)

belong to ASP sets A0, A1, and A2, respectively, and mod (s0+
s1 + s2, p) = 0. Then, after introducing all the edges cor-
responding to all the three ASPs, p triangles occur, and any
two of these have no common edge.

To construct (n, 3, k) LDPC codes with girth 8, we need
to find three sets Ai of admissible slope pairs one for each
of the three sections Si, i = 0, 1, 2. These sets satisfy the
following conditions:

1. Condition 1 The three ASP sets have the same car-
dinality Ns, i.e.,
Ai = {(si1, s

′
i1), ..., (siNs

, s′iNs
)}.

2. Condition 2 The slope pairs in each Ai must satisfy
the following conditions:

2.1 Condition 2.1 For 1 ≤ j ≤ Ns, mod(s0j +
s1j + s2j , p) = 0.

2.2 Condition 2.2 If v(s0i +s1j +s2k, p) = 0, then
i = j = k.

By Fact 2, Condition 2.1 guarantees that the three slope
pairs (s0j , s

′
0j), (s1j , s

′
1j), and (s2j , s

′
2j), one from each

ASP set, introduce p column triangles. Condition 2.2 guar-
antees that no cycle triangles are introduced.

We present next our construction for LDPC codes with
girth g = 8. Let B be the set of all possible admissible
slope pairs, and introduce three copies Bi = B, i = 0, 1, 2.
Call Bi the candidate ASP set for Ai.

Construction 1 (Type-I (n, 3, k) LDPC codes, g = 8)

1. Initialization Set Ai = φ, i = 0, 1, 2, the empty
set.

2. Choose two arbitrary ASPs (si1, s
′
i1) one from each

of the two sets Bi, i = 0, 1. Let s21 = mod(−s01 −
s11, p). Move (si1, s

′
i1) into Ai, and delete it from the

corresponding Bi, i = 0, 1, 2. Set k = 2.
3. If B0 is empty, go to step 9; otherwise, choose an

arbitrary ASP (s0k, s′0k) from B0, move it to A0, and
delete it from B0.

4. If there exist a j, 1 ≤ j ≤ k − 1, such that
(sl, s

′
l) ∈ A2, where sl = mod(−s0k − s1j , p), then

delete (s0k, s′0k) from A0, and go to step 3.
5. If B1 is empty, go to step 9; otherwise, let B′

1 =
B1.

6. If B′
1 is empty, delete (s0k, s′0k) from A0, and go

to step 3; otherwise, select an arbitrary ASP (s1k, s′1k)
from B′

1, move it to A1, and delete it from B′
1.

7. If there exist a j, 1 ≤ j ≤ k − 1, such that
(sl, s

′
l) ∈ A2, where sl = mod(−s0j − s1k, p), then

delete (s1k, s′1k) from A1 and B1, and go to step 6.

8. Let s2k = mod(−s0k − s1k, p). If (s2k, s′2k) ∈
B2, delete (s2k, s′2k) from B2, move it to A2, set k =
k + 1, and go to step 3. Otherwise, go to step 6.

9. End.
The cardinality of the sets Ai is Ns = k − 1. The sets
Ai, i = 0, 1, 2, are the desired ASP sets. The corre-
sponding LDPC code has girth g = 8.

In Construction 1, since each triple of admissible slope
pairs from three different admissible slope sets satisfying
the above equation will contribute p column triangles, i.e.,
p columns, to H, the block length of the code is n = Ns · p,
and the code rate is r = (Ns − 3)/Ns. To obtain codes
with higher code rates, it is important to maximize Ns by
searching over the admissible slope sets. Attainable code
rates and the corresponding code block lengths are shown
by the top dashed line in Figure 5, and Figure 6 shows the
structure of one parity check matrix H when v = 231, n =
1155, and r = 0.8. The H matrix is well-structured.
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Fig. 5. Code lengths for proposed codes as a function of
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Fig. 6. H matrix for a Type-I code with v = 231, n = 1155,
and r = 0.8.

Though Type-I (n, 3, k) LDPC codes with girth 8 have
no 6-cycles, they will have in general many 8-cycles. It
can be shown that 8-cycles have the two structural forms
shown in Figure 7. We refer to the top and bottom 8-cycles
in Figure 7 as Form-I and Form-II 8-cycles, respectively.
The four edges of a Form-I 8-cycle are all in the same sec-
tion; these four edges form a 8-cycle when |si1 − si2| =
|sj1 − sj2|. The four edges of a Form-II 8-cycle are in two
contiguous sections; with respect to the bottom 8-cycle of
Figure 7, the four edges with slopes s0a, s0b, s1a, and s1b

satisfy mod (s0a + s1a, p) = mod (s0b + s1b, p), where
(s0a, s′0a), (s0b, s

′
0b) ∈ A0, and (s1a, s′1a), (s1b, s

′
1b) ∈ A1.
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Construction 1 can be modified to eliminate all of these
8-cycles by introducing additional conditions on the ASPs.
Of course, the net effect is to reduce the code rate for a
given v. A tradeoff is to eliminate some of these 8-cycles.
We refer to the resulting codes as Type-II (n, 3, k) LDPC
codes with girth g = 8.

The 8-cycles we delete are Form-II cycles with edges in
sections S0 and S1. We add this additional condition when
searching for admissible slope sets to avoid these 8-cycles.

Construction 2 (Type-II (n, 3, k) LDPC codes, g = 8) Repeat
the steps 1–7 in Construction 1. Then proceed as follows.

8. Let s2k = mod(−s0k − s1k, p). If (s2k, s′2k) ∈
B2, delete (s2k, s′2k) from B2, and move it to A2, and
set k = k + 1. Otherwise, go to step 6.

9. For 1 ≤ j ≤ k − 2, let slj = mod(−s0j −
s1(k−1), p), and smj = mod(−s0(k−1) − s1j , p). For
1 ≤ j ≤ k − 2, if (slj , s

′
lj) ∈ B2, delete it from B2; if

(smj , s
′
mj) ∈ B2, delete it from B2. If B2 is not empty,

go to step 3.
10. End.

The cardinality of the sets Ai is Ns = k − 1. The sets Ai,
i = 0, 1, 2, are the desired ASP sets. The resulting H matrix
corresponds to a regular (n, 3, k) LDPC code that still has
girth g = 8 but has a lower number of 8-cycles.
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Fig. 7. Top: Form-I 8-cycle; Bottom: Form-II 8-cycles.

The available code rates and block lengths for Type-II
codes are shown by the solid line in Figure 5. The well-
structured H matrix of a Type-II code is similar to that of a
Type-I code.

Since Construction 2 deletes some of the Form-II 8-cycles
in Type-I codes, we expect Type-II codes to have better de-
coding performance than Type-I codes. Simulation results
confirm this. As mentioned, this performance gain is at the
cost of a lower code rate for the same v, because the more
strict conditions in searching for the admissible slope sets

decrease the value of possible Ns. Therefore, to achieve
a given code rate, Type-II codes need larger block lengths
than Type-I codes.

(n, 3, k) LDPC codes with girth 10 By introducing addi-
tional conditions on the ASPs to avoid all of 8-cycles, Con-
struction 2 can be modified to obtain LDPC codes with girth
g = 10. In the construction of LDPC codes with girth 10,
we need to eliminate all Form-I 8-cycles in sections S0, S1

and S2, and all Form-II 8-cycles with edges in contiguous
sections S0 and S1, S1 and S2, and S2 and S0. The process
to eliminate Form-II 8-cycles in contiguous sections S1 and
S2, and S2 and S0 is similar to the steps 8 and 9 in Con-
struction 2 for avoiding Form-II 8-cycles in S0 and S1. For
the process to eliminate Form-I 8-cycles, please refer to the
construction of (n, 2, k) LDPC codes with girth 12 in [9] for
details, since they have the same form of 8-cycles. We omit
the details of the construction here due to space limitations.
Refer to the bottom dashed line in Figure 5 for the available
code rates and block lengths for the codes with girth 10. As
shown in the figure, the codes with girth 10 have lower code
rates than those of Type-I and Type-II codes with girth 8 for
given block lengths. The H matrix of a code with girth 10
is also well-structured, similar to that of a Type-I code with
girth 8.

3. SIMULATION RESULTS

In this section, we compare the bit error rate (BER) of
the proposed LDPC codes with the BER of randomly con-
structed LDPC codes in additive white Gauss noise (AWGN)
channels. These codes are decoded by the sum-product al-
gorithm, and we adopt the rate-adjusted signal to noise ra-
tio (SNR) defined in [11] SNR1 = 10 log10

[
Eb/
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Fig. 8. Comparison of BER performance for random code
with large-girth LDPC codes (girth 8, Type-I).

Figure 8 compares the BER performance of a Type-I
code with girth 8 and a random LDPC code. Both codes
have the same block length 6990 and the same code rate 9/10.
They show similar BER performance across the SNR re-
gion tested, though the Type-I code outperforms the random
LDPC code by 0.02dB at BER= 10−5.

Figure 9 compares the BER performance of a Type-II
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Fig. 9. Comparison of BER performance for random code
with large-girth LDPC codes (girth 8, Type-II).
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Fig. 10. Comparison of BER performance for random code
with large-girth LDPC codes (girth 10).

code with girth 8 and a random (n,3,k) LDPC code. Both
codes have the same block length 6986 and the same code
rate 11/14. They show similar BER performance in the low
SNR region; however, in the high SNR region, the Type-
II code outperforms the random LDPC code by 0.15dB at
BER= 10−5. The Type-II code also shows a lower error
floor than that of the random code.

Figure 10 compares the BER performance of a code with
girth 10 and a random (n,3,k) LDPC code. Both codes have
the same block length 8360 and the same code rate 8/11.
The code with girth 10 shows only slightly better BER per-
formance than that of the random code up to BER= 10−5;
but, for lower BER, the girth 10 code exhibits lower error
floor.

4. CONCLUSION

In this paper, we present three types of regular (n, 3, k)
LDPC codes with girth 8 and 10. These codes are systemat-
ically constructed, and their H matrices are well-structured
and completely represented by a set of integers (parity check
numbers and slopes in ASP sets). These codes can be used
in various areas, e.g., communications and data storage, since
they have flexible code rates and block lengths. In the high
SNR region, these codes with large girth have better BER
decoding performance than the performance of randomly

constructed codes over AWGN channels. These codes also
show a lower error floor than that of random codes.
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