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ABSTRACT

We introduce a class of structured LDPC codes—turbo-
structured LDPC (TS-LDPC) codes—composed of two sub-
trees connected by an interleaver. TS-LDPC codes with
good girth properties are easy to design: careful design of
the interleaver component prevents short cycles in its Tan-
ner graph. We present a methodology to design TS-LDPC
codes with arbitrary column weight j ≥ 2 and arbitrary
girth. In addition, we describe a complexity reduced de-
coding algorithm. Simulation results demonstrate the good
performance of TS-LDPC codes when compared to random
LDPC codes of the similar size and rate.

1. INTRODUCTION

Low-density parity-check (LDPC) codes [1], can be ap-
plied in numerous tasks, e.g., communication systems, mag-
netic recording channels. Their performance is close to the
Shannon limit using iterative decoding [2].

An LDPC code can be described by a bipartite graph
called Tanner graph [3]. The length of the shortest cycle
in a Tanner graph is referred to as its girth g. Short cycles
in Tanner graphs tax the computing effort of the decoding
algorithm and prevent it from converging to the optimal de-
coding result. Furthermore, reference [3] derives a lower
bound on the minimum distance dmin. This lower bound
increases exponentially with girth. Therefore, LDPC codes
with good girth properties are particularly desirable.

Recently, cyclic and quasi-cyclic LDPC codes have drawn
much attention in the sense that they facilitate low-complexity
encoder and decoder designs. However, they have limited
girths. Tanner, [4], proved that the girth of such codes with
column weight j ≥ 3 is less than or equal to 6. This prevents
the girth of (n, j, k) cyclic and quasi-cyclic LDPC codes of
growing as log n

log[(j−1)(k−1)] , [1], hence performing poorly at
very long code block length.

We present a new type of structured LDPC codes with
arbitrary girth that are stimulated from turbo designs, which
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we refer to as turbo-structured LDPC codes (TS-LDPC).
The Tanner graph of such codes is composed of two sub-
trees that are connected in a turbo-like manner by an in-
terleaver. This structure facilitates the systematic design of
LDPC codes with large girth and flexible code rates. Our
turbo-structured LDPC codes are distinct from the codes in
[5] that are also inspired by turbo codes in their design of
concatenated tree codes. However, our TS-LDPC codes are
turbo for the decoder side, while [5] is turbo for the encoder
side. The resulting TS-LDPC codes and the concatenated
tree codes are very different, see [6] for comments.

2. TS-LDPC CODES

The Tanner graph of TS-LDPC codes is composed of three
components: two height-balanced trees, denoted as an upper-
tree TU , and a lower-tree TL, and an interlaver that connect
TU and TL. The leaf-nodes of TU are bit nodes whereas
the leaf-nodes of TL are check nodes. Both trees TU and
TL contain h tiers (or layers). The first tier of TU contains
only one check node C∗—the root, as shown in Figure 1.
To match TU , we let the root of TL to be a bit node V ∗ and
connect V ∗ to C∗. The two trees are “coupled” in a turbo-
like manner such that many edges join the leaf-nodes of TU

and TL together, see Figure 1. The structure formed by the
edges connecting the leaf-nodes of TU and the leaf nodes
of TL is named the interleaver I. Since we are interested in
regular LDPC codes, we let all the bit nodes have uniform
degree j and all the check nodes have uniform degree k. For
example, a TS-LDPC code with h = 4, j = 3, and k = 4 is
depicted in Figure 1. Ignoring possible dependency of a few
rows in the parity-check matrix, the code rate is ρ = 1 − j

k .
We can easily choose the values of j and k to create a TS-
LDPC code with the desired code rate.

3. INTERLEAVER DESIGN

By construction, each leaf-node in TU is connected to q =
j − 1 leaf-nodes in TL. This is a one-to-q mapping, while
the standard interleaver is a one-to-one mapping between
elements of two sets with the same size. To get a standard
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interleaver, we introduce “auxiliary nodes” (solid triangles)
as shown in Figure 2 to facilitate the code design. For each
leaf-node in TU , we add j−1 auxiliary nodes as its children.
Similarly, each leaf-node in TL has k − 1 auxiliary nodes
as its descendants.

After introducing “auxiliary nodes,” we notice that cy-
cles present in the codes must contain at least four “auxiliary
nodes”—two auxiliary nodes of TU and two auxiliary nodes
of TL. We classify cycles into two disjoint categories: Type-
I cycles contain four and only four auxiliary nodes; type-II
cycles contain more than four auxiliary nodes. We will dis-
pose of them separately.

Fig. 1. TS-LDPC code: Tanner graph, h = 4, j = 3, k = 4.

Fig. 2. Auxiliary nodes in the upper tree TU

For TU with h tiers, there are [(k − 1)(j − 1)]h/2 aux-
iliary nodes in TU . We address the interleaver design prob-
lem algebraically by indexing all the auxiliary nodes of TU ,
from 0 to [(k−1)(j−1)]h/2−1 in a format we explain next
that we refer to as p-q-alternate-decimal, where p = k − 1
and q = j − 1. We need h digits in the p-q-alternate-
decimal indexing and number these h digits from 1 to h,
starting from the rightmost one. The odd digits take val-
ues 0 to q − 1 and the even digits take values 0 to p − 1.
Similarly, we index all the auxiliary nodes of TL from 0
to [(k − 1)(j − 1)]h/2 − 1 and represent all these indices
in q-p-alternate-decimal format. We provide an example.
With reference to the index in Figure 2, its index Xp−q in

p-q-alternate-decimal form is:

Xp−q = x4︸︷︷︸
p

x3︸︷︷︸
q

x2︸︷︷︸
p

x1︸︷︷︸
q

(1)

In equation (1), xi, i = 1 · · · 4, represents the ith digit. The
corresponding value of Xp−q in decimals is

Xp−q = (x4 × pq2 + x3 × pq + x2 × q + x1)10.

3.1. Type-I Cycles: Digit-wise Reversal

We consider first how to avoid short type-I cycles. We start
with a simple interleaver design—digit-wise reversal. For
an index Xp−q in p-q-alternate-decimal form with h digits,
its digit-wise reversal interchanges the ith digit and the (h+
1 − i)th digit. We represent the digit-wise reversal operator
by πd(·). For the index Xp−q in equation (1), its digit-wise
reversal is:

πd(Xp−q) = x1︸︷︷︸
q

x2︸︷︷︸
p

x3︸︷︷︸
q

x4︸︷︷︸
p

= (x1 × qp2 + x2 × qp + x3 × p + x4)10

We state the advantage of the digit-wise reversal interleaver
in the following theorem and omit the proof. For a detailed
proof, please refer to [7].

Theorem 1 Connecting the auxiliary nodes indexed by Xp−q

in TU to the auxiliary nodes indexed by πd(Xp−q) in TL

guarantees the resulting type-I cycles is at least of length
2h (h denotes the number of tiers in TU ).

Following theorem 1, we can enlarge the length of type-I
cycles by simply increasing tiers of sub-trees.

3.2. Type-II 4-Cycles

Theorem 1 prevents short type-I cycles, however, it may
lead to many short type-II cycles, even type-II 4-cycles.

To avoid short type-II cycles, we propose a method called
grouping and shifting. The shift S is defined to be a constant
in q-p-alternate-decimal format that is added to the origi-
nal index πd (Xp−q) to form a new index. For example, let
πd (Xp−q) = x1x2x3x4, shift S = s1s2s3s4, and +̇ repre-
sent the digit-wise addition, then

πd (Xp−q) +̇S = y1y2y3y4 (2)

In equation (2), yi = xi+̇si = mod (xi + si , divi). where
divi = p if i is even and divi = q if i is odd. Similarly, we
represent the digit-wise subtraction by −̇.

Next, we divide all the auxiliary nodes of TU into k − 1
groups, grouping together those nodes with the same left-
most digit in their p-q-alternate-decimated indices. The aux-
iliary nodes of TL can, likewise, be classified into j − 1 dif-
ferent groups based also on the values of the leftmost digits

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 426



in their q-p-alternate-decimated indices. We further let the
shift to be the same when we connect the auxiliary nodes
of TU in the same group to the auxiliary nodes of TL in
the same group. Denote by Sy,z the shift introduced when
we connect the auxiliary nodes of TL in the yth group to the
auxiliary nodes of TU in the zth group. For different y and z,
the shifts Sy,z may be the same or different from each other.
In addition, since Sy,z is not to affect the assigning of the
groups, its leftmost and rightmost digits are always set to 0.

The following theorem proved elsewhere relates type-I
cycles to shifts:

Theorem 2 (TYPE-I 2h-CYCLES) Connecting the auxil-
iary node indexed by Xp−q in the zth group in TU to the
auxiliary node indexed by πd(Xp−q)+̇Sy,z (Sy,z can be any
possible value) in the yth group in TL guarantees that any
type-I cycle formed is at least of length 2h (h denotes the
number of tiers in TU ).

Hence, when following theorem 2, we have (j − 1)(k − 1)
free parameters Sy,z to adjust to prevent short type-II cycles
while in the mean time all short type-I cycles are avoided.

Theorem 3 provides a sufficient condition on the shifts
Sy,z that can be used to prevent type-II 4-cycles.

Theorem 3 (NO TYPE-II 4-CYCLES) Consider the mth

and the nth groups of nodes in the upper-tree TU and the ith

and the jth groups in the lower-tree TL. If the associated
shifts satisfy Si,m+̇Sj,n �= Si,n+̇Sj,m, then NO type-II 4-
cycles are formed between these four groups.

Fig. 3. (a) Fig. 3. (b)

Fig. 3. (c) Fig. 3. (d)

Fig. 3.

Proof : We prove theorem 3 by proving an equivalent propo-
sition: If a type-II 4-cycle is formed, then the associated

shifts MUST satisfy Si,m+̇Sj,n = Si,n+̇Sj,m. Figure 3.(a)
shows a type-II 4-cycle containing four vertices A, B, C,
and D. It can also be viewed as a cycle containing eight
auxiliary nodes a1, a2, c1, c2, b1, b2, d2, and d1. With ref-
erence to the plot in Figure 3.(a), and assuming that the in-
dex for the auxiliary node a1 is Xa1 , then according to the
connecting rule presented in theorem 2, the index for the
auxiliary node b1 is Xb1 = πd(Xa1)+̇Si,m. Let δb denote
the difference between Xb1 and Xb2 , i.e., δb = Xb2−̇Xb1 .
Since the auxiliary nodes b1 and b2 are connected to the
same check node B, only the rightmost digit of the q-p-
alternate-decimal form of δb is non-zero, all its other dig-
its are zero. The index for the auxiliary node c1 is Xc1 =
πd(Xb2−̇Si,n). Again, let δc = Xc2 −Xc1 . Then the p− q-
alternate-decimal form of δc has only one non-zero digit,
its rightmost digit. The index for the auxiliary node d1 is
Xd1 = πd(Xc2)+̇Sj,n. Let Xd2 = Xd1 + δd; the in-
dex for the auxiliary node a2 in terms of Xd2 is Xa2 =
πd(Xd2−̇Sj,m). The relationship between Xa1 and Xa2 is
Xa1 = Xa2 +δa. Iterating in the definition of Xa2 , we have

πd[πd(πd(πd(Xa1)+̇Si,m+̇δb−̇Si,n)+̇δc)
+̇Sj,n+̇δd−̇Sj,m] + δa = Xa1 . (3)

As πd(πd(X)) = X , this leads to

πd(Si,m−̇Si,n+̇Sj,n−̇Sj,m)+̇[πd(δb+̇δd)+̇δc+̇δa] = 0 (4)

In the q-p-alternate-decimal form of a shift, the leftmost and
the rightmost digits are always zero. On the other hand,
except for the leftmost and rightmost digits, all the digits in
δc, δa, πd(δb), and πd(δd) are zero. Therefore, equation (4)
can be split into two sub-equations:

πd(Si,m−̇Si,n+̇Sj,n−̇Sj,m) = 0 (5)

πd(δb+̇δd)+̇δc+̇δa = 0. (6)

It follows then from equation (5)

Si,m+̇Sj,n = Si,n+̇Sj,m. (7)

This completes the proof.

3.3. Exclude Type-II Cycles of Arbitrary Length

We observe that there are many different classes of type-II
cycles. For example, all type-II cycles of length six can be
divided into three classes, as shown in Figure 3.(b), 3.(c),
and 3.(d). For convenience, we divide all type-II cycles up
to length 2L into L−1 equivalence sets based on the number
of edges NI contained in the interleaver component. For ex-
ample, all type-II cycles of length six belong to two equiv-
alence sets: Cycles shown in Figure 3.(b) and 3.(c), with
four edges in the interleaver, are in the same equivalence
set. Another equivalence set contains the cycles shown in
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Figure 3.(d) that have six edges in the interleaver. The fol-
lowing theorem eliminates the cycles in each equivalence
set.

Each cycle in the equivalence set with NI = 2k is as-
sociated with 2k shifts Sy1,z1 Sy2,z2 . . . Sy2k,z2k

whose
subindices satisfy the following two conditions:

(i) y2t−1 = y2t, t = 1, 2, 3, . . . , k and z2t = z2t+1,
t = 1, 2, 3, . . . , k − 1

(ii) y2t �= y2t+1, t = 1, 2, 3, . . . , k − 1 and z2t−1 �= z2t,
t = 1, 2, 3, . . . , k

Define the shift matrix S = [Sy,z] to be a matrix that col-
lects all the shifts. From the point of view of graph theory,
Sy1,z1 , Sy2,z2 , . . . , Sy2k,z2k

are adjacent vertices of a closed
path in the S matrix. For example, as shown in Figure 4,
S1,1, S1,2, S2,2, and S2,1 are vertices of a closed path of
length four (dashed line) in S and S2,5, S2,6, S4,6, S4,4,
S3,4, and S3,5 are vertices of a closed path of length six
(solid line) in S.

Theorem 4 For the equivalence set with NI = 2k, let ∆S =∑k
u=1 Sy2u,z2u

− ∑k
v=1 Sy2v−1,z2v−1 . Each ∆S having h

digits is free of any cycle having less than NT = 2l edges in
the trees (both TU and TL) if it contains at most d = h−l−2
consecutive digits “0” in its q-p-alternate-decimal expan-
sion.

The proof is rather lengthy. We prove it elsewhere.
By choosing suitable shifts Sy,z according to theorems 2-

4, we can avoid all short type-I and type-II cycles up to the
desired length g − 2.

Fig. 4. Two closed paths in the shift matrix S

As an illustration, we applied the above methods to con-
struct a (6666, 3, 6) regular LDPC code, rate .5, with girth
g = 10. Its structure is given by the 3333 × 6666 matrix H
shown in Figure 5. We can clearly identify TU , TL, and the
interleaver component I from the constructed matrix, as la-
belled in Figure 5. In this matrix, along the solid lines, there
is a single 1 in each row, while along the dashed thicker di-
agonals there are five 1’s in each row, so that per row there
are six 1’s.

Fig. 5. Parity-check matrix of a (6666, 3, 6) TS-LDPC code
with girth 10

4. PERFORMANCE EVALUATION

We compare by simulation the bit error rate (BER) of the
TS-LDPC codes with the BER of randomly constructed LDPC
codes that are free of 4-cycles [2] in additive white Gauss
noise (AWGN) channels. The codes are decoded with the
sum-product algorithm [9], and we adopt the signal to noise
ratio (SNR) defined in [2]: SNR = 10 log10

[
Eb/

(
2rσ2

)]

where r denotes the code rate.
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Fig. 6. BER performance comparison between a column
weight j = 3 TS-LDPC code with girth 10 and a randomly
constructed LDPC code of the same size free of 4-cycles.

The plot in Figure 6 shows the BER performance for a
column weight j = 3 TS-LDPC code with girth 10 (solid
line). For comparison, we also show the BER performance
of a randomly constructed LDPC code (no 4-cycles) with
column weight j = 3 (dashed line). Both codes have the
same block length 6666 and the same code rate 1/2.

From Figure 6, it can be seen that the BER performance
of the TS-LDPC code is 0.12dB better than that of the ran-
dom LDPC code at BER= 10−5 while at low SNR both
codes have similar error-correcting performance. Accord-
ing to [3], the (6666, 3, 6) TS-LDPC code has minimum
distance dmin ≥ 10. Since the lower bound of dmin de-
rived in [3] is not tight, the actual dmin of the (6666, 3, 6)
TS-LDPC code may be much larger than 10. In the high
SNR region, dmin is a dominant factor in determining the
code BER performance. This explains why the TS-LDPC
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code with girth 10 has good BER performance in the high
SNR region.

5. FAST DECODING

The TS-LDPC codes can be effectively decoded by what
we refer to as the turbo like decoding algorithm (TLDA) [8].
The TLDA is as follows:

Step 1: Initialization.

Step 2: Decode TU , using the updated information provided
by I, and, after decoding, transmit the new proba-
bilistic information to TL through I.

Step 3: Decode TL, using the updated information from I
and then transmit the new probabilistic information
back to TU through I.

Step 4: Compute the temporary decoding outputs. If de-
coding success is achieved, go to step 5. Otherwise,
go back to step 2.

Step 5: End.

The message updatings of the TLDA are the same as those
for the sum-product decoding algorithm [1].

We comment briefly on the advantages of TLDA. It is
well known, [9], that with a cycle-free Tanner graph, the
sum-product algorithm terminates in a finite number of steps
and yields minimum symbol error probability. Therefore, in
isolation, the local decoding for each cycle-free component
is optimal. The TLDA is still iterative: each component
transmits its a posteriori probability (APP) information to
the others through the interleaver and, in turn, these com-
ponents use these APPs as a priori information to start their
own decoding process.

We present a simulation study by 20000 Monte Carlo
simulations comparing the performance of the code using
TLDA and the standard sum-product decoding. This is a
(6666, 3, 6) TS-LDPC code with uniform column weight
j = 3 and code rate 0.5. Figure 7.(a) shows the BER per-
formance of the code. The plots in Figure 7.(b) show that
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Fig. 7. (a)
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Fig. 7.

TLDA converges faster by about 50% (smaller number of
iteration steps) than the sum-product decoding algorithm.

6. CONCLUSION

In this paper, we propose a new class of well-structured
LDPC codes—TS-LDPC codes. We presented designs of
flexible code rate with arbitray column weight and arbitrary
girth. TS-LDPC codes can be decoded efficiently, charac-
teristics that make them attractive in applications, e.g., com-
munication systems and data storage systems.
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