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Abstract — We introduce a method to design structured LDPC
codes with large girth and flexible code rates. The method is
simple to explain: we divide the nodes in the Tanner graph into
groups and connect nodes in these groups according to a set of pa-
rameters called shifts. We derive a general theorem on the shifts
to prevent small cycles. Simulations show that these codes, GS-
LDPC codes, outperform random LDPC codes.

I. INTRODUCTION AND CONSTRUCTION

Low-density parity-check (LDPC) codes can be described by a
bipartite graph called Tanner graph [1]. The length of the shortest
cycle in a Tanner graph is referred to as its girth g. Since large girth
leads to more efficient decoding and large minimum distance dmin,
LDPC codes with large girth are particularly desired. We propose
a class of structured LDPC codes with large girth and flexible code
rate, called grouping-and-shifting based LDPC codes (GS-LDPC).

Let Vc be the set of all check nodes and Vb the set of all bit nodes.
Divide Vc into Nc disjoint subsets of equal size provided that the code
block length n = Nc · p where p is a natural number. We call each
subset a group and index the check nodes in each group from 0 to
p − 1. Similarly, partition Vb into Nb disjoint groups of equal size
and index the bit nodes in each group from 0 to p − 1.

GS-LDPC codes satisfy the following conditions:

1.1 Condition 1 Each check node is connected to k bit nodes that
belong to k different groups.

1.2 Condition 2 Each bit node is connected to j check nodes that
belong to j different groups.

1.3 Condition 3 The check node indexed by X in the yth group

in Vc is connected to the bit node indexed by X
p⊕ Sy,z in the

zth group in Vb where 0 ≤ Sy,z ≤ p − 1. (The parameters

Sy,z are named shifts and
p⊕ represents modulo-p addition.)

II. RESULTS AND CONCLUSIONS

We derive a general rule to relate 2l-cycles (l ∈ N) to shifts.

Theorem 1 (2l-CYCLES) The Tanner graph for a GS-LDPC code
contains at least one 2l-cycle if and only if there exist 2l shifts
Sy1,z1 Sy2,z2 . . . Sy2l,z2l that satisfy the following conditions:

2.1 Index Condition 2.1 y2t = y2t+1, t = 1, 2, 3, . . . , l− 1 and
y2l = y1 and z2t−1 = z2t, t = 1, 2, 3, . . . , l

2.2 Index Condition 2.2 y2t−1 �= y2t, t = 1, 2, 3, . . . , l and
z2t �= z2t+1, t = 1, 2, 3, . . . , l − 1 and z2l �= z1

2.3 Shift Condition 2.3 ⊕2l
t=1(−1)t−1Syt,zt = Sy1,z1

p�
Sy2,z2

p⊕ · · · p⊕ Sy2i−1,z2i−1

p� Sy2i,z2i

p⊕ · · · p⊕
Sy2l−1,z2l−1

p� Sy2l,z2l = 0 (
p� represents modulo-p sub-

traction)
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When Nc = j and Nb = k where j is the column weight of the
parity-check matrix and k is the row weight of the parity-check ma-
trix, by choosing shifts Sy,z for y = 1, · · · , j and z = 1, · · · , k
that violate the conditions in Theorem 1, we can design GS-LDPC
codes with girth g ≤ 12. For larger Nc and Nb, we can generate GS-
LDPC codes with higher girth. As an illustration, Figure 1 shows a
(4500, 3, 9) GS-LDPC code with rate r = 2/3, free of cycles shorter
than 10 and whose structure is described by the 1500 × 4500 ma-
trix H constructed using Theorem 1.
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Fig. 1: H for a (4500, 3, 9) GS-LDPC code with rate 2/3 and girth 10.

We compare by simulation the bit error rate (BER) of a grith 8
GS-LDPC code with the BER of a randomly constructed LDPC code
that is free of 4-cycles [2] in an AWGN channel. Both codes have
column weight 3, block length 4536, and code rate 7/8. We adopt
the rate-adjusted signal to noise ratio (SNR) defined in [2]: SNR =
10 log10

[
Eb/

(
2rσ2

)]
where r denotes the code rate.
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Fig. 2: BER performance: GS-LDPC code, column weight 3, girth 8, and rate
7/8 vs. same size random LDPC code free of 4-cycles.

In the high SNR, the GS-LDPC code outperforms the random
LDPC code (free of 4-cycles) by SNR = .6 dB at BER= 5 × 10−8

where the performance of the random code has bottomed while the
GS-LDPC code has not yet reached the error floor at this BER.
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