Grouping-and-shifting Designs for Structured LDPC Codes with Large Girth¹

José M. F. Moura	Urs Niesen
Dept. of Electrical and Computer Eng.	Dept. of Electrical and Computer Eng
Carnegie Mellon University	Carnegie Mellon University
5000 Forbes Ave.	5000 Forbes Ave.
Pittsburgh, PA 15213	Pittsburgh, PA 15213
e-mail: moura@ece.cmu.edu	e-mail:uniesen@ece.cmu.edu
	José M. F. Moura Dept. of Electrical and Computer Eng. Carnegie Mellon University 5000 Forbes Ave. Pittsburgh, PA 15213 e-mail: moura@ece.cmu.edu

Abstract — We introduce a method to design structured LDPC codes with large girth and flexible code rates. The method is simple to explain: we divide the nodes in the Tanner graph into groups and connect nodes in these groups according to a set of parameters called shifts. We derive a general theorem on the shifts to prevent small cycles. Simulations show that these codes, GS-LDPC codes, outperform random LDPC codes.

I. INTRODUCTION AND CONSTRUCTION

Low-density parity-check (LDPC) codes can be described by a bipartite graph called Tanner graph [1]. The length of the shortest cycle in a Tanner graph is referred to as its *girth g*. Since large girth leads to more efficient decoding and large minimum distance d_{min} , LDPC codes with large girth are particularly desired. We propose a class of structured LDPC codes with large girth and flexible code rate, called *grouping-and-shifting based LDPC codes* (GS-LDPC).

Let V_c be the set of all check nodes and V_b the set of all bit nodes. Divide V_c into N_c disjoint subsets of equal size provided that the code block length $n = N_c \cdot p$ where p is a natural number. We call each subset a group and index the check nodes in each group from 0 to p - 1. Similarly, partition V_b into N_b disjoint groups of equal size and index the bit nodes in each group from 0 to p - 1.

GS-LDPC codes satisfy the following conditions:

- 1.1 **Condition 1** Each check node is connected to *k* bit nodes that belong to *k* different groups.
- 1.2 **Condition 2** Each bit node is connected to *j* check nodes that belong to *j* different groups.
- 1.3 **Condition 3** The check node indexed by X in the y^{th} group in V_c is connected to the bit node indexed by $X \stackrel{p}{\oplus} S_{y,z}$ in the z^{th} group in V_b where $0 \leq S_{y,z} \leq p-1$. (The parameters $S_{y,z}$ are named *shifts* and \oplus represents modulo-p addition.)

II. RESULTS AND CONCLUSIONS

We derive a general rule to relate 2l-cycles $(l \in \mathbb{N})$ to shifts.

Theorem 1 (2I-CYCLES) The Tanner graph for a GS-LDPC code contains at least one 2l-cycle if and only if there exist 2l shifts $S_{y_1,z_1} S_{y_2,z_2} \ldots S_{y_{2l},z_{2l}}$ that satisfy the following conditions:

- 2.1 Index Condition 2.1 $y_{2t} = y_{2t+1}, t = 1, 2, 3, \dots, l-1$ and $y_{2l} = y_1$ and $z_{2t-1} = z_{2t}, t = 1, 2, 3, \dots, l$
- 2.2 Index Condition 2.2 $y_{2t-1} \neq y_{2t}, t = 1, 2, 3, ..., l$ and $z_{2t} \neq z_{2t+1}, t = 1, 2, 3, ..., l 1$ and $z_{2l} \neq z_1$
- 2.3 Shift Condition 2.3 $\bigoplus_{t=1}^{2l} (-1)^{t-1} S_{y_l,z_t} = S_{y_1,z_1} \bigoplus_{p}^{p} S_{y_{2,z_2}} \bigoplus_{p}^{p} \cdots \bigoplus_{p}^{p} S_{y_{2l-1},z_{2l-1}} \bigoplus_{p}^{p} S_{y_{2l},z_{2l}} \bigoplus_{p}^{p} \cdots \bigoplus_{p}^{p} S_{y_{2l-1},z_{2l-1}} \bigoplus_{p}^{p} S_{y_{2l},z_{2l}} = 0$ ($\bigoplus_{represents modulo-p subtraction$)

When $N_c = j$ and $N_b = k$ where j is the column weight of the parity-check matrix and k is the row weight of the parity-check matrix, by choosing shifts $S_{y,z}$ for $y = 1, \dots, j$ and $z = 1, \dots, k$ that violate the conditions in Theorem 1, we can design GS-LDPC codes with girth $g \leq 12$. For larger N_c and N_b , we can generate GS-LDPC codes with higher girth. As an illustration, Figure 1 shows a (4500, 3, 9) GS-LDPC code with rate r = 2/3, free of cycles shorter than 10 and whose structure is described by the 1500×4500 matrix **H** constructed using Theorem 1.

Fig. 1: H for a (4500, 3, 9) GS-LDPC code with rate 2/3 and girth 10.

We compare by simulation the bit error rate (BER) of a grith 8 GS-LDPC code with the BER of a randomly constructed LDPC code that is free of 4-cycles [2] in an AWGN channel. Both codes have column weight 3, block length 4536, and code rate 7/8. We adopt the rate-adjusted signal to noise ratio (SNR) defined in [2]: SNR = $10 \log_{10} \left[E_b / (2r\sigma^2) \right]$ where *r* denotes the code rate.

Fig. 2: BER performance: GS-LDPC code, column weight 3, girth 8, and rate 7/8 vs. same size random LDPC code free of 4-cycles.

In the high SNR, the GS-LDPC code outperforms the random LDPC code (free of 4-cycles) by SNR = .6 dB at BER= 5×10^{-8} where the performance of the random code has bottomed while the GS-LDPC code has not yet reached the error floor at this BER.

REFERENCES

- C. E. Shannon, "A recursive approach to low complexity codes," *IEEE Trans. Inform. Theory*, vol. IT-27, no. 5, pp. 533–547, 1981.
- [2] D. J. C. Mackay, "Good error-correcting codes based on very sparse matrices," *IEEE Trans. Inform. Theory*, vol. 45, no. 2, pp. 399–431, 1999.

¹This work was supported by the Data Storage Systems Center (DSSC) at Carnegie Mellon University.