Numerical Methods for Engineering Design and Optimization
(18-660 @ CMU)
- Introduction to numerical computation
- Ordinary differential equation (ODE)
- Partial differential equation (PDE)
- Thermal analysis
- Linear solver I: Gaussian elimination
- Linear solver II: LU decomposition & Cholesky decomposition
- Nonlinear solver: Newton-Raphson method & binary search
- Linear regression I: least-squares fitting
- Over-determined linear system
- Convex analysis: convex set, convex function & convex optimization
- Linear regression II: regularization
- Linear regression III: compressive sensing
- Classification: support vector machine (SVM)
- Geometric problems
- Unconstrained optimization I: golden section search & downhill simplex method
- Unconstrained optimization II: gradient method & Newton method
- Constrained optimization I: linear equality constraint
- Constrained optimization II: interior point method
- Constrained optimization III: duality
- Conjugate gradient method I: quadratic programming
- Conjugate gradient method II: conjugate search direction
- Conjugate gradient method III: iterative algorithm
- Conjugate gradient method IV: pre-conditioning
- Monte Carlo analysis I: random sampling
- Monte Carlo analysis II: Latin hypercube sampling & importance sampling
- Monte Carlo analysis III: principal component analysis (PCA)
- Randomized algorithm I: random walk
- Randomized algorithm II: simulated annealing