18-660: Numerical Methods for Engineering Design and Optimization

Xin Li
Department of ECE
Carnegie Mellon University
Pittsburgh, PA 15213
Overview

- Conjugate Gradient Method (Part 2)
 - Conjugate search direction
 - Gram-Schmidt conjugation
 - Conjugate gradient method
Quadratic Programming

- Solve linear equation by quadratic programming

\[AX = B \quad \rightarrow \quad \min_x f(X) = \frac{1}{2} X^T AX - B^T X + C \]

Gradient method has slow convergence
Ideally, we want to select a set of orthogonal search directions.

$$X^{(k+1)} = X^{(k)} + \mu^{(k)} D^{(k)}$$

$$D^{(i)T} D^{(j)} = 0$$

$$\Delta^{(k)} = X^{(k)} - X$$

$$\mu^{(k)} = -\frac{D^{(k)T} \Delta^{(k)}}{D^{(k)T} D^{(k)}}$$

However, we do not know $\Delta^{(k)}$ – otherwise, we know $X = X^{(k)} - \Delta^{(k)}$.
We do not know $\Delta^{(k)}$, but we can easily calculate $A\Delta^{(k)}$

\[
AX = B \quad R^{(k)} = B - AX^{(k)} \quad \Delta^{(k)} = X^{(k)} - X
\]

\[
A\Delta^{(k)} = AX^{(k)} - AX = AX^{(k)} - B = -R^{(k)}
\]

Instead of using orthogonal directions $D^{(k)}$, we make search directions **conjugate** (or equivalently **A-orthogonal**).
Two vectors $D^{(i)}$ and $D^{(j)}$ are conjugate (or A-orthogonal) if $D^{(i)T}AD^{(j)} = 0$ ($i \neq j$)

Geometrical interpretation

\[f(X) = \frac{1}{2} X^T AX = C \]

\[
Y^T \cdot \nabla f(X) = 0 \\
Y^T AX = 0
\]
“Conjugate” = “orthogonal” if $A =$ identity matrix

$$A = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
Conjugate Search Direction

- **Iteration scheme with conjugate search directions**
 - Select a set of *conjugate* search directions $D^{(k)}$
 - Take exactly one iteration step for each direction
 - After at most N steps, we get the solution X
 - (N is the problem size, i.e., $A \in \mathbb{R}^{N \times N}$)

\[X^{(k+1)} = X^{(k)} + \mu^{(k)} D^{(k)} \]

\[D^{(i)^T} A D^{(j)} = 0 \]

How do we decide $\mu^{(k)}$ and $D^{(k)}$?
Conjugate Search Direction

- Determine step size $\mu^{(k)}$

\[
D^{(i)T} A D^{(j)} = 0 \quad X^{(k+1)} = X^{(k)} + \mu^{(k)} D^{(k)} \quad X = X^{(0)} + \mu^{(0)} D^{(0)} + \cdots + \mu^{(N-1)} D^{(N-1)}
\]

\[
X^{(k+1)} = X^{(0)} + \mu^{(0)} D^{(0)} + \cdots + \mu^{(k)} D^{(k)}
\]

\[
\Delta^{(k+1)} = X^{(k+1)} - X = -\mu^{(k+1)} D^{(k+1)} - \cdots - \mu^{(N-1)} D^{(N-1)}
\]

\[
D^{(k)T} A \Delta^{(k+1)} = D^{(k)T} A \left[-\mu^{(k+1)} D^{(k+1)} - \cdots - \mu^{(N-1)} D^{(N-1)} \right] = 0
\]

$\Delta^{(k+1)}$ and $D^{(k)}$ are conjugate
Conjugate Search Direction

- Determine step size $\mu^{(k)}$

\[
A \Delta^{(k+1)} = -R^{(k+1)} \quad D^{(k)T} A \Delta^{(k+1)} = 0
\]

\[
D^{(k)T} R^{(k+1)} = 0
\]

$R^{(k+1)}$ and $D^{(k)}$ are orthogonal
Conjugate Search Direction

- Determine step size $\mu^{(k)}$

$$X^{(k+1)} = X^{(k)} + \mu^{(k)} D^{(k)}$$

$$R^{(k)} = B - AX^{(k)}$$

$$D^{(k)T} R^{(k+1)} = 0$$

$$D^{(k)T} \cdot [B - AX^{(k+1)}] = D^{(k)T} \cdot [B - AX^{(k)} - \mu^{(k)} AD^{(k)}] = 0$$

$$D^{(k)T} \cdot [R^{(k)} - \mu^{(k)} AD^{(k)}] = 0$$

$$D^{(k)T} R^{(k)} - \mu^{(k)} D^{(k)T} AD^{(k)} = 0$$

$$\mu^{(k)} = \frac{D^{(k)T} R^{(k)}}{D^{(k)T} AD^{(k)}}$$
Conjugate Search Direction

- $\mu^{(k)}$ minimizes $f[X^{(k+1)}]$ along the direction $D^{(k)}$

\[
f(X) = \frac{1}{2} X^T AX - B^T X + C \quad R^{(k)} = B - AX^{(k)} \quad X^{(k+1)} = X^{(k)} + \mu^{(k)} D^{(k)}
\]

\[
\min_{\mu^{(k)}} f[X^{(k+1)}] = \frac{1}{2} X^{(k+1)T} AX^{(k+1)} - B^T X^{(k+1)} + C
\]

\[
\frac{d}{d\mu^{(k)}} f[X^{(k+1)}] = \left[\frac{\partial f}{\partial X^{(k+1)}} \right]^T \cdot \frac{\partial X^{(k+1)}}{\partial \mu^{(k)}} = [AX^{(k+1)} - B]^T \cdot D^{(k)} = 0
\]

\[
R^{(k+1)T} \cdot D^{(k)} = 0
\]

$R^{(k+1)}$ and $D^{(k)}$ are orthogonal
Conjugate Search Direction

Important equations about conjugate search direction

\[AX = B \quad \text{Linear equation} \]

\[\min_{X} f(X) = \frac{1}{2} X^T AX - B^T X + C \quad \text{Equivalent optimization} \]

\[R^{(k)} = B - AX^{(k)} \quad \text{Residual definition} \]

\[\nabla f[X^{(k)}] = AX^{(k)} - B = -R^{(k)} \quad \text{Residual vs. gradient} \]
Conjugate Search Direction

Important equations about conjugate search direction

\[X^{(k+1)} = X^{(k)} + \mu^{(k)} D^{(k)} \]

\[\mu^{(k)} = \frac{D^{(k)^T} R^{(k)}}{D^{(k)^T} A D^{(k)}} \]

Iteration scheme

Conjugate search directions

\[D^{(i)^T} A D^{(j)} = 0 \]

Orthogonal residual

\[D^{(k)^T} R^{(k+1)} = 0 \]
Gradient Method vs. Conjugate Search Direction

Gradient method

\[X^{(k+1)} = X^{(k)} + \mu^{(k)} R^{(k)} \]

\[\mu^{(k)} = \frac{R^{(k)T} R^{(k)}}{R^{(k)T} AR^{(k)}} \]

- Use \(R^{(k)} \) as search direction
- \(\mu^{(k)} \) is optimized to minimize cost

Conjugate gradient method

\[X^{(k+1)} = X^{(k)} + \mu^{(k)} D^{(k)} \]

\[\mu^{(k)} = \frac{D^{(k)T} R^{(k)}}{D^{(k)T} AD^{(k)}} \]

- Use \(D^{(k)} \) as search direction
- \(\mu^{(k)} \) is optimized to minimize cost

We need to further develop an algorithm to generate \(D^{(k)} \)'s that are conjugate
Conjugate Gradient Method

- Construct search directions by conjugation of residuals
 - Residual is directly related to gradient
 - Search directions are defined by conjugation of gradients

\[
\min_X f(X) = \frac{1}{2} X^T AX - B^T X + C
\]

\[
\nabla f[X^{(k)}] = AX^{(k)} - B = -R^{(k)}
\]
Conjugate Gradient Method

- Define subspace

\[S^{(k)} = \text{span}\{R^{(0)}, R^{(1)}, \ldots, R^{(K-1)}\} \]

K-dimensional space with K basis vectors

- Gradient method directly uses \(R^{(k)} \) as search direction

- Conjugate gradient method uses conjugation of \(R^{(k)} \) so that each iteration step searches along a different direction

 - Given a set of basis vectors, how do we calculate the conjugation of them?
 - Introduce the algorithm of Gram-Schmidt conjugation
Gram-Schmidt Conjugation

\[D^{(0)} = R^{(0)} \]

\[D^{(1)} = R^{(1)} + \beta_{10} D^{(0)} \quad D^{(0)T} A D^{(1)} = 0 \]

\[D^{(0)T} A D^{(1)} = D^{(0)T} A \cdot [R^{(1)} + \beta_{10} D^{(0)}] = 0 \]

\[D^{(0)T} A R^{(1)} + \beta_{10} D^{(0)T} A D^{(0)} = 0 \]

\[\beta_{10} = -\frac{D^{(0)T} A R^{(1)}}{D^{(0)T} A D^{(0)}} \]
Gram-Schmidt Conjugation

\[D^{(k)} = R^{(k)} + \sum_{i=0}^{k-1} \beta_{ki} D^{(i)} \quad D^{(i)^T} AD^{(j)} = 0 \]

\[D^{(i)^T} AD^{(k)} = D^{(i)^T} A \left[R^{(k)} + \sum_{j=0}^{k-1} \beta_{kj} D^{(j)} \right] = D^{(i)^T} AR^{(k)} + \beta_{ki} D^{(i)^T} AD^{(i)} = 0 \]

\[\beta_{ki} = -\frac{D^{(i)^T} AR^{(k)}}{D^{(i)^T} AD^{(i)}} \]
Conjugate Gradient Method

- **Step 1:** start from an initial guess $X^{(0)}$, and set $k = 0$
- **Step 2:** calculate
 \[D^{(0)} = R^{(0)} = B - AX^{(0)} \]
- **Step 3:** update solution
 \[X^{(k+1)} = X^{(k)} + \mu^{(k)} D^{(k)} \quad \text{where} \quad \mu^{(k)} = \frac{D^{(k)T} R^{(k)}}{D^{(k)T} AD^{(k)}} \]
- **Step 4:** calculate residual
 \[R^{(k+1)} = B - AX^{(k+1)} \]
- **Step 5:** determine search direction
 \[D^{(k+1)} = R^{(k+1)} + \sum_{i=0}^{k} \beta_{k+1,i} D^{(i)} \quad \text{where} \quad \beta_{k+1,i} = -\frac{D^{(i)T} A R^{(k+1)}}{D^{(i)T} A D^{(i)}} \]
- **Step 6:** set $k = k + 1$ and go to Step 3
This simple implementation is not numerically efficient

There are a number of numerical tricks that we can apply to reduce computational complexity

Key idea
- $X^{(k)}$, $D^{(k)}$ and $R^{(k)}$ are strongly correlated
- They can be computed in many different ways – we should use the most efficient algorithm in our implementation
- More details in next lecture
Summary

- Conjugate gradient method (Part 2)
 - Conjugate search direction
 - Gram-Schmidt conjugation
 - Conjugate gradient method