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Abstract—Embedded control networks commonly use checksums to detect data transmission errors. However, design decisions

about which checksum to use are difficult because of a lack of information about the relative effectiveness of available options. We

study the error detection effectiveness of the following commonly used checksum computations: exclusive or (XOR), two’s complement

addition, one’s complement addition, Fletcher checksum, Adler checksum, and cyclic redundancy codes (CRCs). A study of error

detection capabilities for random independent bit errors and burst errors reveals that the XOR, two’s complement addition, and Adler

checksums are suboptimal for typical network use. Instead, one’s complement addition should be used for networks willing to sacrifice

error detection effectiveness to reduce computational cost, the Fletcher checksum should be used for networks looking for a balance

between error detection and computational cost, and CRCs should be used for networks willing to pay a higher computational cost for

significantly improved error detection.

Index Terms—Real-time communication, networking, embedded systems, checksums, error detection codes.

Ç

1 INTRODUCTION

A common way to improve network message data
integrity is appending a checksum. Although it is well

known that cyclic redundancy codes (CRCs) are effective at
error detection, many embedded networks employ less
effective checksum approaches to reduce computational
costs in highly constrained systems. (Even high-volume
embedded networks cannot typically afford to have custom
hardware built for CRC support.) Sometimes such cost/
performance trade-offs are justified. However, sometimes
designers relinquish error detection effectiveness without
gaining commensurate benefits in computational speed
increase or memory footprint reduction.

The area of interest for this study is embedded control

networks. These networks are generally optimized for

relatively short periodic time-critical messages on single-hop

networks for use in embedded control applications (for

example, in automobiles, rail applications, elevators, and

in-cabinet industrial control). Because many applications

have unique requirements, it is common to create custom

protocols on a per-application or per-vendor basis. Ethernet

and general-purpose enterprise network components such as

switches are generally not used because of their cost and poor

suitability for compact messages with real-time deadlines.
Representative embedded control network protocols

are Controller Area Network (CAN) [1], FlexRay [2], and

TTP/C [3], which use a CRC to ensure data integrity.

However, the use of less capable checksum calculations
abounds.Onewidelyusedalternativeis theexclusiveor(XOR)
checksum, used by HART[4], Magellan [5], and many special-
purpose embedded networks (for example, [6], [7], and [8]).
Another widely used alternative is the two’s complement
addition checksum, historically used by XMODEM [9] and
currently used by Modbus ASCII [10] and some proprietary
communication protocols (for example, [11] and [12]).

Beyond these options, ostensibly better alternate
checksum approaches are commonly used in the
nonembedded networking community. The nonembedded
checksum examples we consider as alternatives are the one’s
complement addition checksum in the Transmission
Control Protocol (TCP) [13], the Fletcher checksum proposed
for use as a TCP alternate checksum [14], and the
Adler checksum [15]. These alternate checksums would
appear to offer potential improvements for embedded net-
works but are not widely used in embedded networks yet.

Despite the fact that checksum techniques have been in
widespread use for decades in embedded networks, there is
surprisingly little information available about their relative
performance and effectiveness. Although using improved
alternate checksums could achieve better error detection
performance in new protocols, the amount of improvement
possible is unclear from the existing literature. Because new
embedded network protocols are continuously being cre-
ated for various networks, it is worth knowing which
checksum approaches work best.

This paper examines the most commonly used checksum
approaches in embedded networks and evaluates their
comparative error detection effectiveness, as well as cost/
performance trade-off points. Checksums examined in-
clude: XOR, two’s complement addition, one’s complement
addition, Fletcher checksum, Adler checksum, and CRC.
(We use the term “checksum” loosely in describing the
CRC, but this usage is consistent with the common use of
the generic term “checksum” to mean a function that
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computes a Frame Check Sequence (FCS) value, regardless
of the mathematics actually employed.) We describe
checksum performance for random independent bit errors
and burst errors in a binary symmetric channel. In addition,
we describe the types of data and error patterns that are
most problematic for each type of checksum based on
examinations of both random and patterned data payloads.

Our results indicate that some common practices can be
improved, and some published results are misleading.
We conclude that one’s complement addition checksums
should be used for very lightweight checksums,
that Fletcher checksums should be used instead of
Adler checksums for most intermediate-complexity check-
sums, and that CRCs offer performance that provides much
superior error detection to a Fletcher checksum for many
embedded networks that can afford the computational cost.

2 BACKGROUND AND RELATED WORK

A checksum is an error detection mechanism that is created
by “summing up” all the bytes or words in a data word to
create a checksum value, often called an FCS in networking
applications. The checksum is appended or prepended to
the data word (the message payload) and transmitted with
it, making this a systematic code in which the data being
sent is included in the code word unchanged. Network
receivers recompute the checksum of the received data
word and compare it to the received checksum value. If
the computed and received checksum match, then it is
unlikely that the message suffered a transmission error.
Of course, it is possible that some pattern of altered bits in
the transmitted message just happens to result in an
erroneous data word matching the transmitted (and also
potentially erroneous) checksum value. There is a trade-off
among the computing power used on the checksum
calculation, the size of the FCS field, and the probability
of such undetected errors.

Commonly used checksums generally fall into three
general areas of cost/performance trade-off. The simplest
and least effective checksums involve a simple “sum”
function across all bytes or words in a message. The three
most commonly used simple “sum” functions are XOR,
two’s complement addition, and one’s complement addi-
tion. These checksums provide fairly weak error detection
coverage but have very low computational cost. References
[16], [17], [18], [19], and [20] have analyzed the error
detection effectiveness of two’s complement addition and
one’s complement addition checksums. Reference [21]
provides an analytic comparison of the error detection
effectiveness of XOR, two’s complement addition,
one’s complement addition, and CRC but does not provide
quantitative data.

The most expensive commonly used checksum is a
CRC. Strictly speaking, a CRC is not a sum but rather an
error detection code computed using polynomial division.
CRC computation can be a significant CPU load, espe-
cially for very small processors typical of many embedded
systems. Early CRC effectiveness studies were lists of
optimal CRC polynomials for specific lengths (for exam-
ple, [22], [23], and [24]). Funk [25] and Koopman [26], [27]
investigated the CRC polynomials currently in use and

proposed alternatives that provided better performance.
Those papers proposed a polynomial selection process for
embedded networks and determined the optimum bounds
for 3- to 16-bit CRCs for data words up to 2,048 bits. We
use these results as the source of our CRC data.

Because CRC computation is so expensive,
two intermediate-cost checksums have been proposed for
use in nonembedded networks. The Fletcher checksum
[28] and the later Adler checksum [15] are both designed
with a goal of giving error detection properties competi-
tive with CRCs with significantly reduced computational
cost. In the late 1980s, Nakassis [29] and Sklower [30]
published efficiency improvements for Fletcher checksum
implementations that also are useful to speed up one’s
complement addition checksums. Although Fletcher and
Adler checksum error detection properties are almost as
good as a relatively weak CRC, they are far worse than
good CRCs for some important situations. Fletcher
published error detection information in his original paper
[28], whereas [21] and [31] present further analysis.

Stone et al. [32], [33], [34] measured the network
checksum effectiveness of the one’s complement addition
checksum, Fletcher checksum, and CRC. In their study, they
found that the one’s complement addition checksum and
Fletcher checksum had much higher probabilities of
undetected errors than they expected, and one reason they
gave was the nonuniformity of network data. They also
found that there were sources of faults that seemed to be
from network adapters, switches, and sources other than
the types of faults we model in this paper. However, there is
no experience to suggest the degree to which such faults are
present in embedded control networks, which have much
simpler network adapters and usually do not have
standard-component switches. Thus, these fault models
are not considered in our work.

McAuley [35] has proposed the Weighted Sum Code
(WSC) algorithm as an alternative to the Fletcher checksum
and CRC. Feldmeier [36] conducted a comparison of
WSC against the one’s complement addition checksum,
XOR checksum, block parity, Fletcher checksum, and CRC
and concluded that it was an attractive alternative for some
situations. However, WSC does not provide guaranteed
detection of as many error bits in one message as many
commonly used CRCs in situations of interest to embedded
network designers. Also, the algorithm is more complex
than a CRC, and the speed benefits are primarily attractive
for 64-bit checksum values [36], which are generally too
large to be of interest in embedded networks. Therefore,
WSCs are considered out of the scope of the current study.

In the balance of this paper, we describe several
algorithms for computing checksums in order of increasing
computational cost, from the XOR checksum to CRCs. We
have evaluated error detection effectiveness via a combina-
tion of analysis and simulation results. Moreover, we give
insight into the strengths and weaknesses of each checksum
approach, with an emphasis on particular vulnerabilities to
undetected errors based on data values and bit error
patterns. We describe inaccuracies in published claims or
commonly held beliefs about the relative effectiveness of
checksums and examine the cost-effectiveness of various
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alternatives. We also confirm some cases in which com-
monly used checksum approaches are good choices.

3 EFFECTIVENESS EVALUATION

The effectiveness of different error detection codes depends
on the operating environment, the data being sent on the
embedded network, and the types of bit errors caused by
noise and other sources of faults. In general, there is no
comprehensive model of faults available for embedded
networks. Moreover, applying fault information from
enterprise networks is likely to be misleading because of
widely different operating environments and requirements
(for example, it is common for embedded networks to use
unshielded cabling as a cost reduction measure). Therefore,
the approach taken in this study is to use fault models that
are commonly used in practice and note instances in which
there are specific vulnerabilities in a checksum approach.
The metrics used are the probability of undetected random
independent bit errors in a binary symmetric channel, the
probability of undetected burst errors, and the maximum
number of bit errors guaranteed to be detected in a
single message.

The evaluation of the effectiveness of checksums
typically requires a combination of analytic and experi-
mental approaches. Finite-field operations (for example,
XOR) can often be evaluated analytically. However, the
interbit carries inherent in integer addition operations make
analytic approaches to understanding error detection
effectiveness very complex. The approach we take is using
analysis to approximate the results to the degree practical,
with simulations used to validate the analytic results and
fill in otherwise intractable areas.

To carry out the experiments in this paper, we
implemented the various checksum algorithms in C++.
The evaluation of the performance of each checksum
algorithm was performed via simulated fault injection.
Each experiment consisted of generating a message payload
(data word) with a specific data value and then computing
a checksum across that data word. The resultant code word
(data word plus checksum) was subjected to a specific
number of bit inversion faults, simulating bit inversion
errors during transmission. The checksum of the faulty data
word was then computed and compared against the
(potentially also faulty) FCS value of the faulty code word.
If the FCS value of the faulty code word matched the
checksum computed across the faulty data word, that
particular set of bit inversions was undetected by the
checksum algorithm used. Identical data word values were
used for all checksums, except for CRCs, which are known
to be data independent [26] (data word values do not affect
error detection performance). The data used in each
experiment varied, including random data, as well as all
zeros, all ones, and repeated data patterns.

Random independent bit error experiments were con-
ducted by preselecting a set number of bit errors to introduce
and then injecting these errors into the code word. (Different
numbers of bit errors were chosen for different experiments,
and graphs take into account the decreasing probability of
higher numbers of bit errors in a particular message of a given
size.) The faults injected in each experiment were all possible

1-, 2-, or 3-bit errors in the code word for each data word value
examined. Where necessary, experiments with 4-bit errors in
the code word were also conducted. The total number of
undetected errors for each particular experiment was then
noted. At least 10 trials were made for each type of
experiment, and the mean for all the trials was obtained.
For example, 10 experiments were performed where all
possible 2-bit errors were injected into a ð504þ 8Þ-bit code
word with random data and an 8-bit checksum size. (For
experiments where the ratio of the standard deviation to the
mean was greater than 5 percent, we performed 100 trials. We
determined the number 100 by determining the point at
which the standard-deviation-to-mean ratio reached its
asymptotic value.)

Burst errors are random bit errors that are confined to a
span of no more than b bits for a b-bit burst error within a
given message. Any number of bits may be corrupted within
the burst. Burst error experiments were conducted in a
similar manner to the bit error experiments, except that
instead of subjecting the resultant code word to bit inver-
sions, the code word was subjected to specific burst error
lengths with all possible bit error patterns within the burst
boundaries and all possible locations of the burst position.

The Hamming Distance (HD) of a checksum is the
smallest number of bit errors for which there is at least one
undetected case. For example, a CRC with HD ¼ 4 would
detect all possible 1-, 2-, and 3-bit errors but would fail to
detect at least one 4-bit error out of all possible 4-bit errors.
With the assumption of random independent bit errors in a
binary symmetric channel, the main contributing factor to
checksum effectiveness for most embedded networks is the
fraction of undetected errors at the HD, because the
probability of more errors occurring is low (for example,
3-bit errors are approximately a million times more
common than 4-bit errors assuming a random independent
Bit Error Rate (BER) of 10�6). Thus, the analysis of
undetected errors at the HD is performed to give insight
into experimental results.

Some of the graphs in this paper show the percentage of
undetected errors ðPctudÞ, which is the ratio of undetected
errors with respect to the total number of all possible errors
for that particular bit error degree. Other graphs show the
probability of undetected errors ðPudÞ. Pud accounts for the
differing probability of each number of bit errors, with
increasing numbers of random independent bit errors being
substantially less probable. Pud is often more useful than
just Pctud, because it takes into account the BER and permits
the comparison of codes with different HDs. Pud can be
computed as follows:

Pud ¼ ðHWÞðBERxÞð1�BERÞn�x;

where n is the code word length in bits, and x is the
number of random independent bit errors. This equation
first determines the probability of a particular code word
error having precisely x errors on exactly one possible
combination of bits (which means that x bits are erroneous
and n� x bits are nonerroneous). It then multiplies by
Hamming Weight (HW), which is the number of
undetectable errors with that number of bits, giving the
probability of an undetectable error. For these purposes,
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the HW of interest is the HW at the HD. For example,
if there were zero undetectable errors for 2-bit and
3-bit errors but 173 undetectable 4-bit errors, then the
HD would be four (giving x ¼ 4 in this equation) and
HW would be 173. HW values for successively higher
numbers of bit errors must be summed together to
find the exact Pud value. However, the HW at the HD
dominates Pud for codes examined in this paper, making
this approximation sufficient for graphing purposes.

For burst error experiments, burst error lengths starting
from 2 bits up to at least ðkþ 1Þ bits ðk ¼ checksum sizeÞ
were injected in the code word for each data word value
examined. For a particular burst error degree, all possible
burst error values were injected. For example, all possible
9-bit burst errors were injected into a ð504þ 8Þ-bit code
word with random data and an 8-bit checksum size.
Most experiments were stopped as soon as there was
one undetected burst error for that burst error degree
because the usual burst error metric of interest is the
maximum length at which burst errors are guaranteed to be
detected. The exceptions to this were the experiments for
Fletcher and Adler checksums. We performed experiments
up to kþ 1 bursts for consistency with other experiments,
even though there were already undetected burst errors
at k=2 bits ðk ¼ checksum sizeÞ.

In some instances, we found it useful to perform
comparisons of the probability of undetected errors to test
the commonly held notion of checksum effectiveness being
approximately equal to 1=2k, where k is the checksum size in
bits. The intuitive argument for this belief is that because
there are 2k possible checksum values for a k-bit checksum,
for random data and random corruption, there is a
1=2k chance of the FCS just happening to match the corrupted
data values by chance (for example, a one-in-256 probability
of undetected error for an 8-bit checksum).

To simplify comparisons, only data word lengths that
were multiples of the checksum size were used in this
study, as is common in real networks. We refer to chunks of
the data word the size of the checksum as blocks. For
example, for a two’s complement addition checksum, a
48-bit data word used with a 16-bit checksum would
result in a computation that divides the 48-bit data word
into three 16-bit blocks that are added to compute the
16-bit checksum, forming a ð48þ 16 ¼ 64Þ-bit code word.

3.1 Exclusive Or Checksum

XOR checksums are computed by XORing blocks of the data
word together. The order in which blocks are processed
does not affect the checksum value. One can think of an
XOR checksum as a parity computation performed in
parallel across each bit position of data blocks (bit i of
the checksum is the parity of all block bits i, for example,
bit 3 of the checksum is the parity of bit 3 of all blocks).

The XOR checksum is data independent (error detection
performance is not affected by data word values). Because it
is a parity computation, the XOR checksum has an HD of
two, detecting all 1-bit errors but not some 2-bit errors. In
particular, it fails to detect any even number of bit errors
that occur in the same bit position of the checksum
computational block. It detects any bit error pattern that
results in an odd number of errors in at least one bit
position, which includes all situations in which the total

number of bit errors is odd. It also detects all burst errors up
to k bits in length (k is equal to the checksum size), because
2 bits must align in the same position within a block to
become undetected. Burst errors greater than k bits in
length are detectable if they result in an odd number of
actual bits being inverted or if pairs of inverted bits do not
align in the same bit position in the affected blocks.

For a block size of k and checksum size k, in every pair of
data blocks, there are exactly k possible undetected 2-bit
errors (one undetected 2-bit error for each bit of the block,
in which errors happen to occur to the same bit position in
the two blocks). For an n-bit code word, we multiply by the
number of combinations of k-size blocks in the code word
taken two at a time. Thus, the number of undetected
2-bit errors is

k
n=k

2

� �
¼
k n

k

� �
n�k
k

� �
2

¼ nðn� kÞ
2k

:

The total number of possible 2-bit errors for an n-bit code
word is

n
2

� �
¼ nðn� 1Þ

2
:

Dividing the number of undetected 2-bit errors by the total
number of 2-bit errors gives us the fraction of undetected
2-bit errors as

n� k
kðn� 1Þ ;

where n is the code word length in bits, and k is the
checksum size in bits.

From the above equation, we can see that as n approaches
infinity, the percentage of undetected 2-bit errors becomes
approximately 1=k (k being checksum size), which is rather
poor performance for a checksum (for example, 12.5 percent
undetected errors for an 8-bit checksum and 3.125 percent for
a 32-bit checksum). Simulation results confirm this analysis.
(See Fig. 1. Note that subsequent figures have a different
vertical axis to help distinguish closely spaced curves. Fig. 6
provides a comparison across checksum techniques on a
single graph.) The XOR checksum has the highest probability
of undetected errors for all checksum algorithms in this study
and is not as effective as addition-based checksums for
general-purpose error detection uses.

3.2 Two’s Complement Addition Checksum

The two’s complement addition checksum (“add
checksum” for short) is obtained by performing an integer
two’s complement addition of all blocks in the data word.
Carry-outs of the accumulated sum are discarded, as in
ordinary single-precision integer addition. The order in
which blocks are processed does not affect the checksum
value. The add checksum is data dependent, with the
probability of undetected errors varying with the data word
value. The add checksum detects all 1-bit errors in the code
word and has an HD of two for all code word lengths.

An add checksum can be thought of as an improvement of
XOR checksums in that bit “mixing” between bit positions of
the data blocks is accomplished via bit-by-bit carries of the
binary addition. The effectiveness of mixing depends on the
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data being added, which determines the pattern of carry bits
across various bit positions.

A significant cause of undetected errors is when a pair
of bit errors in different data blocks lines up at the same
bit position within the blocks, and the data in those
bit positions contains a one in one block and a zero in the
other block. The resultant erroneous data blocks have a zero
in the first block and a one in the other block, resulting in
the same sum.

A second important source of undetected errors is when
the most significant bit (MSB) positions of any two data
blocks are inverted, regardless of value. This type of error is
undetected because the sum remains the same, and the
carry-out information from that position is lost during the
computation, making it impossible to detect a pair of ones
changed to zeros or a pair of zeros changed to ones in the
MSB position.

A third source of undetected errors is a non-carry-
generating bit being inverted in the data word and the bit in
the corresponding bit position in the checksum also being
inverted.

Because data-dependent error detection vulnerabilities
involve a concurrent inversion of one and zero bits in the
same bit position, the add checksum performs worst when
each bit position has an equal number of zeros and ones.
For this reason, random data gives very nearly the worst
case for undetected errors because it tends to have the same
number of zeros and ones in each bit position. Given that
random data is often used to evaluate checksums but real
data sent in network messages often has a strong bias
toward zeros due to unused data fields (for example, [33]
mentions this, and it is also common in embedded
networks), the random data evaluation of add checksums
can be considered pessimistic for many cases. The add
checksum performs best when the data is all ones or all

zeros, because inverting a pair of identical bits causes a
carry-bit effect that is readily detected.

Even for worst case data, as can be seen in Fig. 1, the add
checksum is almost twice as effective as the XOR checksum
for long data words. This is because the primary cause of
undetected errors is inverted bits that are both differing and
in the same bit position, whereas XOR undetected errors
also occur for bit values that do not necessarily differ.

For worst case data, the add checksum has an undetected
2-bit error percentage approximately equal to ðkþ 1Þ=2k2,
where k is the checksum size. This equation can be arrived
at by adding together the undetected error percentages for
each bit position. The MSB has an undetected error
percentage equal to that of XOR, 1=k. All the other bits
have an undetected error percentage that is half that of
XOR ð1=2kÞ because only 0-1 and 1-0 error combinations will
be undetected. Multiplying the two ratios by the number of
bits in each block and then adding them together gives us

1

k

1

k

� �
þ 1

2k

k� 1

k

� �
¼ 1

k2
þ k� 1

2k2
¼ kþ 1

2k2
:

However, this equation is just an approximation because it
does not take into account the third source of undetected
errors mentioned previously nor the fact that some of the
0-1 and 1-0 error combinations will be detectable due to
carry-bit generation. It is a useful approximation, however,
and can be thought of as an approximate bound, as can be
seen in Fig. 2.

For long data words with all-zero or all-one data, the
add checksum asymptotically fails to detect approximately
1=k2 of 2-bit errors, where k is the checksum size in bits.
(See Appendix A for formula derivations.)

Fig. 3 shows simulation results for exactly identical
numbers of zero and one data (alternating 0xFF and
0x00 values), all zeros, and all ones. The randomly
generated data word values were very close to the worst
case as expected and are omitted from the figure.

The add checksum detects all burst errors up to k bits in
length, where k is the checksum size. Burst errors greater
than k bits may or may not be detected depending on the
number of bits inverted and their bit positions. The same
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random data.

Fig. 2. Percentage of undetected 2-bit errors for 16-bit two’s complement

addition and one’s complement addition checksums. The data points for

both checksums are the mean of 100 trials using random data. The

worst case bound is from the given formula.
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reasons for undetected bit errors apply to burst errors.
Thus, if a burst error greater than k bits occurs but the
inverted bits do not have the same bit positions or
otherwise do not fall into any of the three categories of
undetected errors mentioned earlier, then it is unlikely that
the burst error will go undetected.

3.3 One’s Complement Addition Checksum

The one’s complement addition checksum is obtained by
performing an integer one’s complement addition of all
blocks of the data word. One’s complement addition can be
performed on two’s complement hardware by “wrapping
around” the carry-out of the addition operation back into
the checksum. In particular, if adding a block to the running
checksum total results in a carry-out, then the running
checksum is incremented. Speed optimizations are known
for hardware that does not support carry bits (for example,
[13]). The order in which blocks are processed does not
affect the checksum value.

The main performance difference between one’s comple-
ment and two’s complement addition checksums is in
the error detection capability of bit inversions affecting the
MSB of blocks. Because the carry-out information of the
MSB is preserved via being wrapped around and added
back into the least significant bit, bit inversions that affect a
pair of ones or a pair of zeros in the MSB are detected by
one’s complement addition checksums but are undetected
by two’s complement addition checksums. (Reference [21]
gives a similar explanation.) One’s complement addition
checksums detect all burst errors up to k� 1 bits in length,
where k is the checksum size in bits. Some k-bit burst errors
are undetectable because of the wraparound of carry-outs
back into the low bits of the checksum. Burst errors greater
than k bits in length will be undetectable if they fall into
any of the categories of undetectable errors previously
described. Other than the error detection performance
for bits in the MSB position, the behavior of one’s and
two’s complement addition checksums is identical, with the
one’s complement addition checksum having a slightly
lower probability of undetected errors for random inde-
pendent bit errors (Fig. 3).

At asymptotic lengths, the probability of undetected
errors for all-zero and all-one data approaches 2=n, where n

is the code word length in bits. (See Appendix B for the
formula derivation.)

For worst case data at asymptotic lengths, approximately
1=2k of all possible 2-bit errors, where k is the checksum
size, are detected. This is half of the ratio of undetected
errors for the XOR checksum. The intuitive logic behind this
is that for each bit position, only 0-1 and 1-0 error
combinations will be undetected, unlike in the XOR

checksum where 0-0 and 1-1 error combinations are also
undetectable. Looking at Fig. 1, it can be seen that the one’s
complement addition checksum is almost as good as the
XOR checksum at half the checksum size for random
independent bit errors on random data.

3.4 One’s Complement Fletcher Checksum

The Fletcher checksum [28], [14] is only defined for 16-bit
and 32-bit checksums but, in principle, could be computed
for any block size with an even number of bits. We use the
one’s complement addition version, which provides
better error detection than the two’s complement
addition version [29]. We confirmed this experimentally.
(Throughout this paper, “Fletcher checksum” means
“one’s complement addition Fletcher checksum.”)

A Fletcher checksum is computed with a block size j that
is half the checksum size k (for example, a 32-bit Fletcher
checksum is computed with a block size of 16 bits across the
data word, yielding a 32-bit checksum value). The algo-
rithm used to compute the checksum iterating across a set
of blocks from D0 to Dn is

Initial values : sumA ¼ sumB ¼ 0;

For increasing i : f sumA ¼ sumAþDi;

sumB ¼ sumBþ sumA; g:

sumA and sumB are both computed using the same
block size j. The resulting checksum is sumB concatenated
with sumA to form a checksum that is twice the block size.
The accumulation of sumB makes the checksum sensitive to
the order in which blocks are processed.

Fletcher checksum error detection properties are data
dependent. As with addition-based checksums, the highest
probability of undetected error occurs when the data in
each bit position of the blocks is equally divided between
zeros and ones. Random data word values also give
approximately worst case error detection performance due
to a relatively equal distribution of zeros and ones in each
bit position. When the data is all zeros, the only undetected
error is one in which all bits in a single block are changed
from zeros to ones. (Recall that 0xFF also represents zero in
8-bit one’s complement notation.)

The Fletcher checksum can detect all burst errors that are
less than j (or k=2) bits long, where j is the block size that is
half the checksum size k. As expected, it is vulnerable to
burst errors that invert bits in a block from all zeros to all
ones or vice versa. (The Adler checksum has the same
vulnerability. Whether such an error is likely depends on
the bit encoding technique, with, for example, Manchester
encoding being vulnerable to this sort of error if a half-bit
“slip” occurs that causes a 180-degree phase shift in
received data waveform edges.) Our experiments have
verified that excluding this special type of burst error, the
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Fletcher checksum can detect all burst errors less than k bits,
where k is the checksum size. Reference [28] gives a more
detailed explanation of burst error detection properties.

The Fletcher checksum has HD ¼ 3 up to a certain
modulo-dependent code word length and HD ¼ 2 for all
remaining code word lengths. We have confirmed experi-
mentally that 2-bit errors are detected for data word lengths
less than ð2k=2 � 1Þ � ðk=2Þ bits, where k is the checksum
size, and ð2k=2 � 1Þ is equal to the Fletcher checksum
modulus. Reference [28] states further that all 2-bit errors
are detected provided that they are separated by fewer than
ð2k=2 � 1Þ � ðk=2Þ bits, with k being the checksum size.

We have also confirmed experimentally that an
8-bit Fletcher checksum has HD ¼ 2 for code word lengths
of 68 bits and above, with HD ¼ 3 below that length.
A 16-bit Fletcher checksum has HD ¼ 2 starting at
2,056-bit code word lengths. According to the equation, a
32-bit Fletcher checksum is expected to have HD ¼ 2
starting at a code word length of 1,048,592 bits.

Fig. 4 shows the probability of undetected errors of the
Fletcher checksum. In general, Fletcher checksums are
significantly worse than CRCs, even when both achieve
the same HD. In particular, Fletcher checksums have a
significantly higher probability of undetected error than
1=2k for long lengths, whereas CRCs typically have a
slightly lower probability of undetected error than 1=2k,
with k being the checksum size. The significance of 1=2k

here is that it is a commonly held notion that all
checksums have the same error detection effectiveness
equal to 1=2k, where k is the checksum size. Further
discussion of Fletcher checksum performance is given in
Section 4.2. The CRC bound shown in the figure is the
lowest probability of undetected errors of any 8-bit CRC.
Of all the checksum algorithms in this study, the
Fletcher checksum has the next-best overall error detection
capability after CRC, except for the special case of the
16-bit Adler checksum at short lengths.

3.5 Adler Checksum

The Adler checksum [15] is only defined for 32-bit
checksums but, in principle, could be computed for any

block size with an even number of bits. The Adler checksum
is similar to the Fletcher checksum and can be thought of in
the following way. By using one’s complement addition, the
Fletcher checksum is performing integer addition
modulo 255 for 8-bit blocks and modulo 65,535 for
16-bit blocks. The Adler checksum instead uses a prime
modulus in an attempt to get better mixing of the checksum
bits. The algorithm is identical to the Fletcher algorithm,
except sumA is initialized to one, and each addition is done
modulo 65,521 (for the 32-bit Adler checksum) instead of
modulo 65,535. As with a Fletcher checksum, the result is
sensitive to the order in which blocks are processed.

Although the Adler checksum is not officially defined for
other data word lengths, we used the largest prime integers
less than 24 ¼ 16 and less than 28 ¼ 256 to implement 8- and
16-bit Adler checksums for comparison purposes. Because
the algorithm is similar to that for Fletcher checksums,
Adler checksums have similar performance properties. (See
Fig. 4.) We have confirmed experimentally that 2-bit errors
are detected for data word lengths less than M � ðk=2Þ bits,
where k is the checksum size and M is equal to the Adler
checksum modulus. Our experiments show that Adler-8
has HD ¼ 3 below 60 bits (using modulo 13 sums) and
that Adler-16 has HD ¼ 3 below 2,024 bits (using modulo
251 sums). From the equation, Adler-32 is expected to have
HD ¼ 3 below 1,048,368 bits. For code word lengths greater
than those mentioned above, the Adler checksum has
HD ¼ 2. As with Fletcher checksums, the worst case for the
undetected error probability is with an equal number of
zeros and ones in each data block bit position, meaning that
random data has nearly worst case undetected error
performance.

Adler-8 and Adler-16 can detect all burst errors that are
less than j (or k=2) bits long, where j is the block size that is
equal to half the checksum size k. Adler-32 detects all
burst errors up to 7 bits long. (Reference [15] defines
Adler-32 blocks to be 1 byte or 8 bits wide with 16-bit
running sums, so j ¼ 8 for Adler-32.) Excluding burst
errors that change data in the data blocks from all zeros
to all ones or vice versa, all burst errors less than k� 1
are detected. This is 1-bit less than the Fletcher checksum,
which was unexpected since they use an almost
identical mathematical basis. (Reference [31] states that
the Adler checksum has a higher probability of undetected
burst errors than the Fletcher checksum but does not
explicitly state that the burst error detection coverage is 1 bit
shorter in length.) The reason for this is that Adler
checksums use a prime modulo that is less than 2k � 1,
whereas Fletcher checksums use a modulo equal to 2k � 1,
with k being the checksum size. A comparison of Fletcher
and Adler checksum performance is given in Section 4.3.

3.6 Cyclic Redundancy Codes

The simplest version of a CRC computation uses a shift-
and-conditional-XOR approach to compute a checksum [37].
Faster methods of computation are available (for example,
[37], [38], and [39] based on complete or partial lookup
tables) but are still slower than the other checksum
techniques discussed. The selection of a good generator
polynomial is crucial to obtaining good error detection
properties and is discussed in [27].
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Fig. 4. Probability of undetected errors for 8-bit Fletcher and Adler

checksums using random data and a BER of 10�5. Data values for both

Fletcher and Adler checksums are the mean of 10 trials. CRC-8 bound

values are optimal values for all 8-bit CRC polynomials.
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All CRCs are data independent and have an HD of at
least two for all code word lengths. Most polynomials have
HD ¼ 3 or higher for some lengths less than 2k, where k is
the checksum size. Also, some polynomials detect all
odd-bit errors, at the expense of worse error detection
ability for even-bit errors. All burst errors are detected up to
k bits in length, where k is the checksum size in bits. Fig. 5
shows the bounds for the lowest probability of undetected
errors for 8-bit CRCs and 16-bit CRCs.

4 REVISITING CHECKSUM SELECTION CHOICES

In this section, we examine some published and
folk-wisdom misconceptions about checksum performance
in light of our experiments. Of course, there are individuals
who do not hold and publications that do not contain these
misconceptions, but we have observed these issues to arise
often enough that they warrant specific attention.

4.1 Effect of Data Value and Error Value
Distributions on Checksum Effectiveness

When data are uniformly distributed, it is common for an
assumption to be made that all checksum algorithms have
the same probability of undetected errors ðPudÞ of 1=2k,
where k is the checksum size in bits. The intuitive argument
is that because there are 2k possible checksum values for a
k-bit checksum, given more or less random data and
random corruption, there is a 1=2k chance of the FCS just
happening to match the corrupted data values by chance
(for example, a one-in-256 probability of undetected error
for an 8-bit checksum). Although this is true for completely
random data and corruption, most data is not really
random, and neither do many types of corruption result
in total random data scrambling. More often, checksum
effectiveness is controlled by the limiting case of patterned
data and corruption that is patterned or only affects a
few bits.

As an example, Stone et al. [33] studied the behavior of
one’s complement addition checksum (which they exam-
ined in the context of its use as the TCP checksum),
Fletcher checksum, and CRC across real network data. They
observed that the one’s complement addition checksum
and the Fletcher checksum had a Pud that was far worse

than the value of 1=2k that they expected. They theorized
that one of the reasons for this was because of the
nonuniform distribution of the data they were using, and
in their Corollary 8, they claim that if data had been
uniformly distributed, the IP (one’s complement addition)
and Fletcher checksums would have been equivalently
powerful. Reference [31] furthers this point of view in its
analysis. Although this may be true, the explanation is
not necessarily useful in predicting the effectiveness of
checksums operating on nonrandom data.

We think that it is also important to consider the
effectiveness of checksums at detecting small numbers of
corrupted bits. The key is to look at the effectiveness of a
checksum in terms of how much the checksum value varies
based on relatively small changes to the data value used as
input. One way of looking at this is evaluating the
effectiveness of a checksum computation in terms of its
effectiveness as a pseudorandom number generator. The
better the generator, the more likely that multiple bits of the
output will be affected by even a single bit change in input
value. (This criterion is a form of the avalanche property
that is characteristic of good cryptographically secure hash
functions, for example as discussed in [40]. “Better” hash
functions produce a “more random” output.) An XOR

checksum, for example, changes only 1-bit of computed
FCS value for a 1-bit change in data value. One’s
complement and two’s complement addition change only
1 bit of the FCS value for a single bit of data value changed
in the worst case (when there are no carries changed) and
many bits of data value in the best case. Fletcher and Adler
checksums typically change several bits in the FCS for a
single-bit data value change, with the changes more
pronounced in the high half of the FCS. A single-bit change
in the data value for a CRC in typical cases has the potential
to affect all the bits of the FCS.

The results of effectiveness can be seen when examining
performance for small numbers of bit errors. Fig. 6 shows
different checksum algorithms applied to the same uni-
formly distributed random data. The graph clearly
shows that Pud is dependent on the algorithm used. The
XOR, two’s complement, and one’s complement addition
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Fig. 5. Bounds for the probability of undetected errors for all 8-bit CRCs

and all 16-bit CRCs ðBER ¼ 10�5Þ.
Fig. 6. Performance of 16-bit checksums with random data and random

independent bit errors (BER of 10�5). The data values for two’s

complement addition, one’s complement addition, Fletcher, and Adler

checksums are the mean of 10 trials.
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checksums perform the worst, whereas CRC performs the
best. (Two’s complement addition checksum results are
very similar to those of the one’s complement addition
checksum with this vertical axis scale.) This is a result of the
different effectiveness of checksums at generating different
outputs for small changes in input. The Fletcher, Adler, and
CRC algorithms attain better than 1=2k for short messages
due to their mathematical properties, but only a good CRC
does better than 1=2k for all data lengths in this figure.

The worst case for a weak checksum algorithm is a small
number of bit errors that do not mix the results very much.
As the number of bit errors in a single code word increases,
all checksums converge to the 1=2k limit value, making the
choice of checksum algorithm moot. (See Fig. 7.) Therefore,
up to the degree that the corruption of data does not result
in totally random erroneous data, the selection of checksum
algorithms is important.
Pud is further influenced by the data word content when

data-dependent checksums such as two’s complement
addition, one’s complement addition, Fletcher, and Adler
are used. Data dependent here means that the Pud for these
checksums varies depending on the data word content,
unlike in the XOR checksum and CRC where Pud remains
the same regardless of the data word content. The
percentage of undetected errors is least when the data is
all zeros or all ones. The percentage increases when the
number of zeros and ones in each bit position in the data is
more equal. In view of this, the highest percentage of
undetected errors usually occurs for random data having an
even number of ones and zeros in every bit position.

Fig. 8 shows this effect for the one’s complement
addition checksum. In this experiment, the different values
were alternated with 0x00 bytes. In the figure, the effect of
increasing the number of bit positions where there are an
equal number of ones and zeros can be clearly seen. It can
also be noted that the worst case bound coincides with the
line for the 0xFF-0x00 data pattern. Fig. 9 shows the

resulting Pud when the number of randomly placed ones
in the data word is increased from 1 to 63 in a 64-bit data
word message. The probability of undetected errors
increases from when data is 100 percent zeros or ones to
when data is 50 percent zeros and 50 percent ones in every
bit position in the data word.

4.2 Fletcher Checksum Compared to Cyclic
Redundancy Codes

Some previous work (for example, [28] and [15]) lead many
practitioners to the conclusion that the Fletcher checksum
and Adler checksum are comparable to CRC in error
detection capabilities in general or at least for short data
word lengths. (This is not quite what those papers claim,
but it is nonetheless common “folk wisdom” these many
years later and is in fact true to a degree for some “bad”
CRCs in widespread use.) However, in all cases, a good CRC
is substantially better at the same HD and, in many
important cases, achieves better HD than either Fletcher
or Adler checksums. Sheinwald et al. [31] computed the
undetected error probabilities for some CRC-32 polyno-
mials and Fletcher-32 and Adler-32 checksums for a length
of 8 Kbytes or 65,536 bits. Their results show that
CRC outperforms both Fletcher-32 and Adler-32.
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Fig. 7. Percentage of undetected errors in random data for increasing

numbers of injected bit errors in a 64-bit data word using

8-bit checksums. The data values are the mean of 10 trials.

Fig. 8. Probability of undetected 2-bit errors for 8-bit one’s complement
addition checksum (BER of 10�5) using different data patterns. The data
patterns were pairs of bytes of the form XX-00, where XX was the
first byte of a repeated pair, varied from 00 to 0xFF, and the second byte
was always zero.

Fig. 9. Probability of undetected errors in random data for a 64-bit data

word using 8-bit checksums and a BER of 10�5. The data values are the

mean of 100 trials.
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Reference [28] states that for asymptotically long code

words, the one’s complement addition Fletcher checksum

detects 1=ð2k=2 � 1Þ2 of all possible errors, which is only

slightly less than 1=2k ðk ¼ checksum sizeÞ. “All possible

errors” here seems to mean all bit errors regardless of
number and all burst errors regardless of length—in effect,

this is similar to the random data argument (Pud is always

equal to 1=2k) we mentioned earlier under which any

checksum performs about that well.
Most embedded systems have code word lengths that

are much shorter than 2k bits, with k being the checksum

size. Even the comparatively large Ethernet Maximum

Transmission Unit (MTU), for example, is only 1,500 bytes

(or 12,000 bits), which is much shorter than 65,535 bits. At

these lengths, CRCs often have distinct advantages. By
using Fletcher and Adler checksums at these lengths, the

error detection capability is considerably suboptimal—at

least 1-bit of HD in error detection capability is effectively

being given up, and often, it is more.
Fig. 10 shows a comparison of the Fletcher checksum to

two CRC polynomials, the common CCITT-16 and the
0x8016 polynomial, which performs better than CCITT-16
starting at 32 Kbits, where it has HD ¼ 3 compared to
CCITT-16’s HD ¼ 2. For short code word lengths, the
Fletcher checksum is at least 1 bit of HD worse than CRCs.

We would like to reiterate what was said in [27], which is
that the selection of the best CRC polynomial for the desired
checksum size is of utmost importance. Fig. 11 shows that
the incorrect selection of a CRC polynomial can result in
worse error detection performance than the Fletcher
checksum. Networks that use DARC-8 would be better off
using Fletcher-8, whereas networks that use CRC-8 and
ATM-8 but do not use code words shorter than 128 bits
would get comparable performance to Fletcher-8. However,
polynomial 0xA6 would be a better choice for networks that
want to use an 8-bit CRC above a 128-bit data word length.

A comparison of the Fletcher checksum effectiveness to
that of CRCs was also performed on CRC checksum sizes
less than the Fletcher checksum size (see Fig. 12). Optimal
CRC bounds from an 8-bit CRC to a 12-bit CRC were
plotted against the 16-bit Fletcher checksum. The
resulting graph shows that it is possible for an optimal

CRC polynomial with a smaller checksum size to outper-
form the Fletcher checksum. CRC-8, CRC-9, and CRC-10 all
perform better than Fletcher-16 for code word lengths less
than 128, 256, and 512 bits, respectively. CRC-11 performs
better than Fletcher-16 for code word lengths less than
1,024 bits, performs worse for lengths greater than 1,024 but
less than 2,048 bits, and performs comparably for lengths
greater than 2,048 bits. CRC-12 consistently outperforms
Fletcher-16 for all code word lengths. Optimal CRCs with
more than 12 bits will perform even better and thus are
omitted from the graph.

4.3 One’s Complement Fletcher Checksum
Compared to the Adler Checksum

The Adler checksum has been put forward as an improve-
ment of the Fletcher checksum [15], and it is commonly
believed that the Adler checksum is unconditionally
superior to the Fletcher checksum (for example, [41] and
[42]). (In a private communication, M. Adler stated that
what [15] meant was that Adler-32 is an improvement over
Fletcher-16, which is true. At that time, he was not aware of
Fletcher-32, but this point is not widely known and is not
apparent in [15].)

The better mixing of bits that the Adler checksum
provides due to its prime modulus has been claimed to
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Fig. 10. Probability of undetected errors for a 16-bit Fletcher checksum

and two 16-bit CRCs at a BER of 10�5. The data values for the Fletcher

checksum are the mean of 10 trials using random data.

Fig. 11. Probability of undetected errors for some common CRCs and

Fletcher-8 at a BER of 10�5. The data values for Fletcher-8 are the mean

of 10 trials using random data.

Fig. 12. Probability of undetected errors for Fletcher-16 and CRC bounds

for different CRC widths at a BER of 10�5. Data values for Fletcher-16 are

the mean of 10 trials using random data.
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provide better error detection capabilities than the
Fletcher checksum. We have found that this is often not
the case (see Fig. 13). Reference [31] also shows that
Fletcher-32 is better than Adler-32 for 65,536-bit lengths
but does not comment on shorter lengths.

The Adler checksum outperforms the Fletcher checksum
only for 16-bit checksums and only in that checksum’s
HD ¼ 3 performance region (see Fig. 13). The issue is that
although the prime modulus in the Adler checksum results
in better mixing, there are fewer “bins” (that is, valid
FCS values) available for code words. In most cases, this
reduction in bins outweighs the gains made by better
mixing. Thus, the Fletcher checksum is superior to the
Adler checksum in all cases except for Adler-16 used on
short data word lengths. Moreover, even then, the
improvement in error detection effectiveness might not be
worth the increase in complexity and computational cost of
performing modular addition.

5 ERROR DETECTION AND COMPUTATIONAL COST

TRADE-OFFS

The selection of the best checksum for a given network is
usually not based on error detection properties alone. Other
factors such as computational cost frequently come into
play as well. Feldmeier’s study on fast software implemen-
tations for checksum algorithms [36] showed that the one’s
complement addition checksum is approximately twice as
fast as the Fletcher checksum, and the Fletcher checksum is
at least twice as fast as CRC. Our experience confirms the
general validity of those results. We summarize the error
detection versus cost trade-offs below based on Feldmeier’s
performance findings, which we have found to be generally
representative of embedded network trade-offs.

5.1 Cost Performance Trade-Offs

The XOR checksum has the smallest computational cost of
all checksum algorithms. However, it also has the worst
error detection properties among all the checksum algo-
rithms. Its error detection properties do not significantly
change with the code word length. The two’s complement
addition checksum (“add checksum” for short) has the

same computational cost as the XOR checksum in software
implementations. The code word length does not signifi-
cantly affect its error detection ability.

In software implementations, the one’s complement
addition checksum has a computational cost similar to or
very slightly higher than that of the add checksum because
of the MSB carry-bit incorporation. (Optimizations similar
to those used for Fletcher and Adler checksums, such as [29]
and [30], are applicable to any checksum operation
involving one’s complement addition and make them
almost as fast as a two’s complement addition checksum.)
It makes up for this slightly higher cost by being slightly
better at error detection than the add checksum. Its
error detection properties are not significantly affected by
the code word length. The one’s complement addition
checksum should usually be used instead of the XOR

checksum and the add checksum, unless there are
compelling reasons for not doing so.

The Fletcher checksum has approximately twice the
computational cost of the one’s complement addition
checksum due to its having two running sums instead of
one but is at least an order of magnitude better at error
detection at long code word lengths. For short code word
lengths, it is a number of orders of magnitude better than
the one’s complement addition checksum due to its
HD ¼ 3 error detection. The error detection properties of
the Fletcher checksum sharply deteriorate after the
HD ¼ 3 length limit is reached.

The Adler checksum has a slightly higher computa-
tional cost than the Fletcher checksum due to its use of a
prime modulus. It has, at most, a comparable error
detection property to the Fletcher checksum. Like the
Fletcher checksum, its error detection ability also drops
off after a certain code word length. When given a
choice between using the Fletcher checksum and the
Adler checksum for short code word lengths, the
Fletcher checksum is usually better. It has not only a
lower computational cost but also better overall error
detection properties.

The CRC has the highest computational cost of all
checksum algorithms. It is generally double the computa-
tional cost of the Fletcher checksum. However, it also has
the best error detection properties of all the checksum
algorithms. For the same checksum size, an optimal
CRC polynomial is orders of magnitude better than the
Fletcher checksum for code word lengths less than 2k,
where k is the checksum size. For code word lengths longer
than this, an optimal CRC polynomial is approximately an
order of magnitude better than the Fletcher checksum.
Among all the checksum algorithms studied, the CRC has
the greatest variation in error detection ability with respect
to the code word length. There are a number of speedup
techniques available for CRC computations, especially for
small embedded processors. Ray and Koopman [39] discuss
CRC performance options, including the possibility of
table-lookup optimizations.

The shorter the code word length, the greater the
benefit of using a CRC compared to other checksum
algorithms. For code word lengths greater than 2k with
k equal to the checksum size, the benefit of using a
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Fig. 13. Comparison of 8-, 16-, and 32-bit Fletcher and Adler checksums

using random data at a BER of 10�5. The data point values are the mean

of 10 trials.
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CRC drops sharply because it only provides HD ¼ 2 error

detection performance. (Results are similar for larger

checksums, with the lengths at which CRCs provide

better than HD ¼ 2 being substantially longer.) Thus,

although it may be difficult to justify the increased

computational cost of using a CRC for the large data

words found in typical enterprise and desktop computing

environments, the story is quite different for short

messages (often less than 100 bits) typically found in

embedded networks. For embedded networks, using a

CRC can bring orders of magnitude better error detection

performance for a factor of about four performance

penalty. (Ray and Koopman [39] present some CRC

polynomials that have good error detection performance

with faster computation speeds than other CRCs.)

Although Fletcher and Adler checksums can provide

HD ¼ 3 at short message lengths, they are outperformed

by a good CRC at all message lengths.
The general notion in widespread circulation that

Fletcher and Adler checksums are more or less as good as

a CRC at dramatically less computation cost is not really

accurate for embedded networks. Checksums other than

CRC give up orders of magnitude in error detection

effectiveness in return for a factor of two to four speedup.

Moreover, networks that use an XOR checksum could have

significantly better error detection for essentially the same

computational cost simply by using a two’s complement

addition or, preferably, a one’s complement addition

checksum.

5.2 General Checksum Guidelines

Below are general guidelines for checksum use based on the

results discussed in this paper. Of course, each individual

embedded network application will have its own con-

straints and trade-offs, but these guidelines should serve as

a starting point for making informed design choices:

. Never use an XOR checksum when it is possible to
use a two’s complement addition checksum (or
something even better).

. Use a one’s complement addition checksum in
preference to a two’s complement addition checksum
for random independent bit errors.

. Use a two’s complement addition checksum in
preference to a one’s complement addition checksum
for burst errors. If both burst and random indepen-
dent bit errors matter, one’s complement is probably
the better choice.

. If computational resources are available, use a
Fletcher checksum in preference to one’s comple-
ment or two’s complement addition checksums to
protect against random independent bit errors. Do
not use a Fletcher checksum if burst errors are the
dominant fault expected and data consists pre-
dominantly of continuous strings of all zeros or
all ones.

. If computational resources are available, use a CRC
instead of any of the other checksums mentioned. It
is generally better for both random independent bit
errors and burst errors.

. Take into account the length of the data word when
evaluating checksum performance. Performance can
vary dramatically with the size of the data word,
especially for CRCs.

6 CONCLUSIONS

The error detection properties of checksums vary greatly.
The probability of undetected errors for a k-bit checksum is
not always 1=2k in realistic networks as is sometimes
thought. Rather, it is dependent on factors such as the type
of algorithm used, the length of the code word, and the type
of data contained in the message. The typical determining
factor of error detection performance is the algorithm used,
with distinct differences evident for short messages typical
of embedded networks.

Even for moderately long messages, the error detection
performance for random independent bit errors on
arbitrary data should be considered as a potentially
better (and simpler) model than a fixed fraction of
undetected errors of 1=2k, where k is the checksum size
in bits. The behavior on small numbers of bit errors can
easily be a limiting factor of the overall error detection
performance.

Based on our studies of undetected error probabilities,
for networks where it is known that burst errors are the
dominant source of errors, the XOR, two’s complement
addition, and CRC checksums provide better error detec-
tion performance than the one’s complement addition,
Fletcher, and Adler checksums.

For all networks, a “good” CRC polynomial, whenever
possible, should be used for error detection purposes. It
provides at least one additional bit of error detection
capability (more bits of HD) compared to other checksums
and does so at only a factor of two to four times higher
computational cost. In networks where computational cost
is a severe constraint, the Fletcher checksum is typically a
good choice. The Fletcher checksum has a lower computa-
tional cost than the Adler checksum and, contrary to
popular belief, is also more effective in most situations. In
the most severely constrained networks, one’s complement
addition checksums should be used if possible, with
two’s complement addition being a less effective alterna-
tive. There is generally no reason to continue the common
practice of using an XOR checksum in new designs because
it has the same software computational cost as an addition-
based checksum but is only about half as effective at
detecting errors.

APPENDIX A

TWO’S COMPLEMENT ADDITION CHECKSUM

FORMULA DERIVATIONS

The formulas for the percentage of undetected errors for all-
zero and all-one data are derived as follows.

A.1 All-Zero Data

For an n-bit code word with all-zero data, the number of
undetected 2-bit errors is equal to the sum of the total number
of bits in the code word n minus the checksum size k and
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the combination of all the MSBs in the data word taken two at

a time:

ðn� kÞ þ
n�k
k

� �
2

� �
¼ðn� kÞ þ

n�k
k

� �
n�2k
k

� �
2

¼
2ðn� kÞ þ n�k

k

� �
n�2k
k

� �
2

¼ 2k2ðn� kÞ þ ðn� kÞðn� 2kÞ
2k2

:

The total number of possible 2-bit errors for an n-bit code

word is

n

2

� �
¼ nðn� 1Þ

2
:

Dividing the number of undetected 2-bit errors by the total

number of 2-bit errors gives us the percentage of undetected

2-bit errors as

2k2ðn�kÞþðn�kÞðn�2kÞ
2k2

nðn�1Þ
2

¼ 2k2ðn� kÞ þ ðn� kÞðn� 2kÞ
nk2ðn� 1Þ ;

where n is the code word length in bits, and k is the

checksum size in bits.

A.2 All-One Data

For an n-bit code word with all-one data, the equation

used depends on whether the MSB of the checksum is

one or zero. The MSB changes every ð2k=2Þ � k bits of

data word length. For example, in an 8-bit checksum, the

MSB of the checksum changes after every 1,024 data

word bits.
Looking at the first, third, fifth, and so on, set of data

words, it can be seen that the MSB of the checksum is

one. For this case, an n-bit code word will have an

undetected 2-bit error equal to the checksum size k

minus the number of ones i in the binary form of

ððn=kÞ � 2Þ multiplied by data word length ððn� kÞ=kÞ,
plus the combination of all the MSBs in the data word

taken two at a time:

ðk� iÞ n� k
k

� �
þ

n�k
k

� �
2

� �
¼ðk� iÞ n� k

k

� �

þ ðn� kÞðn� 2kÞ
2k2

:

Considering the second, fourth, sixth, and so on, set of

data words, the undetected 2-bit error for an n-bit code

word is equal to one plus the checksum size k minus the

number of ones i in the binary form of ððn=kÞ � 2Þ multi-

plied by data word length ððn� kÞ=kÞ plus the combination

of all the MSBs in the data word taken two at a time:

ðk� iþ 1Þ n� k
k

� �
þ

n�k
k

� �
2

� �
¼ðk� iþ 1Þ n� k

k

� �

þ ðn� kÞðn� 2kÞ
2k2

:

The reason for the addition of one to the second equation is

that having a value of zero in the MSB causes the bits in the

MSB column to generate additional undetected errors.

The two equations above when divided by the number of

all possible 2-bit errors (n bit combinations taken two at a

time) will yield the following equations.
For the first, third, fifth, and so on, set of ð2k=2Þ � k

data words

2ðk� iÞ n
k � 1
� �

þ n
k � 1
� �

n
k � 2
� �

nðn� 1Þ ;

where n is code word length in bits, k is checksum size in

bits, and i is the number of zeros in the checksum or the

number of ones in the binary form of ððn=kÞ � 2Þ within the

checksum width.
For the second, fourth, sixth, and so on, set of ð2k=2Þ � k

data words

2ðk� iþ 1Þ n
k � 1
� �

þ n
k � 1
� �

n
k � 2
� �

nðn� 1Þ ;

where n is code word length in bits, k is checksum size in

bits, and i is the number of zeros in the checksum or the

number of ones in the binary form of ððn=kÞ � 2Þ within the

checksum width.

APPENDIX B

ONE’S COMPLEMENT ADDITION CHECKSUM

FORMULA DERIVATION

For all-zero and all-one data, only one equation is needed

because there are no undetected 2-bit errors due to the MSB.

The equation is equal to the one from the two’s complement

addition checksum for all-zero data minus the undetected

bit errors caused by the MSB. Thus, the percentage of

undetected errors is equal to

ðn� kÞ
n
2

� � ¼ ðn� kÞ
nðn�1Þ

2

¼ 2ðn� kÞ
nðn� 1Þ ;

where n is the code word length in bits, and k is the

checksum size in bits.
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