Imirok: Real-Time Imitative Robotic Arm Control for Home Robot Applications

Heng-Tze Cheng, Zheng Sun, Pei Zhang
Department of Electrical and Computer Engineering, Carnegie Mellon University
{hengtze, zhengs, peizhang}@cmu.edu

Abstract—Training home robots to behave like human can help people with their daily chores and repetitive tasks. In this paper, we present Imirok, a system to remotely control robotic arms by user motion using low-cost, off-the-shelf mobile devices and webcam. The motion tracking algorithm detects user motion in real-time, without classifier training or predefined action set. Experimental results show that the system achieves 90% precision and recall rate on motion detection with blank background, and is robust under the change of cluttered background and user-to-camera distance.

Keywords—Robotic arm, gesture-based human robot interaction.

I. INTRODUCTION

The interaction between human and sensor-enabled home robots in a smart home environment is important in the field of pervasive computing. While home robots have become available [1], most robots are custom-made for specific operations without the capability to meet the needs of different users. As many everyday tasks (such as cleaning, cooking, moving objects) require specific gestures and movements that vary with users and usage scenarios, it is important to design a system that allows users to train and control the robot the way they want. In this work, we focus on the research problem of how to track a user’s motion and use it for controlling a robotic arm.

Recognizing user motion or gesture from low-level image signals and replay the motion on robots is technically challenging. Although extensive work has been done in gesture-based robot control [4]–[6], voice-based human robot interaction [7,8], and wearable gestural interface [9], most systems still require time-consuming training process for learning models, custom made devices or wearable equipments for controlling, and can only understand a small set of predefined command-action pairs. These features are undesirable for users who want to control or train their robot for custom tasks, without wearing equipments or purchasing additional devices.

In this paper, we present Imirok, a real-time imitative robotic arm control system shown in Figure 1, with the following contributions. First, we present the design, implementation, and evaluation of the Imirok system. Imirok provide an interface for general users to control home robots using the webcam they already have, without the need of purchasing specific hardware or high-cost instruments. Second, using an optical-flow-based motion tracking algorithm, our system can track user motion in real-time without the need of a model training process in advance. Third, rather than classifying user’s motion into a predefined gesture set, a user can perform arbitrary motions with one’s arm for the robot to imitate, which enables training robotic arm for custom tasks.

The paper is organized as follows. In Section 2, we describe the proposed motion tracking algorithm. Our approach and implementation on robotic arm control is elaborated in Section 3. The evaluation results are described in Section 4. We discuss related work in Section 5 and our conclusions in Section 6.

II. MOTION TRACKING

A. Design Considerations

Our goal is to infer user motions from a video stream captured by a webcam facing the user. To track the motion of the user’s hand, we need to decide what kind of image features that is both robust and ideal for real-time tracking of moving points across consecutive image frames. The intuition is that if we randomly pick a point on a uniform surface to track, then we are not likely to find the same point in the next frame. Conversely, if we choose a unique point that is more invariant under motion or luminance changes, we have more chance of finding that point again and the tracking will be more robust. Also, to achieve real-time motion tracking, the feature extraction and the tracking algorithm need to be computationally efficient. These considerations motivate our approach as follows.

B. Image Feature Extraction

First, each input image from the video sequence is converted to grayscale image, since the color information is not required. Then, we extract the corner feature [2] since it is shown to be useful for object tracking in video. The corner feature extraction algorithm finds a list of points that are relatively useful for tracking.

C. Optical-Flow-Based Motion Tracking

Since we need real-time gesture recognition rather than an offline video motion analysis, we adopt Lucas-Kanade Algorithm [3], a sparse tracking method that significantly reduces computational cost compared with dense tracking.

Our approach works as follows. First, given an input frame, we extract at most Nmax salient corner points that are suitable for tracking. Then, by comparing the current and the previous frame
using Lucas-Kanade Algorithm, we obtain a set of point pairs that
describes how each point moves from one frame to the next
frame. In the experiments, N_{max} is empirically set to 500.

After the set of point pairs are extracted, we compute the cen-
troid of points in the current and the previous frame, which is
shown in Figure 2 with red circles. Even with a cluttered background, the noisy
movements are filtered and the estimated hand moving direction
is shown on the screen in real-time.

We then compute the distance of the centroid shift. If the cen-
troid shift is larger than a pre-determined threshold d_i in a certain
direction, an estimate of moving direction is determined. Empiri-
cally, d_i is set to a distance of 10-pixel length.

III. ROBOTIC ARM CONTROL

In this paper, we present an intuitive way of controlling a robotic
arm, to follow motions made by a human operator. One challenge
is to establish a one-to-one mapping from joints of human body to
sections on the robot arm. In this section, we present motion-
mapping techniques in Imirok and the design of motor control
circuits in the current implementation.

A. Motion Mapping

The object moving in front of the camera, and hence being tracked
by the optical flow-based motion tracking algorithm, need not to
be fixed. Any movements, which can be interpreted into the pre-
defined movement table, are acceptable. For example, for issuing
an “up” command, in front of the camera, an operator can raise
his/her arm, head, or even shoulder. However, the motions made
by the robotic arm should be fixed, so that every movement by
human operators for issuing the same command should result in
the same robotic arm motion.

In achieving this goal, the current Imirok adopts a table-based
command lookup process. Firstly, possible movements are discri-
tized into finite number of moving directions. These moving direc-
tions are mapped onto different sections of the robotic arm.
Then, by looking up the moving directions in a predefined com-
mand table, motor control contexts, such as motor ID, voltage,
and time, are provided. These contexts are then directly used in
the control of the corresponding motors so that the robotic arm
will make expected movements.

In Figure 3, a lookup table that illustrates a four-direction
movement discretization is shown.
B. DC Motor Control

In the control of motors, H-bridges are connected to motors on the robotic arm so as to power the motors and generate different motor directions. H-bridge is an electronic device that allows DC motors to run forwards and backwards according to logical signal combinations provided [10]. Figure 4 shows the circuit of using a SunSPOT eDemo board to power and send logical signals to a H-bridge IC for controlling two motors on the robotic arm.

IV. IMPLEMENTATION

For prototype implementation, we use SunSPOT nodes for 802.15.4 radio communication between the vision-based motion tracking device (a laptop with a webcam) and the OWI-535 robotic arm [11]. TI SN754410 H-bridge IC is used for motor control. The image feature extraction and motion tracking algorithms are implemented using OpenCV library in C++.

V. EVALUATION

In this section, we present the evaluation results of motion tracking performance of Imirok, and discuss possible factors that influence the performance.

A. Background Complexity

Intuitively, simple backgrounds behind the human operator will generate better tracking performance than complex backgrounds having multiple objects with different colors. We evaluate the performance of Imirok under both blank and cluttered backgrounds. For the blank background, a human operator stands in front of a mono-color wall, issuing left, right, up, and down commands by moving his upper arm. For the cluttered background, the operator stands in the cubicle area in our campus. Results in Figure 5 and 6 show that blank background averages generates 5% ~ 15% better performance of both precision and recall rates for all four types of motions.

B. Distance to Camera

The human operator stands in front of a mono-color wall with different distance to the camera. From Figure 7 and 8, it seems that the precision and recall rates of Imirok are pretty constant against distance changes. For all the cases ranging from 1m to 3m, the average precision and recall rates are over 85%.
focused on the user needs to wear four color markers on the fingers for gesture recognition. For instance, the robot can only understand predefined command-action pairs. Although promising accuracy was reported on the finite command sets, a user cannot train the robot to perform customized actions for individual needs. Besides human-robot interaction, SixthSense [9] proposed a wearable gesture-based interface for mobile applications such as map navigation or photo browsing. However, a user needs to wear four color markers on the fingers for gesture recognition. In comparison, our system directly tracks a user’s movement without the need of additional accessories or equipment worn on one’s body. In addition to gesture-based systems, there has also been research exploring the idea of voice control. In [7], spoken dialog is used as input commands (e.g. “go over there”). However, they focused on the simple movement of a wheeled robot similar to Roomba [1], rather than controlling robotic arms with multiple joints. In VoiceBot [8], non-verbal voice commands (e.g. “ah”, “oooh”, “aw”) are mapped to different orientations for robotic arm control. While the work focused on the user study of a novel user interface, a detailed accuracy of control was not reported, and there is no intuitive way that a user can give an example of motion he/she want to perform.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the design, implementation, and evaluation of Imirok, an imitative robotic arm control system. The system detect user motion in real-time, without the need of model training before using the system. The motion tracking approach achieved 90% precision and recall rate with blank background, and show acceptable robustness under the change of cluttered background and user-to-camera distance. The real-timeliness, the robust performance, and the intuitive imitative human-robot interaction make the system particularly desirable for controlling home robots in a smart home environment. There are plenty of research opportunities for future work. Our approach can be extended to increase the degree of freedom in controlling robotic arm. In addition, controlling two arms simultaneously can be enabled by adding a motion orientation clustering algorithm after motion tracking. To further enable robotic control using mobile phone cameras, it is also important to balance the tradeoff between computational cost, power consumption, transmission bandwidth, and the performance of vision-based motion tracking.

REFERENCES