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SUMMARY

Localization of the actin crosslinking protein,
a-actinin, to the cleavage furrow has been previ-
ously reported. However, its functions during
cytokinesis remain poorly understood. We have
analyzed the functions of a-actinin during cyto-
kinesis by a combination of molecular manipula-
tions and imaging-based techniques. a-actinin
gradually dissipated from the cleavage furrow
as cytokinesis progressed. Overexpression of
a-actinin caused increased accumulation of
actin filaments because of inhibition of actin
turnover, leading to cytokinesis failure. Global
depletion of a-actinin by siRNA caused a de-
crease in the density of actin filaments through-
out the cell cortex, surprisingly inducing accel-
erated cytokinesis and ectopic furrows. Local
ablation of a-actinin induced accelerated cyto-
kinesis specifically at the site of irradiation. Nei-
ther overexpression nor depletion of a-actinin
had an apparent effect on myosin II organiza-
tion. We conclude that cytokinesis in mamma-
lian cells requires tightly regulated remodeling
of the cortical actin network mediated by a-acti-
nin in coordination with actomyosin-based
cortical contractions.

INTRODUCTION

Cytokinesis is a spatially and temporally regulated event

crucial for accurate separation of chromosomes and

organelles into two daughter cells. In animal cells, cortical

ingression takes place along the equator after chromo-

some separation. In spite of recent advances, which

have led to an increased understanding of division-plane

positioning (Maddox and Oegema, 2003; Glotzer, 2004),

it remains predominantly unknown how cortical ingression

is regulated during cytokinesis. Because of the existence

of strong cortical forces (Burton and Taylor, 1997), and the
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concentration of actin filaments and myosin II along the

equator (Fujiwara and Pollard, 1976; Sanger and Sanger,

1980; Maupin and Pollard, 1986), it is widely believed

that cortical ingression involves the constriction of an acto-

myosin contractile ring (Satterwhite and Pollard, 1992).

However, the process appears to be more complex than

the simple constriction of a contractile ring (Wang, 2005).

Several reports have shown that actin is highly dynamic

along the equator (Pelham and Chang, 2002; Murthy and

Wadsworth, 2005; Guha et al., 2005) and that both actin

assembly and disassembly are required for cytokinesis

(O’Connell et al., 2001; Pelham and Chang, 2002; Murthy

and Wadsworth, 2005; Guha et al., 2005). In fission yeast,

inhibition of actin polymerization by low doses of latruncu-

lin A induced a decreased rate of ring closure (Pelham and

Chang, 2002), suggesting that cytokinesis requires the

integrity of certain actin structures. A similar phenotype

was also observed after global application of latrunculin

A to mammalian cells (Murthy and Wadsworth, 2005).

On the other hand, local application of cytochalasin D or

latrunculin A at the equator facilitates cytokinesis, sug-

gesting that cortical actin disassembly promotes cytoki-

nesis (O’Connell et al., 2001).

Recent studies suggested that myosin II activity plays

a role in facilitating actin turnover along the equator (Mur-

thy and Wadsworth, 2005; Guha et al., 2005). Actin depo-

lymerizing factor (ADF)/cofilin is also likely to be involved in

not only formation and maintenance of the contractile ring

(Nakano and Mabuchi, 2006) but also the regulation of

actin disassembly during furrow ingression, because its

knockdown resulted in the robust accumulation of actin

filaments along the equator and cytokinesis failure (Gun-

salus et al., 1995; Somma et al., 2002; Hotulainen et al.,

2005). In addition to actin assembly and disassembly,

cytokinesis probably involves remodeling of a cortex-

associated, crosslinked actin-filament network.

An actin crosslinking protein termed a-actinin was

found in the cleavage furrow of animal cells almost

30 years ago (Fujiwara et al., 1978; Mabuchi et al., 1985;

Sanger et al., 1987). a-actinin is a homodimer with two

subunits of molecular mass �100 kDa each (Suzuki

et al., 1976) arranged in an antiparallel orientation

(Djinovic-Carugo et al., 1999; Ylanne et al., 2001). It is
vier Inc.
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Figure 1. Dynamics of a-Actinin during Cell Division

(A) Localization of endogenous a-actinin during cytokinesis. Cells were fixed and immunostained with antibodies against a-actinin (green) and

rhodamine-phalloidin (red). The scale bar represents 10 mm.

(B) An NRK cell expressing a-actinin-GFP was monitored by fluorescence optics. a-actinin-GFP starts accumulating (yellow arrow) along the cleav-

age furrow (indicated by white arrows) soon after anaphase onset. During furrow ingression, a-actinin dissipates from the cleavage furrow to the

subequatorial region (thick red arrow). Upon completion of cytokinesis, a-actinin-GFP accumulates at the sites of cell-cell contacts (red arrow),

although it is hardly present in the midbody (blue arrow). Time elapsed in seconds since anaphase onset is shown at the bottom-right corner of

each image. The scale bar represents 10 mm.

(C) Quantification of a-actinin-GFP intensity at the cleavage furrow and polar regions. Zero indicates the time of anaphase onset. The arrow indicates

time of furrow initiation. Each value represents mean ± SEM (n = 10).

(D) FRAP analysis of a-actinin-GFP during cytokinesis. NRK cells expressing a-actinin-GFP were bleached at the cleavage furrow (n = 15), subequa-

torial (7–15 mm from the furrow leading edge) (n = 8), and polar regions (n = 3) during cytokinesis or along the stress fibers (n = 13) during interphase.

Scale bars represent mean ± SEM.
present in both muscle and nonmuscle cells, interacting

with a large number of molecular partners such as a-cat-

enin, vinculin, integrins, and zyxin, and is found in multiple

subcellular regions, including sarcomeric z lines, cell-cell

and cell-matrix contact sites, and stress fibers (Otey and

Carpen, 2004). Interestingly, it has been shown that

increased crosslinking of actin filaments by a-actinin

inhibits myosin-based contractions in vitro (Janson

et al., 1992). Moreover, in the presence of a-actinin,

a member of the ADF/cofilin family named actophorin pro-

motes bundling of actin filaments in vitro (Maciver et al.,

1991), presumably by limited disruption of the cross-

linked network. These observations raise a possibility

that modulation of the actin-filaments network by a-acti-

nin might regulate actomyosin contractility and actin bun-

dle assembly during cytokinesis. Although a previous

study has indicated a role of a-actinin in cytokinesis of

fission yeasts (Wu et al., 2001), little is known about its

precise function in relation to cortical contraction.
Developm
In the present study, we have dissected the function of

a-actinin during cytokinesis of mammalian cells. Our ob-

servations strongly suggest that cytokinesis requires the

remodeling of actin filaments by a-actinin. We also sug-

gest that cytokinetic ingression requires remodeling rather

than the accumulation of actin filaments.

RESULTS

Dynamics of a-Actinin during Cell Division
of Mammalian Cells
Consistent with previous reports (Fujiwara et al., 1978;

Sanger et al., 1987), endogenous a-actinin primarily accu-

mulated at the equatorial region, and colocalized along

actin filaments during cytokinesis of normal rat kidney

epithelial (NRK) cells (Figure 1A). a-actinin maintained its

activity when fused to GFP, as indicated by its ability

to rescue defects caused by depletion of endogenous

a-actinin (described later) and its localization in fixed
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samples mimicking the endogenous protein (data not

shown). a-actinin-GFP was used for visualizing the

dynamics of a-actinin during anaphase and cytokinesis

(Figure 1B and Movie S1). Cells expressing a-actinin-

GFP at a low level showed a small number of a-actinin-

containing, dot-like structures on the cortex. At approxi-

mately 100 s after anaphase onset, a-actinin-GFP started

accumulating along the equator as punctuate structures,

which developed into a strong equatorial band during

early cytokinesis and dissipated subsequently, thereby

leaving little trace around the midbody at late cytokinesis.

Quantitative analysis indicated that the fluorescent signal

reached its peak simultaneously with furrow initiation

(Figure 1C, arrow; 235.0 ± 13.0 s after anaphase onset)

and steadily decreased during furrow ingression, whereas

its intensity remained essentially unchanged in the polar

region during cytokinesis (Figure 1C).

To analyze the dynamics of a-actinin in more details, we

performed FRAP analysis of a-actinin-GFP (Figure 1D and

Figure S1A in the Supplemental Data available with this

article online). Whereas the recovery halftime of a-acti-

nin-GFP along the stress fibers in interphase cells was

close to 30 s (t1/2 = 27.0 ± 3.8 s; Fraley et al., 2005; Hotu-

lainen and Lappalainen, 2006), the halftime was less than

10 s along the equator (t1/2 = 7.9 ± 0.5 s). The subequato-

rial region showed an intermediate mobility (t1/2 = 20.1 ±

2.3 s). These results suggest that a-actinin was highly

dynamic at the equator during cytokinesis.

Overexpression of a-Actinin Causes an Increase
in Equatorial Actin Filaments, Delayed
Cytokinesis, and Cytokinesis Failure
In order to analyze the function of a-actinin, we first

performed gain-of-function experiments by overexpress-

ing a-actinin-GFP. Greater than 25% of the cells overex-

pressing a-actinin were multinucleated at 2 days after

transfection, whereas approximately 3% of nontrans-

fected cells were multinucleated (Figure 2A), suggesting

that overexpression of a-actinin-GFP inhibits cytokinesis.

Time-lapse microscopy confirmed that 23% (13/57) of

cells overexpressing a-actinin-GFP failed cytokinesis.

The relative amount of a-actinin in cells expressing a-

actinin-GFP was estimated by the intensity of immunoflu-

orescence staining. The total amount of a-actinin was

increased 4- to 5-fold in cells that had failed cytokinesis,

whereas cells with �2-fold overexpression of a-actinin-

GFP had divided normally, suggesting that the cytokinetic

defect in cells overexpressing a-actinin-GFP is dependent

on its expression level.

In cells that overexpressed a-actinin at high level and that

failed cytokinesis (Figure 2C and Movie S2), no apparent

defects in spindle positioning or chromosome congression

were observed. The failure typically involved slowing of

ingression and regression on one side of the furrow, after

an apparently symmetric initial ingression. Ingression

progressed extremely slowly, lasting for approximately

50 min, while the nuclear envelope formed normally. Even-

tually, the furrow regressed without forming the midbody,

resulting in the formation of a binucleated cell. Correspond-
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ing fluorescence images of a-actinin-GFP showed that a-

actinin-GFP accumulated strongly along the equator

(Figure 2C, blue arrow). In contrast, in control nontrans-

fected cells, furrow ingression typically initiated soon after

chromosome separation and progressed from both sides

of the equator, and the midbody formed at �16 min after

anaphase onset (Figure 2B and Movie S3).

Because a-actinin-GFP is an actin crosslinking protein,

we examined the effects of overexpression of a-actinin-

GFP on actin-filament organization by using rhodamine-

phalloidin. We detected a significant increase in the

density of actin filaments not only along the equator but

also throughout the cell cortex, in cells overexpressing

a-actinin-GFP compared to control cells (Figures 3A, 3B,

and 4C). Overexpression of the truncated a-actinin protein

lacking the ability to crosslink actin filaments (the actin-

binding domain; ABD) fused to GFP had no effect on the

density of actin filaments along the equator, although

ABD-GFP was localized to the cleavage furrow (Figures

3C and 3D). Moreover, there was no significant difference

in the frequency of multinucleation between cells overex-

pressing ABD-GFP (3.1% ± 0.2%, n = 356) and control

nontransfected cells (2.9% ± 0.4%, n = 369). These results

suggest that extensive crosslinking of actin filaments by

overexpression of a-actinin leads to increased density of

actin filaments, thereby causing cytokinesis failure.

To determine whether overexpression of a-actinin

affects actin dynamics along the equator, we performed

FRAP analysis of GFP-actin in cells overexpressing a-

actinin fused to Cherry fluorescent protein (CherryFP),

which induced similar effects and localization pattern as

overexpression of a-actinin-GFP (Figure S2). FRAP

showed that GFP-actin turned over more slowly in a-acti-

nin-CherryFP overexpressing cells that showed delayed

cytokinesis (t1/2 = 38.1 ± 5.4 s) compared to control cells

(t1/2 = 16.9 ± 1.8 s; Guha et al., 2005) and to cells with

a low level of a-actinin-CherryFP (t1/2 = 16.1 ± 1.6 s) (Fig-

ures 3E and 3F and Figure S1B). Overexpression of a-ac-

tinin-GFP had no significant effect on the organization of

myosin II, which was organized as punctate structures

predominantly along the equator of both control cells

and cells overexpressing a-actinin-GFP, during cytokine-

sis (Figures 4A and 4B). These results indicate that overex-

pression of a-actinin-GFP inhibits actin turnover and

causes the accumulation of actin filaments along the

equator, without affecting myosin II organization.

In addition to affecting equatorial cortical dynamics,

overexpression of a-actinin-GFP may affect cell-substrate

adhesion during cytokinesis, and this may in turn affect

cytokinesis. Although the failure in cytokinesis cannot be

easily explained by a failure in cell rounding, because a-

actinin-GFP-overexpressing cells with both larger and

normal size showed cytokinesis failure (Figure 2D), we no-

ticed an increase in vinculin plaques throughout the cortex

and particularly along the equator with no effect on its

protein level, whereas control cells hardly showed any

vinculin plaques during division (Figure 4C).

To determine whether overexpression of a-actinin-GFP

affects cell rigidity, which may cause cytokinetic defects,
vier Inc.
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Figure 2. Overexpression of a-Actinin Causes Delayed Cytokinesis and Cytokinesis Failure

(A) Frequency of multinucleation in cells transfected with GFP (n = 273), a-actinin-GFP (n = 361), or nontransfected neighboring cells (n = 452 and

n = 1161, accordingly). Scale bars represent mean ± SEM. A control NRK cell (B) or an NRK cell overexpressing a-actinin-GFP at a high level (C)

was monitored by time-lapse phase and fluorescence optics. Time elapsed in minutes and seconds after anaphase onset is shown at the

bottom-right corner. The initially symmetric furrow regresses on one side of the equator (red arrow). Furrow progression continues even after the

furrow regressed from one side of the equator (yellow arrows). During furrow ingression, the nuclear envelope forms normally (black arrows).

a-actinin-GFP strongly accumulates along the equator (blue arrow). The scale bar represents 10 mm.

(D) Plots of furrow width over time after anaphase onset. The furrow width was monitored for seven different cells overexpressing a-actinin-GFP and

for three representative control cells. Cells shown in Figures 1B, 2C, and 2B are plotted under the name of a-actinin-GFP 1, a-actinin-GFP 4, and

control 1, respectively.
we brought a thin glass needle to the side of an early

mitotic cell overexpressing a-actinin-GFP or a control

cell and moved it toward the center of the cell in 5 mm

increments. Images of cells and needles allowed us to cal-

culate the relative cell rigidity. The apparent rigidity of cells

overexpressing a-actinin-GFP was slightly increased,

compared to that of control cells (Figure 4D and

Figure S3), although the difference was not statistically

significant (p = 0.08). However, even though the cells

remained attached to the substrate during probing, we

cannot rule out the possibility that the measurements
Developm
were also affected by altered cell adhesion, which may

mask differences in cortical rigidity.

Depletion of a-Actinin Causes Global Decrease
in Cortical Actin Filaments, Accelerated
Cytokinesis, and Ectopic Furrowing
To determine the effect of disruption of a-actinin-mediated

cortical actin crosslinking, we first performed local

inactivation of a-actinin at the equator by using chromo-

phore-assisted laser inactivation (CALI), which had been

used successfully for inactivating a-actinin in interphase
ental Cell 13, 554–565, October 2007 ª2007 Elsevier Inc. 557
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Figure 3. Overexpression of a-Actinin Causes an Increase in the Accumulation of Actin Filaments by Inhibition of Actin Turnover

(A) NRK cells transiently transfected with a-actinin-GFP or control nontransfected cells were fixed and stained with rhodamine-phalloidin (red). Scale

bars represent 10 mm. Note that whole-cell images are shown in Figure 4C.

(B) Quantification of F-actin fluorescence intensity in whole cells and at both the equatorial and polar regions of control cells (n = 27) and in cells

overexpressing a-actinin-GFP (n = 14) during cytokinesis. Error bars represent mean ± SEM; *p < 0.0001.

(C) NRK cells transiently transfected with ABD-GFP or control nontransfected cells were fixed and stained with rhodamine-phalloidin (red). Scale bars

represent 10 mm.

(D) Quantification of F-actin fluorescence intensity in whole cells and at both the equatorial and polar regions of control cells (n = 9) and in cells

overexpressing ABD-GFP (n = 10) during cytokinesis. Error bars represent mean ± SEM.

(E) Rate of FRAP for GFP-actin. Error bars represent mean ± SEM, *p < 0.0005.

(F) FRAP analysis of GFP-actin in cells overexpressing a-actinin-CherryFP during cytokinesis. Cells expressing GFP-actin (n = 11), cells expressing

both GFP-actin and a-actinin-Cherry at low level and showing normal cytokinesis (n = 13), or cells expressing both GFP-actin and a-actinin-Cherry

at high level and showing delayed cytokinesis (n = 5) were bleached in the indicated region (arrows) along the equator. The scale bar represents

10 mm.
cells (Rajfur et al., 2002). CALI on one side of the equator

induced a slightly deeper and wider furrow on the irradi-

ated side than the nonirradiated side in approximately

60% of the cells (7/12) (Figure 5A, arrows), whereas such

a furrow was rarely observed in control experiments (Fig-

ures 5A and 5B). This suggests that weakening of the cor-

tical actin network by local inactivation of a-actinin might
558 Developmental Cell 13, 554–565, October 2007 ª2007 Else
facilitate ingression. However, the effect of CALI is ex-

pected to be weak and transient because of the rapid

exchange of a-actinin along the equator as indicated by

FRAP analysis (Figure 1D).

Next, we used the RNA interference (RNAi) technique to

deplete a-actinin globally from the cell. Cells microin-

jected with either of two different siRNAs directed against
vier Inc.
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Figure 4. Overexpression of a-Actinin Has No Significant Effect on Myosin II Organization but Induces Precocious Formation of

Focal Adhesions during Cytokinesis

(A) NRK cells transiently transfected with a-actinin-GFP (green) or control nontransfected NRK cells were stained with antibodies against myosin II

(red) and Hoechst 33258 (blue). Three-dimensional reconstructed images are presented. The scale bar represents 10 mm.

(B) Quantification of myosin II fluorescence intensity in whole cells and at both the equatorial and polar regions of cells overexpressing a-actinin-GFP

(n = 10) compared with control cells (n = 19). Error bars represent mean ± SEM.

(C) NRK cells transiently transfected with a-actinin-GFP or control nontransfected cells were fixed and stained with rhodamine-phalloidin (red) and

antibodies against vinculin (blue). In cells that overexpressed a-actinin-GFP and that failed cytokinesis, vinculin plaques are observed along the equa-

tor (arrow). The scale bar represents 10 mm.

(D) Comparison of relative rigidity of cells overexpressing GFP with that of cells overexpressing a-actinin-GFP. The graph shows the ratio of mean

rigidity of cells expressing GFP over that of cells overexpressing a-actinin-GFP. Error bars represent mean ± SEM.
a-actinin (siRNA-1 and 2) showed �70% reduction of a-

actinin level, whereas those injected with a scrambled

siRNA showed normal a-actinin distribution and level (Fig-

ures S4A and S4B).
Developm
Global depletion of a-actinin caused severe defects in

the integrity of the cortical actin network during cell divi-

sion. In approximately 40% of cells depleted of a-actinin,

the equatorial cortex suddenly and quickly collapsed
ental Cell 13, 554–565, October 2007 ª2007 Elsevier Inc. 559
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Figure 5. Deactivation or Depletion of a-Actinin Induces Accelerated Cytokinesis

(A) One side of the equatorial region of a dividing NRK cell expressing a-actinin-GFP (top) or GFP only (bottom) was irradiated by a laser beam and

monitored by time-lapse phase-contrast optics.

(B) Ratio of furrow ingression between the laser-irradiated side and the nonirradiated side of the equator in cells expressing a-actinin-GFP (n = 12),

cells expressing GFP alone (n = 7), and nontransfected cells with (n = 18; control 1) or without (n = 8; control 2) laser irradiation. Bars represent mean

values.

(C) Phase-contrast time-lapse images of NRK cells microinjected with siRNA against a-actinin during cell division. Time elapsed in minutes and

seconds since anaphase onset is shown at the bottom-right corner of each image. Chromosome congression and separation occur normally (black

arrows). However, precocious cortical ingression is induced before anaphase (white arrow), and furrow ingression is accelerated (yellow arrows).

Moreover, cytokinesis also occurs outside the equator (white arrow), producing an anuclear fragment of cytoplasm (asterisk). Scale bar represents

10 mm.

(D) Average duration of cytokinesis in control cells or cells depleted of a-actinin. Duration of cytokinesis is�400 s in cells microinjected with siRNA-1

(n = 11) and siRNA-2 (n = 7) that showed accelerated cytokinesis, whereas it is 700�800 s in noninjected cells (n = 35) and cells microinjected with

scrambled siRNA (n = 17). Bars represent mean values.
(Table 1; Figure 5C and Movie S5). In addition, in some

cells, an abnormal midbody was formed (Figure 5C, red

arrow), and the formation of interphase morphology was

delayed. The average duration of cytokinesis in cells that

were depleted of a-actinin and that showed rapid furrow

ingression was approximately 400 s, as compared to

700–800 s in control noninjected cells and cells microin-

jected with scrambled siRNA (Figure 5D). Because rapid

furrow ingression was concomitant with collapse of the

equatorial cortex, we frequently failed to observe midbody

formation, which was used as an indication of cytokinesis

completion in control cells. Thus, the duration of cytokine-

sis in the a-actinin-depleted cells that showed rapid
560 Developmental Cell 13, 554–565, October 2007 ª2007 Else
furrowing probably represented a slight overestimate

because it was measured from the initiation of cytokinesis

to the clear formation of two daughter cells.

Surprisingly, we occasionally observed precocious cor-

tical ingression before anaphase onset in approximately

10% of cells depleted of a-actinin (Table 1), although

chromosome congression and separation was normal

(Figure 5C and Movie S5). Moreover, in some a-actinin-

depleted cells, furrow ingression occurred both along

and outside the equator after chromosome separation,

thereby producing anuclear cell fragments (Figure 5C).

Such accelerated cytokinesis and ectopic furrowing

were not observed in cells microinjected with scrambled
vier Inc.
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Table 1. Summary of the Phenotype Observed in Cells Depleted of a-Actinin

Abnormal Cytokinesis (%)

Ectopic Furrowing

Cells Normal Cytokinesis (%) Accelerated Cytokinesis Total Before Anaphase Onset

Noninjected (n = 40) 100.0 (n = 40) - - -

Scrambled siRNA (n = 19) 100.0 (n = 19) - - -

siRNA (1) (n = 28) 50.0 (n = 14) 39.3 (n = 11) 17.9 (n = 5) 10.7 (n = 2)

siRNA (2) (n = 19) 52.6 (n = 10) 36.8 (n = 7) 36.8 (n = 7) 10.5 (n = 2)

GFP + siRNA (1) (n = 13) 53.9 (n = 7) 38.5 (n = 5) 23.1 (n = 3) -

a-actinin-GFP + siRNA (1) (n = 12) 91.7 (n = 11) 8.3 (n = 1) - -

NRK cells microinjected with scrambled siRNA, either of two different siRNAs against a-actinin, or the indicated siRNA and empty

GFP vector or a-actinin-GFP were monitored by time-lapse phase optics. Percentages of cells that showed each phenotype were
calculated from averages of at least three separate experiments.
siRNA (Table 1 and Movie S4). These results suggest that

a-actinin is required for the regulation of furrow ingression

along the equator and for the prevention of ectopic furrow-

ing during cell division.

Coinjection of siRNA against a-actinin with the a-acti-

nin-GFP expression vector allowed normal cytokinesis in

more than 90% of the cells, whereas injection with a

mixture of siRNA against a-actinin and the GFP expres-

sion vector caused either accelerated cytokinesis or

ectopic furrowing or both in almost 50% of the cells (Table

1). These results confirmed (1) that cytokinetic defects

observed in cells microinjected with siRNA against a-acti-

nin were due to the depletion of a-actinin and (2) that a-ac-

tinin-GFP is functional in vivo.

Because a-actinin is implicated in maintaining cell-cell

contacts (Otey and Carpen, 2004), depletion of a-actinin

may weaken cell-cell contacts, which may in turn induce

accelerated cytokinesis and ectopic furrowing. However,

we found that isolated cells depleted of a-actinin also

had ectopic furrowing and accelerated cytokinesis

(Figure S5), and these findings argued against an induced

effect of disrupted cell-cell contacts.

We next examined the effects of depletion of a-actinin on

actin-filament organization. A reduced density of actin fila-

ments wasdetected throughout thecortexof cellsdepleted

of a-actinin compared to that of control cells (Figure 6A),

and the total level of actin filaments also decreased slightly

(Figure 6B). In contrast, depletion of a-actinin had no effect

on either the organization (Figure 6C) or total amount of

myosin II (Figure 6D), suggesting that crosslinking of actin

filaments by a-actinin did not directly regulate myosin II.

Because myosin II is essential for cytokinesis, we exam-

ined whether accelerated cytokinesis and ectopic furrow-

ing induced by depletion of a-actinin require myosin II

activity. Blebbistatin, a known inhibitor for myosin II

(Straight et al., 2003), was applied to cells microinjected

with siRNA against a-actinin. Although DMSO treatment

had no effects on accelerated cytokinesis and ectopic

furrowing in cells depleted of a-actinin (data not shown),

no furrows were detected in cells depleted of a-actinin

and treated with blebbistatin (n = 23; Figure 6E) even after

cells entered late anaphase (compare with the cells in
Developm
Figures 6A and 6C). Thus, as for normal furrows, myosin

II activity is required for accelerated cytokinesis and

ectopic furrowing. To further analyze the relationship be-

tween a-actinin and myosin II, we tested whether myosin

II affects a-actinin turnover by FRAP analysis of a-actinin-

GFP in cells treated with blebbistatin (Figures 6F and

Figures S1C and S6). a-actinin-GFP recovers from pho-

tobleaching more slowly in cells treated with blebbistatin

(t1/2 = 29.5 ± 4.5 s) than in control cells treated with

DMSO (t1/2 = 9.2 ± 0.9 s), showing that myosin II influences

the dynamics of a-actinin.

DISCUSSION

Functions of a-Actinin along
and outside the Equator
Depletion of a-actinin induced ectopic furrowing even

before anaphase onset (Figure 5), suggesting that inward

forces are present not only along the equator (Rappaport,

1967) but also on the entire cortex from the early stage of

mitosis and that furrow ingression requires remodeling

rather than accumulation of actin filaments. This argues

against the simplest version of the contractile-ring hypoth-

esis (Schroeder, 1968; Satterwhite and Pollard, 1992;

Wang, 2005) and suggests that crosslinking of actin fila-

ments by a-actinin is required for resisting global inward

forces, possibly increasing cortical rigidity, outside the

equator or before the onset of cytokinesis.

Overexpression of a-actinin slowed down cortical in-

gression, whereas deactivation or depletion of a-actinin

induced rapid furrow ingression, suggesting that a-actinin

at the equator regulates furrow-ingression speed after

cytokinesis initiates. Although we cannot rule out the

possibility that precocious formation of focal adhesions

suppressed furrow ingression in cells overexpressing a-

actinin, inhibition of actin disassembly and actomyosin-

based cortical contraction is most likely to be responsible

for the delay in ingression. In addition, disruption of cell-

cell or cell-substrate contacts cannot easily explain the

precocious ingression caused by the depletion of a-acti-

nin. Finally, the local inactivation experiment supports a

direct role of a-actinin at the furrow.
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Figure 6. Depletion of a-Actinin Causes a Decrease in the Density of Actin Filaments throughout the Cortex with No Effect on

Myosin II

(A) NRK cells microinjected with or without siRNA against a-actinin diluted in fluorescent dextran (green) were fixed and stained with rhodamine-phal-

loidin (red) and antibodies against a-actinin (blue). Three-dimensional reconstructed images of actin filaments are shown. The scale bar represents

10 mm.

(B) Quantification of actin filaments’ fluorescence intensity in whole cells and at both the equatorial and the polar regions of cells depleted of a-actinin

(n = 9) compared with control cells (n = 13). Error bars represent mean ± SEM; *p < 0.05, **p < 0.0001.

(C) NRK cells microinjected with or without siRNA against a-actinin diluted in fluorescent dextran (green) were fixed and stained with antibodies

against myosin II (red). Three-dimensional reconstructed images are presented. Scale bars represent 10 mm.

(D) Quantification of myosin II fluorescence intensity at both the equatorial and polar regions of cells depleted of a-actinin (n = 7) compared with

control cells (n = 15). Error bars represent mean ± SEM.

(E) NRK cells microinjected with or without siRNA treated with blebbistatin. Scale bars represent 10 mm.

(F) FRAP analysis of a-actinin-GFP during cytokinesis of cells treated with blebbistatin. NRK cells expressing a-actinin-GFP were treated with bleb-

bistatin (n = 10) or DMSO (n = 16) and bleached at the equatorial region. Error bars represent mean ± SEM; *p < 0.0001.
Comparison of the Function of a-Actinin
in Cytokinesis between Fission Yeast
and Mammalian Cells
The a-actinin-like protein Ain1p has been implicated in

cytokinesis of fission yeasts (Wu et al., 2001). Overexpres-

sion of Ain1p caused either mispositioned or disorganized

actin rings or both, whereas deletion of the Ain1 gene
562 Developmental Cell 13, 554–565, October 2007 ª2007 Else
caused formation of an abnormal, thin actin ring under

certain stress conditions, suggesting that Ain1p is in-

volved in the formation of equatorial actin ring. Ain1p

has only two spectrin-like domains instead of four in mam-

malian cells. Hence, Ain1p may form actin bundles instead

of a network caused by conventional a-actinin, which is

possibly responsible for the tightly packed actin ring in
vier Inc.
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yeast (Wu et al., 2001). In contrast to the short length of

Ain1p, conventional a-actinin may crosslink actin fila-

ments loosely at the equator, where an apparent ring

structure is hardly detected during cytokinesis of mamma-

lian cells under some conditions (Fishkind and Wang,

1993).

The number of multinucleated yeast cells increased not

only upon overexpression of the Ain1p protein but also in

Ain1 deletion mutants (Wu et al., 2001), suggesting that

Ain1p helps proper formation of the actin ring rather than

remodeling of actin filaments. This differs from our results

in mammalian cells, in which furrow ingression speeds up

and even ectopic furrows are formed by loss of a-actinin.

Thus, although the cytokinetic components are well

conserved between fission yeast and mammalian cells,

the regulation of furrow ingression is likely to depend on

the organization of the contractile ring.

Regulation of the Cortical Actin Network
by a-Actinin during Cytokinesis
How does a-actinin regulate the change of cell shape (i.e.,

furrow ingression) along the equator? A previous report

demonstrated that, at high rates of deformation, the actin

network crosslinked by a-actinin is stiffer than actin fila-

ments alone, whereas at low rates of deformation, there

is no effect on the mechanical properties of the cross-

linked actin network (Sato et al., 1987). Assuming that a-

actinin forms dynamic crosslinks between actin filaments,

the actin network may deform easily under a slowly

provided force as seen in cytokinesis of animal cells (Rap-

paport, 1967). In addition, an important function of a-acti-

nin might be to suppress rapid, random shape changes

due to local fluctuations in motor activities.

A separate study showed that increasing the concentra-

tion of a-actinin relative to actin causes stiffening of the

actin gel and makes the gel more solid-like regardless of

the deformation rate (Tseng and Wirtz, 2001). Conversely,

decreases in a-actinin causes the gel to become more liq-

uid-like. This may explain the inhibition of ingression upon

overexpression of a-actinin and the poorly regulated

ingression upon depletion of a-actinin. The behavior of

the cortical gel is probably also affected by myosin II

forces, which may rupture the association between actin

and a-actinin and cause ‘‘strain softening’’ (Heidemann

and Wirtz, 2004). Therefore, under normal conditions,

accumulation of a-actinin at the equator is likely to cause

an increase in viscoelasticity of the isotropic actin network

before furrow initiation. However, subsequent increases in

myosin-driven forces might promote not only contraction

but also release of a-actinin from the equator, thereby

causing a decrease in cortical viscoelasticity and rear-

rangement of the crosslinked actin network, leading to

cell shape change (i.e., ingression of the furrow).

Our observations elucidate the regulation of furrow

ingression by a-actinin. The overall regulating mechanism

of cytokinesis, however, is likely to be more complex. The

effects of actin-associated proteins on the mechanical

properties of the actin network during cytokinesis have

been studied in Dictyostelium (Reichl et al., 2005). In
Developm
Dictyostelium, furrow contractility is multiphasic, and

both the global and the equatorial actin network, regulated

differentially by various actin crosslinkers, myosin II, and

a small GTPase, have distinct and important roles in fur-

row ingression (Girard et al., 2004; Zhang and Robinson,

2005; Octtaviani et al., 2006). Compared with Dictyoste-

lium, mammalian cell lines such as NRK cells do not

undergo as dramatic a change in morphology during cyto-

kinesis. In addition, these cells do not form a cylinder-

shaped cleavage furrow as Dictyostelium does (Zhang

and Robinson, 2005). Therefore, the mechanism for the

regulation of furrow ingression in mammalian cells may

be different from that of Dictyostelium. However, because

many other proteins are involved in cytokinesis of mam-

malian cells, it is important to elucidate how they function

and interact spatiotemporally in order to regulate furrow

ingression during cytokinesis.

EXPERIMENTAL PROCEDURES

Cell Culture, Microscopy, and Image Processing

NRK cells (NRK-52E; ATCC) were maintained in Kaighn’s modified F12

(F12K) medium supplemented with 10% FBS (BioWest), 100 U/ml

penicillin, and 100 mg/ml streptomycin. Cells were grown on glass

chamber dishes as previously described (McKenna and Wang,

1989). For live-cell imaging, the cells were maintained at 37�C in a cus-

tom-made incubator built on top of an Axiovert 200 M inverted micro-

scope (Carl Zeiss) and viewed with a 1003, NA 1.30, Plan-NEOFLUAR

lens. All images were acquired with a cooled charge-coupled device

camera (CoolSNAPHQ, Roper Scientific) and processed with MetaView

imaging software (Universal Imaging). Immunofluorescence staining

was analyzed with a LSM 510 Meta confocal microscope system

(1003, NA 1.25 Achroplan lens, 1003, NA 1.4 Plan-Apochromat

lens, or 633, NA 1.4 Plan Apochromat lens; Carl Zeiss).

Plasmids

a-actinin-GFP (a-actinin-4-GFP; Gonzalez et al., 2001) was a generous

gift from Dr. Carol Otey (University of North Carolina, USA). GFP-actin

and empty pEGFP vectors were from BD Biosciences Clontech,

whereas pmax GFP was obtained from Amaxa. We constructed a-

actinin-CherryFP with a-actinin-GFP by replacing a DNA fragment

encoding GFP with that encoding CherryFP. The actin-binding domain

(ABD) of a-actinin (encoding amino acids 28–292) was amplified by

PCR with a-actinin-GFP as a template and subcloned into pEGFP-N1.

Transfection and RNA Interference

NRK cells grown on glass chamber dishes were transiently transfected

with 1.6 mg of plasmids with Superfect reagent (QIAGEN) in accor-

dance with the manufacturer’s instruction. After 2 hr of incubation,

the medium containing the DNA-Superfect complex was replaced

with F12K medium containing 10% FBS, and the cells were incubated

for an additional 48 hr. Alternatively, cells were transfected with 0.3 mg

of the plasmids with Effectene reagent diluted in F12K medium con-

taining 1% FBS for 8–12 hr. The DNA-Effectene complex was replaced

with the F12K medium containing 10% FBS, and the cells were cul-

tured for an additional 24-48 hr.

Two different Silencer Predesigned siRNA duplexes against rat

a-actinin-4 and a Silencer Negative Control #1 siRNA duplex were

purchased from Ambion. Each siRNA was diluted to the final concen-

tration of 500 nM in HEK buffer (20 mM HEPES, 10 mM KCl [pH 7.7])

with 5 mg/ml lysine fixable 70,000 MW fluorescein dextran (Molecular

Probes) and then microinjected into the cells with custom-drawn glass

needles and a FemtoJet pressure control system (Eppendorf). The

cells microinjected with each siRNA were cultured for 72 hr. For rescue

experiments, cells were microinjected with siRNA (500 nM) together
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with 300 mg/ml of either empty GFP vector or a-actinin-GFP and

cultured for 72 hr.

Fluorescence Recovery after Photobleaching

NRK cells were transiently transfected with a-actinin-GFP, GFP-actin,

or both GFP-actin and a-actinin-CherryFP with Effectene transfection

reagent as described above. FRAP was performed with a Zeiss Meta

510 confocal microscope, with a 1003, NA 1.25 Achroplan objective.

Bleaching of the marked region was carried out at 100% laser power

with 150 iterations. Time-lapse images were acquired at every 6 s

interval. Fluorescence recovery was analyzed with MetaView.

Chromophore-Assisted Laser Inactivation

NRK cells were transiently transfected with a-actinin-GFP or pmax

GFP plasmid with Effectene transfection reagent as described above.

Cells expressing a-actinin-GFP at a low level were selected for CALI.

Cells were irradiated for 200 ms with a focused beam from a Lexel

Model 94 argon ion laser (488 nm, 500 mW of power at the laser

head), with a 1003, NA 1.30 Plan Neofluar lens, mounted on a Zeiss

Axiovert Inverted microscope. The laser beam was first applied after

anaphase onset but before initiation of ingression to one side of the

equator. As ingression progressed, the same region was irradiated

for an additional three to four times. Fluorescence and phase-contrast

images were acquired with a cooled charge-coupled device camera

(ST133 controller and CCD57 chip; Roper Scientific) and processed

with custom software for background subtraction.

Immunofluorescence

Cells were briefly rinsed with warm PBS and fixed with 4% paraformal-

dehyde (EM Sciences) in warm PBS for 10 min. They were then rinsed

thoroughly in PBS and permeabilized by incubation with 0.2% Triton X-

100 for 5 min. Fixed cells were rinsed with PBS, blocked for 30 min with

3% BSA (Boehringer Mannheim) in PBS (PBS/BSA), and incubated

with primary antibodies diluted in PBS/BSA for 1 hr at 37�C. Primary

antibodies were diluted as follows: 1:200 anti-a-actinin antibodies

(ImmunoGlobe), 1:100 anti-vinculin antibodies (Upstate), and 1:500

anti-myosin II (A + B) antibodies. After three 10 min rinses with PBS/

BSA, cells were incubated with goat anti-mouse (vinculin) or anti-rabbit

(a-actinin and myosin) antibodies conjugated with Alexa Fluor 488,

Alexa Fluor 546, or Alexa Fluor 647 (Molecular Probes) at a dilution

of 1:300.

For observing actin filaments, fixed cells were stained with rhoda-

mine-phalloidin (Molecular Probes) at a dilution of 1:300 for 1 hr at

37�C.

For locating the chromosomes, cells were incubated with 10 mg/ml

Hoechst 33258 (Sigma-Aldrich) for 10 min at room temperature.

Quantification of Fluorescence Signals

Expression level of a-actinin-GFP was estimated by quantitative

immunofluorescence.

For analysis of a-actinin-GFP dynamics during cytokinesis (Fig-

ure 1B), fluorescence intensity of a-actinin-GFP in the entire region of

the cleavage furrow, in the polar region with the same width as the

cleavage furrow, and in the whole cell was measured.

Fluorescence intensity of actin filaments, myosin II, and vinculin

along the equator or near the polar cortex was measured at two differ-

ent regions (3 3 3 mm2 for F-actin, myosin II, and vinculin). Graphs

representing the quantification of fluorescence intensity (Figures 3B,

3D, 4B, 6B, and 6D) show the ratio of average fluorescence intensity

at the indicated region over mean fluorescence intensity of whole

control cells.

Drug Treatment

S-(-) isomer of blebbistatin (Toronto Research) was dissolved at

100 mM in 90% DMSO. Cells were incubated with blebbistatin at the

final concentration of 100 mM or 0.45% DMSO for 45–90 min prior to

FRAP analyses or fixation.
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Measurement of Relative Cell Rigidity

Cell rigidity was measured with glass needles with a method modified

from that of Maddox and Burridge (2003). In brief, a thin glass needle

was brought to the side of a prometaphase or metaphase cell overex-

pressing GFP or a-actinin-GFP. The needle was moved toward the

center of the cell in 5 mm increments with a custom-made micromanip-

ulator, and the position of the tip was measured at each increment from

the images. The deformation of the needle, calculated as the difference

between needle position and tip position, was then plotted against the

deformation of the cell (position of the tip), and the spring constant was

determined from the slope as an indicator of cell rigidity. The same

needle was used for control cells overexpressing GFP and cells over-

expressing a-actinin-GFP, and five to ten cells were analyzed in each

experiment. Three independent experiments were performed.

Supplemental Data

Supplemental Data include six figures and five movies and are avail-

able with this article online at http://www.developmentalcell.com/

cgi/content/full/13/4/554/DC1/.
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