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I. Introduction

Optical microscopy is now performed extensively in conjunction with digital
imaging. A number of factors contribute to the limitations of the overall
performance of the instrument, including the aperture of the objective lens,
the inclusion of light originating from out-of-focus planes, and the limited
signal-to-noise ratio of the detector. Both hardware and software approaches
have been developed to overcome these problems. The former include improved
objective lenses, confocal scanning optics, total internal reflection optics, and
high-performance cameras. The latter, generally referred to as computational
image restoration, include a variety of algorithms designed to reverse the defects
of the optical-electronic system. The purpose of this chapter is to introduce in an
intuitive way the basic concept of several computational image-restoration
techniques that are particularly useful for processing fluorescence images.
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II. Adaptive Noise Filtration

Noise, defined as the uncertainty of intensity measurement, often represents the
primary factor limiting the performance of both confocal microscopes and
various computational approaches. Because of the statistical and accumulative
nature of photon detection, noise may be reduced most effectively by increasing
the time of image acquisition (Fig. 1A, B, G, H). However, this approach is often
impractical for biological imaging because of the problems of sample movements,
photobleaching, and radiation damage.

An optimal computational noise filter should aggressively remove random
fluctuations in the image while preserving as much as possible the nonrandom
features. Filters that apply a uniform algorithm across the image, such as low-
pass convolution and median filters, usually lead to the degradation of image
resolution or amplification of artifacts (Fig. 1). For example, low-pass filters
cause both image features and noises to spread out over a defined area, whereas
median filters replace every pixel with the median value of the neighborhood.

Better performance may be obtained using filters that adapt to the local
characteristics of the image. In anisotropic diffusion filter (Black et al., 1998;
Tvarusko ef al., 1999), local intensity fluctuations are reduced through a simulated
diffusion process by diffusing from pixels of high intensity toward neighboring
pixels of low intensity. This process, when carried out in multiple iterations,
effectively reduces intensity fluctuations by spreading the noise around a number
of pixels. In one implementation (Black et al., 1998), the change in intensity of a
given pixel during a given iteration is calculated as

Ax Sg(ADAI (1)

where ) is a user-defined diffusion rate constant, A7 is the difference in intensity
from a neighboring pixel, and the sum ¥ is taken over all eight neighbors. However,
as diffusion without constraints would lead to homogenization of the entire image,
it is critical to introduce the function g(AT) for the purpose of preserving structural
features. In one of the algorithms, it is defined as 1/2[] — (Al/o)*}* when |Al} is <o
and 0 otherwise (Black er al., 1998). The constant ¢ thus defines a threshold of
intensity transitions to be preserved as structures. If the difference in intensity is
larger than o, then diffusion is inhibited [g(A[) = 0].

Although this diffusion mechanism works well in removing a large fraction of
the noise, the recognition of features based on Al is not ideal, as it also preserves
outlying noise pixels. The resulting ‘‘salt and pepper”-type noise (Fig. 2A, B) may
have to be removed subsequently with a median filter. In an improved algorithm,
the diffusion is controlled not by intensity differences between neighboring pixels
but by edge structures detected in the images. If an edge is detected across a pixel
(e.g., using correlation-based pattern recognition), then diffusion is allowed only
along the edge; otherwise, diffusion is allowed in all directions. In essence, this
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Fig. 1 Fluorescence images either unprocessed (A, B; G, H) or processed with a standard median
filter (C, D) or low-pass convolution filter (E, F). Mouse fibroblasts were stained with rhodamine
phalloidin, and images collected with a cooled CCD camera at a short (20ms, A, B) or long (200 ms, G,
H) exposure. A region of the cell is magnified to show details of noise and structures. Median filter
creates a peculiar pattern of noise (C, D), whereas low-pass convolution filter creates fuzzy dots and a
slight degradation in resolution (E, F).
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Fig. 2 Noise reduction with the original anisotropic diffusion filter according to Tukey (Black ez al.,
1998; A, B), with a modified anisotropic diffusion filter that detects edges (C, D), and with an adaptive-
window edge-detection filter (E, F). Images in (A-D) were processed by 10 iterations of diffusion.
Residual noise outside the cell was easily noticeable in (A) and (B), whereas the noise was nearly
completely removed in F without a noticeable penalty in resolution. The original image is shown in
Fig. 1A and B.

algorithm treats structures in the image as a collection of iso-intensity lines that
constrain the direction of diffusion (Fig. 2C, D).

An alternative approach is the adaptive-windowed edge-detection filter (Myler
and Weeks, 1993). The basic concept is to remove the noise by averaging
intensities within local regions, the size of which is adapted according to the local
information content. In one implementation, the standard deviation of intensities
is first calculated in a relatively large square region (e.g., 11 x 11) surrounding a
pixel. If the standard deviation is lower than a defined threshold, indicating that
no structure is present within the square, then the center intensity is replaced by
the average value within the region and the calculation is moved to the next pixel.
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Otherwise, the size of the square is reduced and the process is repeated. If the size
of the square is eventually reduced to 3 x 3 and the standard deviation remains
high, then the central pixel is likely located at a structural border. In this case an
edge-detection operation is used to determine the orientation of the line, and the
intensity of the central pixel is replaced by the average of the pixels that lie along
the detected line. This procedure is repeated at each pixel of the image (Fig. 2E, F).

Both anisotropic diffusion and adaptive-window edge-detection methods
can reduce the noise by up to an order of magnitude while preserving structural
boundaries (Fig. 2). However, neither of them can restore lost resolution
caused by high noise (cf Fig. 1G and H with Fig. 2). In addition, both of them
preserve pseudofeatures formed by stochastic distribution of noise pixels. With
anisotropic diffusion, areas of uniform signal may become populated with
lumplike artifacts, whereas with adaptive-window edge-detection filters, straight
bundle structures may show a jagged contour (Fig. 2). Despite these limitations, the
reduction of noise alone can greatly improve the quality of noisy confocal images for
three-dimensional reconstruction or for further processing (Tvarusko et al., 1999).

III. Deconvolution

Mathematical reversal of systemic defects of the microscope is known as image
“deconvolution.” This is because the degradation effects of the microscope can be
described mathematically as the “convolution” of input signals by the point-
spread function of the optical system [Young, 1989; for a concise introduction of
convolution, see the book by Russ (1994)]. The two-dimensional convolution
operation is defined mathematically as

i(x’y)®s(xay) :Zi(x—uay_v)s(uv V). (2)

u,y

This equation can be easily understood when one looks at the effects of
convolving a matrix / with a 3 x 3 matrix:

...... i] i2i3 e 515283
...... I40506 . ... .. ® $45556
...... I7igly . ... .. 575859.

The calculation turns the element (pixel) is into (i; X so) + (iz x sg) + (i3 X §7) +
(is X 86) + (is x 55) + (ig X S4) + (i7 X i3) + (ig X &) + (g x i;). When calculated
over the entire image, each pixel becomes “‘contaminated” by the surrounding
pixels, to an extent specified by the values in the s matrix (the point-spread function).
Thus, two-dimensional convolution operation mimics image degradation by the
diffraction through a finite aperture. Three-dimensional convolution can be
similarly expressed as
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o(x,y,z) :i(x,y,z)®s(x,y,z), (3)

where i(x,y,z) is three-dimensional matrix describing the signal originating from
the sample, s(x,y,z) is a matrix describing the three-dimensional point-spread
function, which contains the information on image degradation caused by both
diffraction and out-of-focus signals, and o(x,y,z) is the stack of optical slices as
detected with the microscope.

It should be noted that such precise mathematical description of signal
degradation does not mean that original signal distribution can be restored
unambiguously from the detected images and the point-spread function. Because
of the loss of high-frequency information when light passes through the finite
aperture of the objective lens, it is impossible to obtain predegraded images even
under ideal conditions. The collected information instead allows a great number
of potential “answers” to fit Eq. (3). This is because the calculation is plagued by
a number of indeterminants as a result of “zero divided by zero.” As a result,
straightforward reversal of equation 3 (referred to as inverse filtering) typically
leads to images that fit the mathematical criteria but contain unacceptable
artifacts and amplified noise.

The challenge of computational deconvolution is to find strategies that identify
the most likely answer. A number of deconvolution algorithms have been tested
for restoring fluorescence images (for a detailed review, seec Wallace et al., 2001).
The two main approaches in use are constrained iterative deconvolution (Agard,
1984; Agard et al., 1989; Holmes and Liu, 1992) and nearest neighbor
deconvolution (Castleman, 1979; Agard, 1984; Agard ef al., 1989). Constrained
iterative deconvolution uses a trial-and-error process to look for signal
distribution i(x,y,z), that satisfies Eq. (3). It usually starts with the assumption
that i(x,y,z) equals the measured stack of optical sections, o(x,y,z). As expected,
when o(x,y,z) is placed on the right-hand side of Eq. (3) in place of i(x,y,z), it
generates a matrix o’(x,y,z) that deviates from o(x,y,z) on the left-hand side. To
decrease this deviation, adjustment is made to the initial guess, voxel by voxel,
based on the deviation of ¢/(x,y,z) from o(x,y,z) and on constraints such as
nonnegativity of voxel values. The modified o(x,y,z) is then placed back into the
right-hand side of Eq. (3) to generate a new matrix, 0”(x,y,z), which should
resemble more closely o(x,y.z) if the adjustment is made properly. This process is
repeated until there is no further improvement or until the calculated image
matches closely the actual image.

Various approaches have been developed to determine the adjustments in
calculated images between iterations (Agard ez al., 1989; Holmes and Liu, 1992).
Different algorithms differ with respect to the sensitivity to noise and artifact,
speed to reach a stable answer, and resolution of the final image. Under ideal
conditions, constrained iterative deconvolution can achieve a resolution that goes
beyond what is predicted by the classical optical theory (Raleigh criterion)
and provide three-dimensional intensity distribution of photometric accuracy
(Carrington et al., 1995). The main drawback of constrained iterative
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deconvolution is its computational demand, which typically takes minutes to
hours to complete a stack. This delay makes troubleshooting particularly tedious.
A second disadvantage is its requirement for a complete stack of images for
deconvolution, even if the experiment requires only one optical slice. Iterative
constrained deconvolution is also very sensitive to the condition of the imaging,
including optical defects and signal-to-noise ratio.

The nearest-neighbor algorithm is based on the decomposition of three-
dimensional convolution [Equation (2)] into a series of two-dimensional convolu-
tions (Agard et al., 1989):

O(Xay) = iO(xay) ® 50(x7y) + i—l(xay) ® sfl(xvy) + i+1(xay) ® S-H(xvy) (4)
+ i—2(x7y) & S-Z(X’y) + i+2(x>y) & s+2(x,y) Ty

where i(x,y)’s are two-dimensional matrices describing the signal originating
from the plane of focus (i), and from the planes above (i.y, i12, ...) and below
(i_1, i_a, ...), s(x,y) are matrices of two-dimensional point-spread functions that
describe how point sources on the plane of focus (so) or planes above (s, 54, ...)
and below (s_;, s_». ...) spread out when they reach the plane of focus. This
equation is further simplified by introducing three assumptions: first, that out-of-
focus light from planes other than those adjacent to the plane of focus is
negligible; that is, terms containing s_,, 51>, and beyond are insignificant. Second,
that light originating from planes immediately above or below the plane of focus
can be approximated by images taken while focusing on these planes; i.e., i_| ~
o_; and i,, ~ o04;. Third, that point-spread functions for planes immediately
above and below the focal plane, s_; and 5., are equivalent (hereafter denoted
as s1).
These approximations simplify Eq. (4) into

0=1Iy ® so+ (0-1+041) Q5. (5)

Rearranging the equation and applying Fourier transformation, the equation
turns into

ip=[o~(0-1+0r)®51] ® FH{1/F(s)], (6)

where F and F! represents forward and reverse Fourier transformation,
respectively. This equation can be understood in an intuitive way: It states that
the unknown signal distribution, i,, can be obtained by taking the in-focus image,
0, subtracting out estimated contributions from planes above and below the plane
of focus, (o_; + 041) ® s;, followed by the convolution with the matrix F~ T/
F(sp)] to reverse diffraction-introduced spreading of signals on the plane of focus.
To address artifacts introduced by the approximations, nearest-neighbor
deconvolution is typically performed with a modified form of Eq. (6):

ip = [0 — (0_1 +041) ® (c1 x51)] ® F'[F(s0)/(F(s0)” + )], (7)
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where constants ¢; and ¢, are empirical factors. ¢ is used to offset errors caused
by oversubtraction, as described below. ¢, is required to deal with problems
associated with the calculation of reciprocals, 1/F(sg), at the end of Eq. (6). The
constant ¢, keeps the reciprocal value from getting too large when the matrix
element is small compared to ¢,. In general, ¢, falls in the range of 0.45 to 0.50,
depending on the separation between adjacent optical slices, whereas the value of
¢, 1s in the range of 0.0001 to 0.001, depending on the level of noise in the images.
The optimal values for ¢; and ¢, should be determined through systematic trials.

The main concern of nearest-neighbor deconvolution is its accuracy because of
the three approximations discussed above. In particular, as the neighboring optical
sections include significant contributions of signals from the plane of focus, the use
of these images leads to oversubtraction and erosion of structures, particularly
when the optical section is performed at too small a spacing. However, the
approximations also greatly simplify and accelerate the calculations. It requires
the collection of only three images (the in-focus image and images immediately
above and below), which reduces photobleaching during image acquisition. Unlike
constrained iterative deconvolution, the computation is finished within seconds. In
addition, it is relatively insensitive to the quality of the lens or the point-spread
function, yielding visually satisfactory results with either actual or computer-
calculated point-spread functions. When the constant ¢; is set small enough, even
the image itself may be used as an approximation of the neighbors. The resulting
“no-neighbor” deconvolution is in essence identical to ‘“‘unsharp-masking” found
in many graphics programs such as Photoshop. Nearest-neighbor deconvolution
can serve as a quick-and-dirty means for qualitative deblurring. It is ideal for
preliminary evaluation of samples and optical sections, which may then be
processed with constrained iterative deconvolution.

There are cases where confocal microscopy would be more suitable than either
deconvolution techniques. Both contrained iterative and nearest-neighbor decon-
volution require images of relatively low noise. Although noise may be reduced
before and during the calculation with filters, as discussed earlier, in photon-limited
cases, this may not give acceptable results. In addition, laser confocal microscopy is
more suitable for thick samples, where the decreasing penetration and scattering of
light limit the performance of deconvolution. For applications with moderate
demand in resolution and light penetration, but high demand in speed and
convenience, spinning disk confocal microscopy serves a unique purpose. Finally,
under ideal situations, the combination of confocal imaging and deconvolution
should yield the highest performance.

IV. Pattern Recognition-Based Image Restoration
Deconvolution as discussed above is based on few assumptions about the image.

However, in many cases the fluorescence image contains specific characteristics,
which may be used as powerful preconditions for image restoration. One such
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example is the detection of microtubules in immunofluorescence or GFP
images. The prior knowledge, that all the features in these images consist of line
structures, allows one to take an alternative approach based on the detection of
linear features.

Pattern recognition is performed most easily with a correlation-based
algorithm. The correlation operation,

i(x’y)+(x7y) :Zi(x+uvy+v)s(u7 V)7 (8)

u,y

is similar to that of convolution except that the corresponding (instead of
transposed) elements from the two matrices are multiplied together; that is, when
a matrix i is correlated with a 3 x 3 matrix, s,

...... 111213 515283
...... 141516 +S4SSS6~
...... 1718l9 5785889

The element (pixel) is turns into (i} x §1) + (i2 % $2) + (43 X 53) + (ig X 54) + (is X 55)
+ (ig X 8¢) + (i7 X I7) + (s X ig) + (iy X lg).

It can be easily seen that this result is maximal when the two matrices contain
an identical pattern of numbers, such that large numbers are multiplied by large
numbers and small numbers multiplied by small numbers. The operation
thus provides a quantitative map indicating the degree of match between the image
(7) and the pattern (s) at each pixel. To make the calculation more useful, Eq. (8) is
modified as

i06,) + (6,9) = DX+ 14,y +¥) — davg] [, v) = Save] ©)

u.y

to generate both positive and negative results; negative values indicate that one
matrix is the negative image of the other (i.e., bright regions correspond to dark
regions, and vice versa).

Figure 3 shows the matrices s(u,v) for detecting linear segments in eight
different orientations. The operations generate eight correlation images, each
one detecting segments of linear structures (microtubules) along a certain
orientation. Negative correlation values are then clipped to zero, and the images
are added together to generate the final image (Fig. 4). This is a much faster
operation than iterative deconvolution, yet the results are substantially better
than that provided by nearest neighbor deconvolution. However, despite the
superb image quality, the method is not suitable for quantitative analysis of
intensity distribution.
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Fig. 3 Matrices for detecting linear structures lying along’ the directions of north-south,
north-northeast, northeast, east-northeast, east-west, west-northwest, northwest, and

north-northwest.
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Fig. 4. Restoring of microtubules by feature recognition. An optical slice of a NRK cell stained for
microtubules is shown in (A). The image is processed to detect linear segments lying along the
east-west direction (B). A complete image, obtained by summing structures along all the eight
directions, is shown in (C).

V. Prospectus

Image processing and restoration represent a rapidly advancing field of
information science. However, not all the algorithms are equally suitable for
fluorescence microscopic images, because of their special characteristics. As
optical microscopy continues to push for maximal speed and minimal irradiation,
overcoming the limitation in signal-to-noise ratio will likely remain a major
challenge for both the retrieval of information from unprocessed images and the
application of various restoration algorithms. Development of optimal noise-
reduction algorithms represents one of the most urgent tasks for the years to
come. Although this chapter explores several simple methods for noise reduction,
new methods based on probability theories may be combined with deconvolution
to overcome the resolution limit imposed by noise. In addition, as many biological
structures contain characteristic features, the application of feature recognition
and extraction will play an increasingly important role in both light and electron
microscopy. The ultimate performance in microscopy will likely come from
combined hardware and software approaches, for example, by spatial/ temporal
modulation of light signals coupled with software decoding and processing
(Gustafsson et al., 1999; Lanni and Wilson, 2000).
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