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Introduction

The forces exerted by an adherent cell on the underlying substratum, the so-
called cellular tractions, are important because of their potential involvement in
cell motion, tissue morphogenesis, wound retraction, and in the transduction of
information about the mechanical characteristics of the tissue. 1-4 Elastic substrate
methods (ESMs) are the principal means for investigating the cellular tractions.
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The essential idea is to put a cell on a flexible substratum of known mechanical
properties and to use the way this material deforms as the basis for drawing conclu-
sions. All ESMs have three main components. The first deals with the fabrication
and characterization of an appropriate elastic substratum and the culturing of cells
onto this material. The second focuses on the experimental determination of the
precise manner by which the substratum deforms under the action of adherent cells.
Finally, the last component deals with the computational problem of interpreting
the substrate deformations in terms of forces exerted by different regions of the
cell.

A number of ESMs have been developed over the past 20 years, each with
its advantages and disadvantages.5 This article will focus on the application of
polyacrylamide (PA) substrata that we developed.4,6,7 The most significant ad-
vantages of PA substrata are their nontoxicity, mechanical stability, and ease of
preparation. Furthermore, the mechanical stiffness of PA substrata can be tuned
by varying the concentration of acrylamide or the crosslinker, while the chemical
properties of the surfaces are determined by extracellular matrix proteins that are
covalently linked. Methods for the preparation and physical characterization of
PA substrata and the collection of cell and substrate images have been described in
several publications.8,9 Likewise the theory for the deformation of elastic substrata
is well understood and the methodology to interpret such deformations in terms of
cellular forces has been described previously. 10,11Therefore, this article will focus

exclusively on recent advances in the analysis of the determination of substrate
deformations.

PA substrata are transparent and deformations are detectable only with the aid
of (fluorescent) marker beads embedded within the elastic medium. In early appli-
cations, the motion of the substrate was determined by simple visual inspections.
In this approach a pair of fluorescent images of the marker beads is recorded, one
while the cell is adhered to the substratum (referred to as the "strained" image, h)
and the other after the cell is removed by enzymatic or physical means (referred to
as the "unstrained" image, 10)' Corresponding beads in the two images are identi-
fied visually and their coordinates are used for constructing displacement vectors.
Unfortunately this simple approach breaks down catastrophically when motions
are large compared to the spacing of the markers. This difficulty, known as the
"correspondence problem," occurs because the observer becomes confused about
the identification of corresponding beads in the strained and unstrained images.
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To overcome the correspondence problem we have adapted an approach that
is well known in a number of image analysis problems, namely correlation-based
optical flow. 12,13Essentially one defines a small patch in 10 that contains a number
of markers and then searches in II for patches with a similar characteristic pat-
tern of pixel intensities. The correspondence problem is alleviated because instead
of following the motion of a single marker, one follows the collecti\e motion of
uniquely recognizable marker groupings. The end result is a robust estimate of
the substrate deformation, usually accurate to within a pixel. This estimate can be
refined by automatic procedures for the correction of image registration errors. and
by detection/correction of physically improbably modes of deformation. Finally
interpolation methods can be used to obtain true subpixel accuracy. Software im-
plementing this algorithm on Linux workstations is available from the authors.

Correlation-Based Optical Flow

We will start with the images 10 and h that show the distribution of fluorescent
markers in the unstrained and strained substrate. These images are loaded into
computers as large matrices of nx columns by ny rows:

where the subscript k = 0 or I and Pk(x, y) is the intensity at the pi.'\:el (x. y).
Before further processing of these arrays, a constant is subtracted from all the Pk
so that the average pixel intensity in both hand 10is equal to zero.

Suppose that (x, y) and (u, v) are the coordinates of certain pi.'\:elsin 10 and
h respectively, and that we wish to test the possibility that the motion of the
substratum has carried (x, y) onto (u, v). This requires that we construct two
regions (the "correlation windows") that extend for a distance of C pixels from the
central locations of (x, y) and (u, v), respectively. If Bo is the region surrounding
(x, y) and B, the region surrounding (u, v), then we may say that these regions have
similar "intensity patterns" if the pixel at (x + 8x, y + 8y) in Bo has an intensity
that is in some sense "close" to the intensity of the homologous pixel located
at (u + 8x, v + 8\")in BI' Mathematically the image similarity in Bo and BI can
be measured in a variety of ways and careful systematic comparisons of the cost
and efficiency of different approaches have been reported.14 In the case of typical
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fluorescent images of substrata, which have a very high contrast, our results indicate
that the optimal similarity measure is the so-called normalized cross-correlation
coefficient:

The summations in this expression all range over the values bx and by within the
correlation windows of Bo and BI (this means that bx and by run between the limits
of -C and +C except at locations close to the edges of an image).

This normalized cross-correlation has several properties that make it par-
ticularly suited as a measure of similarity in the current application. First, it
can be shown that R(x, y, u, v, C) falls in the range between -1 and + 1 and
that it approaches the upper limit only if PI(u + bx, v + by) is equal to a pos-

itive constant times Po(x + bx, y + by) for all choices of bx and by. Similarly,
R(x, y, u, v, C) equals -1 only if PI(u + bx, v + by) is equal to a negative con-

stant times Po(x + bx, y + by), i.e., if BI is the negative image of Bo. The function
R(x, y, u, v, C) is equal to 0 if the intensity patterns in Bo and BI are completely
uncorrelated. These properties mean that R(x, y, u, v, C) is not affected by the
linear rescaling of image intensity as might be caused by variations in the exposure
time. Finally, constraining R(x, y, U, v, C) to a range of -1 to + 1 by normaliza-
tion means that it has a comparable meaning regardless of the size and shape of the
correlation windows. For these reasons the function R(x, y, u, v, C) was clearly su-
perior to the alternative approach of "sum of squared differences," and also slightly
better than other measures of mutual variation within the regions Bo and BI.

Figure 1 shows typical examples of images 10and h. For aesthetic purposes
each image is magnified so that the individual pixels can be discerned and in
addition the intensities have been inverted so that the marker beads appear as
black spots against a lighter background. Also illustrated is a correlation window
in 10that is centered at the point (x, y) and that can be taken as a fixed reference. We
also show two possible correlation windows in h. The first of these (shown with
dashed outline) is centered at the same absolute image location as the reference
window [i.e., (u, v) = (x, y)]. Because the substratum has moved, the features
enclosed are quite dissimilar. The second window in h (shown with solid outline)
has been translated to a new location with center (u*, v*) such that R(x, y, u, v, C)
is maximized. The vector from the center of the dashed window to the center of
the solid window gives a good estimate of the local substrate motion.

Among various parameters in correlation-based optical flow, the size of the
correlation window C is of the utmost importance. Its value must be matched



FIG. 1. Correlation-based optical flow. The basic premise is to compare pixel intensity patterns

between two images, 10 and II, to compute a motion field. The method begins by defining a reference

window in 10 (denoted by a solid outline). Then analogous patches within h are examined, starting

with a window (denoled by a dotted outline) centered at the exact pixel coordinates as the reference

window. After finding the window (denoled by a solid outline) within h that has an inlensity pattern

most similar 10 the reference window, a displacement vector is constructed that originates at the center

of the dotted square and terminates at the center of the solid square. This vector gives an estimate of

the local substrate motion.

by trial and error with the density of the marker beads. Too small a size would
result in the inclusion of too few markers within the correlation window to form
an unambiguous pattern, and the search for a matching pattern in I, will fail
catastrophically. Too large a size would result in the loss of resolution since any
differential movements within the correlation windows are neglected during the
calculation of the cross-correlation coefficient.

Local Search Implementation

The ESM requires information about the substrate motion not at a single iso-
lated point but throughout a large region surrounding a cell of interest. Generally it
is neither necessary nor desirable to determine the movement at each pixel within
this region, but only at nodes of a simple mx x my lattice whose coordinates are ex-
pressed as (x j, Yk) where j = 1,2, . . . , mx and k = 1,2, . . . , my. Once this lattice



is established, the next task is to detennine the substrate displacement at each lat-
tice node to within integer precision. This means we have to form a correlation
window Bo surrounding each of the points (Xj, Yk) in 10 and find corresponding
integer pixel coordinates (ujk' Vjk) in h by testing correlation windows B] at var-

ious positions (u, v) in hand detennining the position where R(xj, Yb U, v, C) is

maximized. The maximum value of the cross-correlation at a given lattice site is
denoted by Rjk'

A straightforward and efficient method for finding (ujk' vjk) is to perform an
iterative search. In this approach, one starts with an initial estimate of the position
in h where R(xj, Yb U, v, C) is maximized, (uj~, vj~). If no better guess is avail-
able then this is simply taken to be the point (x j, Yk), (i.e., assume there was no
displacement at this location). One then comfcutes the values of R(x j, Yb U, v, C)
for all pixels within some distance S from (u j~' vj~\ The pixel with the maximal
R(xj, Yb U, v, C) then becomes a new estimate of the target position, (uj~, vjV).
If this new estimate remains the same as the old estimate, then (ujk' vjk) =
(uj~, vjV) and the procedure tenninates; otherwise we continue the search.

This iterative method converges to the correct answer in most cases but it may
be subject to error if the search distance S is too small. The distance S therefore
needs to be adjusted by trial and error. Although the chance of making an error
can be minimized by using a large S, this is expensive since the computational
work increases as S2. Fortunately, this problem is generally avoided because the
substrate deformations are being detennined at a large number of locations and
because these motions are known to be a continuous function of the position.
An efficient search strategy is to first detennine (ujk' vjk) on a sparse lattice and
with a large value of S. The density of the lattice and the value of S are then
progressively increased and decreased, respectively. With each refined lattice the
displacement of the nearest lattice point on the previous sparse lattice is used as
the starting estimate. Because the starting values derived in this way are already
quite accurate, the algorithm will usually converge to the target point in a single
iteration, even if the search radius is only a few pixels.

Subpixel Resolution

The behavior of R(x j, Yb U, v, C) in regions near the global optimum

(ujk' vjk) for an example optical flow computation is illustrated in Fig. 2. The
function has a well-defined maximum, Rjk ~ 0.93, and is quite high at pixels im-
mediately surrounding (ujk' vjk) (the range is between 0.84 and 0.90). Moreover,
even at distances up to two pixels away from the maximum the cross-correlation
coefficient remains significantly elevated above the background. This remarkable
smoothness and continuity of R(xj, Yk, U, v, C) near a point of optimal correlation
is a general behavior, reflecting the fact that the image of a marker particle has a
diffraction limited diameter of 0.3-0.6 {Lm while pixels are generally 0.1-0.3 {Lm



FIG. 2. Landscape of the cross-correlation coefficient around the global optimum. For fixed (x j. Yk)

in 1o, the cross-correlation coefficient R(x j, Yko u, v, C) is plotted for various ,'alues of u and v in the
neighborhood of the global optimum (ujk' vjk)' As illustrated, R(x j. }k. u. v. C) attains a well-defined
maximum of Rjk = 0.93, but is still elevated well above the background even at distances :1:2 pixels

away from the optimum. Thus, the cross-correlation coefficient is a smooth and continuous function

of position and interpolation can be used to locate its optimum with subpixel accuracy.

in dimension. Therefore, the intensity of individual markers overlaps for a finite
distance, within which the value of R(xj, Yb U, V, C) changes only slightly.

We can exploit the smoothness and continuity of R(xj, Yk. ll, V, C) to obtain
a subpixel determination of the substrate motion using interpolation. After try-
ing several schemes, we found that the simple five-point quadratic method is the
most robust in real practice. This yields the following refined estimates for the
coordinates of the maximum of R(xj, Yk. U, v, C):

This interpolation yields accuracy to approximately 0.1 pixel in ideal circum-
stances, where the correlation window undergoes motion with little internal defor-
mation (see test results reported below).

If there are significant differential movements within the correlation window,
then the displacement determined by interpolation may deviate slightly from the
exact displacement at each marker particle. In this case a refined strategy has been



developed. Instead of calculating displacements at nodes of a simple lattice in
la, well-defined markers near the nodes are identified at (x j', Yk') (again using a

correlation-based method by searching for the pattern of a single marker). The dis-
placement is then calculated with (x j', Yk') as the center of the correlation window

Bo. Once (u'h', vj'k') is located, a single marker is again searched for within the
radius of an Airy disk from (u j'k" Vj'k') and the position of the identified marker is
determined at subpixel precision and is used for defining the final displacement.

Detecting and Correcting Correspondence Failures

The optical flow algorithm as described above assumes the existence of unique
pixel coordinates (ujZ, vj;> in h that maximizes the value of R(xj, Yk, U, v, C) for
any given (x j, Yk) in 10. Generally, this is a fairly safe assumption because there will
be many markers inside the correlation window and the chances of two correlation
windows having an identical marker distribution is low. However, despite the best
efforts there is still a finite chance that a wrong assignment can occur at a small
number of lattice sites. This correspondence failure can happen if the radius of
the correlation window is small, the density of markers in the substrate is low, the
signal-to-noise (SIN) ratio of the images is poor, or if the substrate displacements
are very large. The algorithm can also fail if there is some feature in 10 that is
completely absent in h, for example, when autofluorescence of the cell or specks
of dust appear in the image of marker particles. These problems cause the local
search algorithm to yield artifactual results at the sites in question.

The general approach to avoid these correspondence failures is to look for
suspicious displacements and to remove or recalculate them. A simple screen for
correspondence failure is to calculate the SIN within the correlation window Bo
for each (x j, Yk) and to treat the node as suspicious if the SIN falls below a defined
threshold. Alternatively, correspondence failure can be detected by comparing the
value of R(xj, Yko U, v, C) at each (ujk' Vjk) against a defined threshold. Clearly
ifthis maximal R(xj, Yko U, v, C) is close to 0, the match between Bo and BI must
be treated as highly suspicious.

A more sophisticated screen takes into account the physical characteristics
of the displacements of an elastic substrate. These displacements are continuous
functions of position, whereas correspondence failures generally result in dis-
continuous, random displacements and can usually be detected by checking the
relationship among the magnitude of neighboring displacements. To be specific, at
a lattice node (x j, Yk) we estimate the magnitudes of the so-called "in-plane strain
components" as follows:



Then for each node we compute the norm of the strain tensor:

IIEjkll = Jf/fa + E;x + E;y + E~y (5)

If IIEjk11is greater than some limiting value Emax,then the values of (lIj'k. vj'k>
are regarded as suspect. The exact value of the cutoff limit, Ema.~'is generally on
the order of I but can be adjusted by trial and error depending on the nature of
the data and the preference of the user. After all nodes have been checked. the
displacement at suspect nodes is recalculated. In this recalculation, however, the
radius C of the correlation window is increased so as to reduce the chances of a
second correspondence failure. In addition, we use the value of (11\. v\) from the
closest non suspect node as the starting estimate (lIj~, vj~) for th~ loial search at
these suspect nodes.

Correcting Image Registration Artifacts

Small movements of the substrate or microscope stage that occur in between
the acquisition of hand 10 cause systematic displacement of all marker particles
by a constant vector (dx, dy). This so-called "registration artifact" is superimposed
on the actual physical displacements and needs to be corrected before any calcula-
tion of the cellular forces is attempted. This correction is possible because as long
as the lattice covers a substantial area outside the cell, many of the nodes (x j. Yk)
will be far away from the cell and will have a displacement that is due only to the
registration artifact. Consequently, a simple approach to remove the registration
error is to define a correlation window Bo in a reference region far away from the
cell and to calculate the substrate displacement at this location. This displacement
(dx, dy) is treated as the registration artifact and is subtracted from the subsequent
calculations. The major drawback of this approach is that sometimes it is diffi-
cult to identify such a reference region due to possible displacements caused by
neighboring cells outside the field of observation.

A more robust, nonbiased strategy is built upon the fact that the displacement of
the registration artifact should occur with the maximal frequency. Therefore if one
constructs a histogram of the number of nodes versus the distance of displacement,
the peak should be located at (dx, dy). We devised an efficient "nested histogram
algorithm" to carry out this task. The scheme is initiated by sorting the uncorrected
x and y displacements into a finite number of bins. This generates two crude
histograms for the x and y displacements, respectively. Figure 3a shows such a
histogram along the x direction for a typical experiment. As can be seen, the
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FIG. 3. Nested histogram algorithm. (a) A frequency distribution with a finite number of bins is

created for the x displacements, (uji; - x j). The center of the bin having the highest frequency (f) gives
a first estimate of the most likely x displacement (dx) of the substrate. The x coordinate of each node

is then adjusted as x j = x j + dx so that the most frequent x displacement of the motion field will be
the zero. (b) Finer correction of the registration artifact is performed by using the same number of bins

while decreasing the interval size and then recomputing the histogram for the corrected x displacements,

[uji; -
(x j + dx )]. (c) The process continues until the size of the interval or the maximum frequency

becomes so small that a meaningful distribution cannot be generated. Note that the computation of the

registration artifact in the y direction is completely analogous and, thus, is not shown here.

highest frequency occurs at dx ~ -4.0 pixels. A second pair of histograms is
then constructed, by centering at the most frequent displacement identified in
the previous histogram and subdividing the bins to obtain a smaller interval and
hence a higher resolution. As seen in Fig. 3b, the displacement with the highest
frequency is now centered at dx ~ -0.5 pixel. Combining the two corrections
yield a net estimated registration artifact of dx ~ -4.5 pixels. This process can be



iterated, by doubling or quadrupling the resolution at each iteration and summing
the corrections, to obtain the desired resolution. In the present example the process
terminated with the histogram shown in Fig. 3c.

Overview of Optical Flow Algorithm

For easy reference the following flowchart summarizes the correlation-based
optical flow algorithm in its most basic form. Slight modifications might be nec-
essary in some instances.

1. Load images 10 and h into the computer as integer matrices.
2. Choose lattice nodes (Xj, Yk) and parameters C, 5, Emax.
3. Subtract average intensity from each image.
4. For each lattice node (x j , Yk) perform steps 5-10.
5. Estimate (uj~, vj~) using existing results from a sparse lattice or by setting

them equal to (Xj, Yk).
6. Use the local search algorithm to compute (ujk' Vjk) and Rjk'
7. Use quadratic interpolation Eqs. (3a and 3b) to compute (uj'k. l'j'k).
8. Compute IIEjk11using Eq. (5).
9. Set C = 2C and recompute (uj'k, vjD if IIEjkll > Emax.

10. Recompute IIEjkll using Eq. (5).
11. Calculate the most likely substrate displacement (dx, dy) caused by regis-

tration artifacts using the nested histogram algorithm.
12. For all (j, k), set (Xj, Yk) = (Xj + dx, Yk + dy).

13. For all (j, k), write Xj, Yko uj'k, vj'k, Rjk' and IIEjkl1to a data file.
14. Stop.

Illustrative Results

In Figs. 4 and 5, we illustrate the performance of our algorithm by determining
the substrate displacements produced by a NIH 3T3 cell adhering to a PA substra-
tum coated with type I collagen. The substratum in this experiment was fabricated
using 5% (w/v) acrylamide and 1% (w/v) bisacrylamide and had an estimated
Young's modulus of2.8 x 104 Pa and Poisson's ratio of 0.30. The substratum con-
tained 0.20 visible markers per micrometer square of the surface. The raw images

10 and h were initially stored as 8-bit tiff files with [512 x 512] pixels. The final
magnification was 0.30 /Lm/pixel.

Substrate displacements were first determined by the standard method using
a lattice of 32 x 32 nodes and with parameters C = 5, 5 = 5, and Emax= 0.316
(Fig. 4a). A small correlation window was deliberately utilized in this calcula-

tion, so that there were a significant number of correspondence failures that were
corrected using step 9 of the algorithm. To identify these corrections, the threshold



FIG. 4. Detecting and correcting suspect displacement vectors. A displacement field was computed

on a lattice of 32 x 32 nodes with C = S = 5. The performance of the optical flow algorithm in
detecting and correcting correspondence failures was studied by either setting Emax= 0.316 (a) or

Emax= 100 (b). Lattice sites that were affected by changing Emaxin this way are indicated with small
circles. The length scale represents 46.25 pixels and the displacement vectors are rendered at three
times the actual motion for better visibility.

Emaxwas reset to a very large value to bypass the corrections and the calculation
was repeated (Fig. 4b). The lattice nodes in Fig. 4b where results were affected by
the absence of any correspondence check are indicated by small circles. Clearly
the check found all points where obvious problems occurred and there are very
few if any false positives. We conclude that the check based on

II Ejk II and the
recalculation with increased correlation radius is quite effective at detecting and
correcting correspondence failures.

Figures 5 illustrates the removal of the registration artifact using our nested his-
togram algorithm. Using the same starting images described above, the substrate
displacements were calculated on a lattice of 32 x 32 nodes with parameters
C = 10, S = 5, and Emax= 0.316. In step 11 of the algorithm, the nested



FIG. 5. Correcting image registration artifacts using the nested histogram algorithm. A displace-

ment field was computed on a lattice of 32 x 32 nodes with C = 10, S = 5, and Emax = 0.316. The

performance of the optical flow algorithm in correcting registration artifacts was tested by either omit-

ting (a) or utilizing (b) step 12 of the algorithm. The length scale represents 46.25 pixels and the

displacement vectors are rendered at three times the actual motion for better visibility.

histogram calculation indicated that the most likely substrate displacement was
d = (-5.09, -0.83). Comparison of the results with (Fig. 5b) and without (Fig. 5a)
the correction of registration artifact (step 12) indicates that the nested histogram
method yields an excellent estimate of the registration artifact. The displace-
ments observed give a much better representation of the action of the cell on
the substratum.

As a simple empirical test of the overall accuracy of our optical flow algorithm,
images of several standard PA substrata were recorded under conditions designed
to simulate those of a typical experiment. After recording an initial image, the
substratum was left on the microscope stage for 30 min before the second image
was recorded. During this interval various sham procedures were implemented to
replicate some standard procedures that might be involved in a real experiment



FIG. 6. Accuracy of computing substrate displacements vectors. A series of images of a cell-free,

unstrained substrate were taken under conditions that simulated a real experiment. The motion between

30 image pairs was measured on a lattice of 100 x 100 nodes with S = 5, E = 0.316, and for values

of C as indicated. The error a = Ja; + a; of the combined x and y motions was computed using all
104 lattice points. Each data point consist~ of the mean and standard deviation of a. Results indicate

that a approaches:!: 0.10 pixels when image quality is optimal.

(i.e., flushing and replacing the medium and purposely jostling the stage). The
displacement field between two images was measured on a lattice of 100 x 100
nodes using parameters S = 5, Emax = 0.316, and various sizes C of the correla-
tion window. The mean of the registration magnitude in these experiments was
(J (dx)2 + (dy)2)ave~ 3 pixels, which is typical of real experiments. The residual
systematic motion after the correction of the registration artifacts varied between
0.06 pixels at C = 5 and 0.03 pixels at C = 20. For each value of C, the error
a = Ja; + a; of the combined x and y motions was computed using all 104
lattice nodes and the results for 30 pairs of images are shown in Fig. 6. Note that
the error is about :f: 0.30 pixels when C = 5, decreases to :f:0.19 pixels when
C = 10, and approaches :f: 0.10 pixels at very large C.

These analyses demonstrate that a small C causes an increase in correspon-
dence failure and error, due to the insufficient number of beads in many of the
correlation windows. As C increases, the error a approaches an asymptotic value
greater than zero because factors other than the correspondence problem are lim-
iting. These other factors include the inaccuracy in the registration error and the
interpolation error. The asymptotic value of a in this ideal limit is on the or-
der of :f: 0.10 pixels. Similar accuracy in the measurement of uniform motion
fields using optical flow under ideal circumstances has also been reported by



Seitz. IS Of course, these results should be regarded as lower bounds of the errors
in more realistic circumstances. In particular, if motion of the substratum is nonuni-
form, then a values may double or even triple those found in this simple test.

Summary

The optical flow algorithm presented here is a robust method that rapidly yields
a high-density field of substrate displacement vectors based on two optical images.
We found that one of the limiting factors, at least for inexperienced experimental-
ists, is the consistency of focusing or the drift in microscope focus. However, with
properly collected images the standard error of the measurement was estimated to

be on the order of ::1:0.10pixels. Finally, although the discussion has been focused
on the displacement of flexible substrata, a similar method should be applicable for
detecting movements on other types of images, as long as the movement involves
a certain degree of local coordination.
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