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I. Introduction

The performance of optical microscopes is limited both by the the aperture
of the lens, which causes light from a point source to spread (or diffract) over
a finite volume, and by the cross-contamination of light that originates from out-
of-focus planes. To overcome these limitations, approaches have been developed
in recent years both to improve the microscope design, as exemplified by confocal
scanning microscopy, and to reverse mathematically the degrading effects of
the conventional microscope. This latter approach is commonly referred to as
"deconvolution," since the degradation effects of the microscope can be de-
scribed mathematically as the convolution of input signals by the point spread
function of the optical system (see below; Young, 1989; Russ, 1994).

A number of deconvolution algorithms have been tested for restoring fluores-
cence images. The most straightforward approach, 3D inverse filtering (Agard
et at., 1989; Holmes and Liu, 1992), attempts to reverse the effects of image
degradation through direct calculations. Unfortunately, it usually suffers from
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excessive computational artifacts. The two methods currently in wide use are
constrained iterative deconvolution (Agard, 1984; Agard et ai., 1989; Shaw, 1993;
Holmes and Liu, 1992) and nearest-neighbor deconvolution (Castleman, 1979;
Agard, 1984; Agard et al., 1989). The purpose of this chapter is to introduce the
basic rationale of these two methods in languages easily understood by biologists.
It will also provide details for the implementation of nearest-neighbor deconvolu-
tion using readily available hardware and software. Readers who wish to have
a concise introduction of convolution and Fourier transformation for imaging
are referred to the book by Russ (1994).

II. Rationale of Constrained Iterative Deconvolution

The two-dimensional convolution operation is defined mathematically as:

i(x,y) @ s(x,y) = L i(u,v)s(x - u, Y - v)
u.v

(1)

This equation can be easily understood when one looks at the effects of convolv-
ing a matrix i with a 3 X 3 matrix:
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Following the calculation, the element is is replaced by (i1 X S9) + (i2 X ss) +
(i3 x S7) + (i4 X S6) + (is x ss) + (i6 x S4) + (i7 x i3) + (is x i2) + (i9 x
ij). That is, each element is now "contaminated" by contributions from the
surrounding elements to an extent specified by the values in the S matrix. In an
optical system, the degree of "contamination" is measured as the point spread
function (the output image of a point source).

The process of image formation in a microscope can be described as the
original distribution of intensities convolved by the 3D point spread function of
the optical system (Agard et al., 1989):

o(x,y,z) = i(x,y,z) @ s(x,y,z) (2)

where i(x,y,z) is a 3D matrix describing the signal originating from the sample
and s(x,y,z) is a matrix describing the 3D point spread function.

Alternatively, it is equally valid to write the equation using a series of 2D
point spread functions (Agard et ai., 1989):

o(x,y) = ia(x,y) @ sa(x,y) + Lj(x,y) @ Ll(X,y) + i+1(x,y) @ s+j(x,y) (3)
+ L2(x,y) @ L2(X,y) + idx,y) @ sdx,y) + . . .

where i(x,y)s are 2D matrices describing the signal originating from the plane
of focus (ia) and from planes above (i+j, i+2,. . .) and below (i-J i_2, . . .), sex,
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y)s are matrices of 2D point spread functions that describe how point sources
on the plane of focus (50) or planes above (51,52,. . .) and below (5-1, 5-2. . . .)
spread out when they reach the image plane.

Constrained iterative deconvolution uses a trial and error process to look for
signal distribution i(x,y,z) that satisfies equation (2). It usually starts with the
assumption that i(x,y,z) equals the measured stack of optical sections o(x,y,z).
As expected, when o(x,y,z) is plugged into the right hand side of equation (2)
in place of i(x,y,z), it generates a matrix o'(x,y,z) that deviates from o(x,y,z) on
the left-hand side. To decrease this deviation, adjustment is made to the initial
matrix o(x,y,z), voxel by voxel, based on the deviation of o'(x,y,z) from o(x,y,z)
and on constraints such as nonnegativity of voxel values. Various approaches
have been developed to determine how adjustments should be made to the trial
image and how voxel values should be "constrained" (Agard et ai., 1989; Holmes
and Liu, 1992). The modified o(x,y,z) is then plugged back into the right-hand
side of equation (2) to generate a new matrix, ol/(x,y,z), which resembles more
closely o(x,y,z). This process is repeated at least 20-30 times until there is no
further improvement or until the calculated image matches closely the actual
Image.

III. Rationale of Nearest-Neighbor Deconvolution

The nearest-neighbor algorithm uses equation (3) as the starting point. The
equation is simplified by introducing three assumptions:

1. Out-of-focus light from planes other than those adjacent to the plane of
focus is negligible (i.e., terms containing 5-2, 5+2, and beyond are insig-
nificant ).

2. Light originating from planes immediately above or below the plane of
focus can be approximated by images taken while focusing on these planes
(i.e., LI

"'" 0-1 and i+1 "'" 0+1)'

3. Point spread functions for planes immediately above and below the focal
plane, 5-1 and 5+1,are equivalent (hereafter denoted as 51)'

Together, these approximations simplify equation (3) into:

o = io @ 50 + (0-1 + 0+1) @ 51 (4)

Rearranging the terms and taking advantage of the mathematical fact that if
a @ b = c, then F(a) X F(b) = F(c), where F represents Fourier transformation
and" X" represents multiplication of corresponding elements in the matrices, it
can be shown that

(5)

where F-I represents reverse Fourier transformation. This equation can be under-
stood in a simple, intuitive way: it states that the unknown signal distribution,
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io, can be obtained by taking the in-focus image, 0, subtracting out estimated
contributions from planes above and below the plane of focus, (0-1 + 0+1)@ Sl,
followed by convolution with the matrix P-1(lIP(SO))' which reverses diffraction-
induced spreading of signals on the plane of focus.

Among the three approximations, the second is the most serious. On the one
hand, since images taken from planes immediately above or below the plane of
focus can include significant contributions of signals from the plane of focus, the
use of these images leads to oversubtraction and erosion of structures. On the
other hand, due to the diffraction of light, these out-of-focus images also some-
what underrepresent the true contribution from the corresponding planes.

In practice, nearest neighbor deconvolution is performed with a modified form
of equation (5):

io = [0 - (0-1 + 0+1) @ (C1 . Sl)] @ p-1(p(SO)/(P(so? + cz)), (6)

where constants C1and Czare empirical factors. C1is used to offset errors caused
by oversubtraction as described above. Cz is required to deal with problems
associated with the calculation of reciprocals at the end of equation (5): the error
could become astronomical when the value of the matrix element is small. The
use of constant Czkeeps the reciprocal value from getting too large when the
matrix element is small compared to Cz.However it does not significantly affect
the outcome when the matrix element is large compared to Cz.

IV. Implementation of Nearest-Neighbor Deconvolution

Nearest-neighbor deconvolution can be performed with readily available
equipment: a conventional fluorescence microscope, a stable light source, a step-
ping motor coupled to the microscope focusing mechanism, a cooled slow-scan
CCD camera, and a personal computer. According to equation (6), the calculation
of io requires the collection of only in-focus image 0 and images immediately
above and below the focal plane (Pig. 1). These images are convolved with two
matrices, C1. Sl and P-1(P(SO)/(P(so) + cz)), which are determined by the point
spread functions of the microscope system (alternatively, similar calculations can
be performed in the frequency space, by replacing matrices in equation (6) with
corresponding Pourier transformations and convolution operations with element-
by-element multiplication of the matrices).

The easiest way to obtain the two matrices, Soand Sl, is to take serial optical
sections, at a spacing equal to that used for collecting images of the sample, of
fluorescent beads of -O.1ILm diameter. The image with the highest intensity at
the center of the bead is identified as the in-focus image. To obtain matrix So,
this image is trimmed to an appropriate size, made radially symmetric by averag-
ing, and normalized such that the sum of all elements equals 1 (Fig. 1). We
found that the optimal size of the matrix lies between 11 x 11 and 17 X 17. This
matrix is used as the input for Fourier transformation and matrix multiplication/
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division to generate F-1(F(so)/(F(so)Z + cz». The calculations can be streamlined
using readily available PC programs such as Mathcad (Fig. 1). The generation
of S1 is more straightforward. Images of beads immediately above and below the
plane of sharp focus are averaged, followed by trimming, symmetrization, and
normalization as for the generation of SO'The constant C1is then incorporated
into the S1 matrix as shown in the last equation of Fig. 1.

The performance of nearest-neighbor deconvolution is highly sensitive to the
values C1and Czin equation (6). In general, C1falls in the range of 0.45 to 0.50:
the optimal value varies with the optical condition and the separation between
adjacent optical slices. Too large a value causes erosion and discontinuity of in-
focus structures (Fig. 3c), while too small a value would lead to high residual
background due to the incomplete removal of out-of-focus noises (Fig. 3a). The
value of Czis generally in the range of 0.0001 to 0.001. Too large a Czvalue causes
the loss of details, yielding blurry images (Fig. 3e), while too small a value would
cause the amplification of random noises into bright spots, rings, or patches (Fig.
3d). The optimal values for C1and Czcan be found only through systematic trials.

The convolution matrices and sample images are then fed into equation (6)
to generate the desired image io. This requires a computer program that can
perform image/matrix subtraction and convolution with floating-point matrices
(or fast Fourier transformation for calculations in the frequency space). These
functions again can be programmed into common mathematical packages such
as Mathcad 6.0 Plus. To improve the speed of calculation, these operations are
performed in this laboratory with a DSP board installed in a personal computer
(AL860-40MHz, single processor; Alacron, Inc., Nashua, NH), which with dedi-
cated software can perform convolution of a 512 X 384 image with a 17 X 17
floating-point matrix within 2 sec. The entire computations of equation (6) can
be completed within 10 sec. After computation, the image needs to be scaled
properly to yield gray values suitable for display on a computer monitor. A
stack of processed optical sections can then be used for 3D reconstruction or
visualization (Fig. 4).

V. Evaluation of Digital Deconvolution Methods

For both constrained iterative deconvolution and nearest-neighbor deconvolu-
tion, images are collected with a conventional microscope, which has advantages
such as limited photobleaching and versatility in the choice of excitation wave-
lengths. While it is essential to use a high-quality cooled CCD camera, the rest
of the system can be installed with limited cost using readily available equipment
and software. In addition, it is possible to implement both nearest-neighbor and
constraint iterative programs in the same system, using nearest-neighbor for
preliminary evaluation of images and constrained iterative deconvolution for
more precise restorations.



File "onfile" contains the in-focus intensity distribution of fluorescent beads in a 17x17 matrix, obtained by
bimming and averaging a number of in-focus images.

ON ;~READPRN(onfile)

25 25 25 25 27 26 26 27 25 24 22 21 21 23 20 22 20

26 24 27 28 27 29 28 29 29 28 26 24 25 21 22 21 20

27 28 28 31 32 33 35 34 32 29 27 25 24 25 22 21 22

26 27 29 34 36 39 41 42 41 36 31 30 26 25 24 23 23

28 30 33 35 43 48 53 56 53 47 41 32 28 25 25 22 22
ON- 29 31 35 42 54 59 69 82 86 79 60 39 33 26 24 24 22

32 33 37 49 60 71 \04 157 190 163 \07 61 36 29 27 26 23

33 36 41 55 65 90 172 296 345 294 176 90 45 34 28 22 23

32 37 44 60 68 \07 225 383 451 370 220 \02 56 33 28 26 24

34 36 44 59 70 98 202 332 395 322 193 93 50 35 29 26 23

33 36 43 55 68 82 129 204 236 188 122 66 44 35 30 27 23

34 36 40 50 63 69 81 99 \04 92 70 51 44 33 29 25 23

35 35 40 45 52 58 62 59 57 52 47 43 37 33 28 25 25

32 35 36 38 46 47 48 49 45 43 39 37 33 30 28 25 23

29 31 34 37 37 38 40 40 35 35 35 32 27 27 25 24 22

27 29 32 32 33 32 34 31 31 29 30 30 26 26 23 24 22

27 26 28 29 27 30 31 30 30 28 26 26 24 25 23 23 22

File "offfile" contains the out-of-focus intensity disbibution of fluorescent beads in a 17x17 matrix, obtained
by bimming and averaging a number of images immediately above and below the plane of focus.

OFF. ~READPRN( oftlile)

24 27 27 28 28 30 31 30 27 25 25 26 22 22 20 21 20

26 27 28 30 30 35 34 32 31 31 26 25 22 22 22 21 20

26 28 31 34 37 36 38 36 35 30 32 27 25 24 24 23 21

28 28 34 39 41 41 43 45 42 40 35 33 28 25 21 25 22

29 30 34 36 44 50 56 59 59 56 45 35 30 27 26 23 22
OFF:

30 32 38 41 51 59 74 93 100 90 70 49 37 28 27 25 24

34 34 40 46 58 72 113 168 195 172 120 70 45 32 28 26 25

33 36 44 51 59 88 166 276 312 269 177 98 54 36 31 25 24

32 38 44 54 62 97 195 306 368 314 200 1\0 59 38 32 28 27

35 37 43 55 61 88 162 261 304 256 172 100 57 38 32 29 26

35 34 43 51 60 69 \03 152 178 160 115 77 50 37 32 29 28

36 37 39 49 55 61 67 80 87 83 69 54 43 37 30 30 27

34 37 38 41 47 53 51 52 53 53 46 45 39 35 29 28 25

32 34 38 38 41 41 43 43 43 40 39 37 34 31 28 27 25

28 31 32 33 35 37 38 35 35 36 36 34 31 29 27 24 24

28 28 30 32 31 32 32 33 34 31 30 30 28 28 25 24 25

27 26 29 29 29 30 30 31 30 29 28 28 26 25 24 23 24

Fig. 1 Mathcad program used for the calculation ofso andsl. The averaged in-focus image offluores-
cent beads was stored in an ASCII file "onfile." Out-of-focus images collected above and below the
plane of sharp focus were averaged and stored in an ASCII file "offile." These images are shown as
two 17 X 17 matrices near the beginning of the figure. The calculations then symmetrize and normalize
the matrices as indicated in the comments. The resulting matrices, denoted as "ON" and "OFF," are
then used for the calculation of So and Sj, which are output as ASCII files at the end of the program.
Note that parameter Cl (0.50) is incorporated into the SI matrix near the end of the figure.
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Symmebize the matrices

ii:=0..8
jj=0..8

ON.. ..:=
ONii.jj+ONI6

-
ii.jj+ ONii.16- jj+ONI6- ii.16-jj+ONjj.ii+ONI6- jj.ii+ ONjj. 16- ii+ON16- jj.16 - ii

n.lI 8

ON.. ..
lI.n

ON16-jj,ii

ONjj,
16- ii

ONI6-jj.16- ii

ON16- ii.jj

ONii.16-jj

ONI6- ii.16-jj

ON.. ..n,D
ON.. ..II.D
ON.. ..II.J)

= ONii,jj

ON.. ..
11.11

ON.. ..
n.JJ

ON.. ..11,11

OFF.. ..:=
OFFii.jj+ OFFI6

- ii.jj+ OFFIi.16- jj+OFF16- ii.16 -
jj+OFFjj.ii+ OFF16

- jj.ii + OFFjj. 16- ii +OFF16
- jj.16- ii

~ 8

OFF.. ..J).II

OFF16-jj,ii

OFFjj.16
- ii

OFF16
-

jj,I6
- ii

OFF16- ii.ii

OFFii,I6
-

jj

OFF16- ii.16-jj

OFF.. ..
11..0

OFF.. ..
nolJ

OFF....
11..0

- OFF....
- n.lI

OFF.. ..
n.D

OFF.. ..
n.D

OFF....lI,lI

Use the comer value as background intensity, subtract from all elements

i :=0..16
j=0..16
Back :=if(ONo.o>OFFo,o.OFFO, O.ONO.O)

ON. . :=ON. . - Back
I.J I.J

OFF. . '=OFF- ." Back
I,J loJ

Normalize the matrices

SUMON:=LLONi,j

i j

ON. .
ON. .=~I,J SUMON

SUMOFF:= "''''OFF. .I,J
i j

OFF. .
OFF. . :=~I,J SUMOFF

Calculate the Fast Fourier Transform, ASSUMING c2 = 0.0005

ITON :=cfft(ON)

ITON. .
ITSO. .=

I,J
I,J (ITON. ..ITON. . + 0.0005 )l,j I,j

Perform Inverse FFT

so : =
Re( icfft( ITSO»

Normalize sO such that the sum of elements equals 1O. This makes the output decimal numbers more
readable but does not affect the final results. Parameter c1 is multiplied into the s1 matrix.

so. .
SUMG:=LL~

. . 10I J
PRNCOLWIDTII:= 12

WRITEPRN(sO)=~
SUMG

WRITEPRN(.I)
= OFF.0.50

Fig. l-Continued
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Fig. 2 Original images used for nearest-neighbor deconvolution. NRK epithelial cells were stained
with antibodies against l3-tubulin and rhodamine-conjugated secondary antibodies. Images were
recorded with a Zeiss Axiovert microscope, a 100X/N.A. 1.30 neofluar lens, and a cooled slow-scan
CCD camera from Princeton Instruments (Trenton, NJ). The image is 576 x 384 pixels, with each
pixel corresponding to a sample area of 0.085 x 0.085 iLm. The three images are 0.25 iLm apart in
focus from one another. During the calculation, b is used as the in-focus image and a and c are used
as its nearest neighbor.

Compared to confocal laser scanning microscopy, one disadvantage of both
methods is their limited ability to penetrate thick samples. In addition, when the
sample is very weak, input images become limited in SIN ratio, which could
seriously jeopardize the calculation for image restoration. Both deconvolution
methods are also sensitive to instabilities in image intensity, caused by fluctuating
lamp intensities or sample photobleaching. Thus samples should be mounted in
antibleaching solutions whenever possible and microscope lamps should be
driven with stabilized DC power supplies. Another common characteristic of the
deconvolution techniques is their sensitivity to the vertical distance among optical
sections. The distance should be close enough such that the stack includes focused
or close-to-focused images of all structures. However, too close a distance would
cause increases in the calculation time for the constrained iterative method, and
for the nearest-neighbor method, serious errors due to assumption 2 discussed
above. Typically, the optimal distance falls in the range of 0.25-0.50 ILm.

Under ideal conditions, constrained iterative deconvolution can achieve a
resolution that goes beyond what is predicted by the optical theory and provide
3D intensity distribution of photometric accuracy (Carrington et al., 1995). In
addition, it can generate accurate image slices between collected slices. With
confocal microscopes or nearest-neighbor deconvolution, such information can
be generated only through mathematical interpolation. The main drawback of
constrained iterative deconvolution is its computational demand. While it is
possible to perform the calculation with a PC, the restoration of one stack of
images could take many hours. Thus for practical purposes, constrained iterative
deconvolution has to be performed at least with a powerful workstation. A
second disadvantage with constrained iterative deconvolution is its requirement
for a complete stack of images for deconvolution, even if the experiment requires
only one optical slice. Iterative constrained deconvolution is also very sensitive
to the condition of the microscope (dust, alignment, etc.) and the quality of the

-
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Fig. 3 Nearest-neighbor deconvolution of images shown in Fig. 2 with different values of Cl and
Cz. (b) The optimal setting, with c) = 0.50 and Cz = 0.0005. When Cl is decreased to 0.46 (a), the
removal of out-of-focus noises becomes incomplete, resulting in high diffuse background. When Cl
is increased to 0.54 (c), out-of-focus noises are overcorrected, resulting in fragmented structures.
The parameter Czcontrols the sharpness of the final image. When it is too small (d; Cz = 0.00004),
the image suffers from excessive spotty noise. In addition, some structures become double (arrow).
When Czis too large (e; Cz = 0.01), the structures become fuzzy and faint.

~
...
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Fig. 4 A stereo pair constructed from a complete stack of 25 deconvolved images. The images
were deconvolved as in Fig. 3b, with values of 0.50 and 0.0005 for Cl and cz, respectively. Although
the stereo pair is generated with custom-written software, similar results can be achieved with
commercial packages such as Metamorph (Universal Imaging, West Chester, PA).

objective lens. In addition, with a poorly. corrected lens the point spread function
can vary significantly with the position in the field and with the focal plane,
introducing serious position-dependent errors in the output images.

The most significant advantage of nearest-neighbor deconvolution is its simplic-
ity. With various parameters appropriately tuned, it yields noticeably better
images than those provided by high-pass filtering or unsharp masking, yet it
can be performed with any personal computer. Unlike constrained iterative
deconvolution, the computational time required is in the order of seconds to
minutes rather than hours. In addition, when the experiment is focused on a
single plane of focus, images need to be acquired only from the plane of interest
plus two adjacent planes, and the processed image can be obtained with a single
cycle of calculation using equation (6). Unlike constrained iterative deconvolu-
tion, the approach is relatively insensitive to the quality of the lens or the point
spread function, and visually satisfactory results could be generated with either
actual or computer calculated point spread functions.

The most notable limitation with nearest-neighbor deconvolution is its preci-
sion, associated with the approximations described above. It performs well when
only qualitative images are required and when the sample consists of discrete
structures such as micro tubules, vesicles, bundles of actin filaments, and chromo-
somal bands. However the images are not suitable for quantitative analysis such
as the determination of 3D distribution of fluorophores. The limitation also
becomes apparent when the sample involves continuous grades of intensities or
consists of dark objects imbedded in an otherwise uniform block of fluorescence.

VI. Prospectus

With the improvements in computer performance, digital deconvolution is
becoming increasingly feasible for average cell biology laboratories. Even with

..,
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the advancement in confocal scanning microscopy such as two-photon excitation,
computation methods will continue to serve their unique purposes. For example,
nearest-neighbor deconvolution will remain as an efficient, economical method
for samples of discrete structures and limited thickness (5-20 JLm). The iterative
constraint deconvolution, on the other hand, will remain as the method of choice
for obtaining precise 3D fluorescence distribution. Most importantly, since confo-
cal scanning microscopy and computational deconvolution work under indepen-
dent principles, these methods can be easily combined to obtain resolution and
photometric precision far beyond what was feasible with individual approaches.
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