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Actin filaments, microtubules, and intermediate filaments, have all been
found to be dynamic structures in living cells. Recent studies have shed
important light on the assembly, disassembly, and mobility of these
structures. In addition, a growing emphasis has been placed on the
regulation of cytoskeletal activities by various signal transduction pathways.
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Introduction

Previous observations of cellular motile activities, such as
the shortening of spindle fibers during mitosis and the
ruffling of actin-rich lamellipodia, suggest that cytoskele-
tal structures are highly dynamic in live cells. It is not until
recent years, however, that direct studies of the reorgani-
zation of cytoskeleton have been carried out. It appears
that most cytoskeletal components are engaged in active
assembly, disassembly, and/or translocation throughout
the cell cycle, under the regulation of a complex network
of control mechanisms. This high degree of dynamics is
likely to be crucial for the achievement of a wide spec-
trum of transient functions.

To a large degree, recent advances have relied on video-
enhanced microscopy and microinjection techniques,
which allow the direct analysis of a large variety of
probes/structures inside living cells. The application of
gene transfection techniques has further facilitated the
analysis of the functions of specific proteins. While
it is important to recognize the limitations of these
techniques, such as potential artefacts caused by the
sudden change in protein concentration or by the au-
toregulation/ compensation mechanisms, these different
approaches generally complement one another and have
created a vast number of ways to probe, manipulate, and
observe living cells.

Although significant progress was made during the past
year in understanding the assembly and mobility of vari-
ous cytoskeletal structures, major emphasis has also been
placed on their regulatory mechanisms. This review fo-
cuses on some of the most important advances. For
a comprehensive review of studies with microinjection
techniques the reader is referred to a recent paper by
Sanders and myself [1] and to other articles in this is-
sue for reviews of mechanochemical enzymes and the
dynamics of microtubules in mitotic cells.

Cortical activities of actin and myosin in
interphase and mitotic cells

Cortical actin and myosin are known to playa crucial
role in such activities as cell locomotion, cytokinesis, and
membrane capping. Although these functions clearly in-
volve cortical reorganization, our understanding of the
dynamics of the cell cortex is still very limited. It has been
proposed for many years, based on indirect evidence,
that a directional flow of cortical cytoskeleton may un-
derlie a wide range of activities [2].

Much of the cortical activity may be driven by the myosin
molecule. In a time-lapse study of 3T3 cells microinjected
with fluorescently labeled myosin II, McKenna et al [3"]
observed a de novo assembly of bead-like myosin minifil-
aments immediately behind the leading lamellipodia, and
a backward flow of minifilaments on the anterior cortex.
Subsequent studies by Giuliano and Taylor [4-] indicated
that similar activities occurred in serum-deprived cells,
where myosin filaments were organized predominantly
along stress fiber-like structures. Thus, the behavior of
myosin appears to parallel closely that of cortical actin,
which is known to assemble continuously at the leading
edge and move centripetally on the cortex at least under
some conditions [2,5,6]. Such a simultaneous backward
movement of actin and myosin is consistent with models
involving either differential cortical tensions or a shearing
interaction between the cortex and the inner cytoplasm.

It is clear that the current picture of cortical dynamics
is far from complete. In order to maintain a steady state,
the backward-moving filaments must disassemble and/or
dissociate from the cortex somewhere in the posterior re-
gion and recycle back to the anterior region. Such activi-
ties remain to be demonstrated directly under improved
optical conditions.

Equally important is the determination of the mecha-
nisms for triggering the assembly-disassembly of the fila-
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ments and for determining the directionality of the corti-
cal flow. The possible role of calcium ions in stimulating
the advancement of the nerve growth cone, which closely
resembles the leading lamella of fibroblasts, is still under
active investigation [7]. In addition, there is a possibil-
ity that microtubules may playa role in modulating the
assembly and mobility of cortical structures; treatment of
KE37lymphoblastic cells with nocodazole in order to dis-
assemble microtubules was shown to induce an increase
in the incorporation of myosin into the cortex and an in-
triguing back-and-forth movement of myosin-rich cortical
constrictions [8"].

It has been proposed that cortical flow may play an im-
portant role during cytokinesis [2] which involves an ex-
tensive reorganization of actin and myosin in the cor-
tex (see [9-] for a recent study of this process in living
cells). Other mechanisms, however, including de novo
assembly of filaments or local rearrangement of pre-
existing structures, have also been proposed. This ques-
tion was recently addressed by microinjecting fluores-
cent phalloidin into mitotic cells [10-,11--]. Pre-existing,
phalloidin-labeled actin filaments were shown to deplete
at the polar cortex and dramatically concentrate in the
equatorial region during cytokinesis, indicating a recruit-
ment of pre-assembled filaments into the cleavage fur-
row. In addition, directional translocation of actin during
cytokinesis \,Vasindicated by the movement of small ag-
gregates of labeled filaments, first from the cytoplasm into
the cortex and then toward the cleavage furrow. Although
the incorporation of actin subunits into the equatorial
cortex may occur at the same time, these observations
suggest that cortical flow is primarily responsible for the
reorganization of actin during cytokinesis. Most notable
is the apparent similarity between the cortical activities in
interphase cells and in dividing cells. Thus, it is possible
that cytokinesis may be coupled to the establishment of
opposite anterior-posterior polarities in the two daugh-
ter cells, and that a common mechanism may underlie the
regulation of cortical activities in interphase and dividing
cells.

Dynamics of microtubules in neurites

Cytoskeletal dynamics in axons (or neurites) are mani-
fested as various classes of axonal transport, as indicated
by pulse labeling with radioisotopes. Whereas fast axonal
transport is involved in moving organelles and is believed
to be driven by microtubule-based motors [12], little is
known about the mechanism of slow transport, which
appears to involve the anterograde movement of pre-
assembled actin filaments and microtubules [12].

Attempts have been made recently to observe directly
slow axonal transport in live, cultured neurons. Um et
aL [13-] microinjected PC12 cells with a fluorescently
labeled tubulin and photo bleached small spots along
the neurites using laser micro beams. Surprisingly, the
bleached spots failed to show any directional movement
over a period of up to 4 h This study was subsequently

extended by Okabe and Hirokawa [14"] and by Um
et aL [15--] to dorsal root ganglia cells that underwent
active neurite extension. Again, no movement of the
bleached spots was observed despite active neurite elon-
gation. In all of these studies, a small fraction (10-20%)
of fluorescence recovered rapidly, reflecting either the dif-
fusion of tubulin dimers or a rapid movement of a sub-
population of microtubules. The subsequent recovery oc-
curred over a period of 30 minutes to several hours with-
out a detectable decrease in the width of the bleached
spot. This pattern of recovery is inconsistent with a slid-
ing of microtubules along the length of the neurite, but
could be explained by the exchange of tubulin along the
entire bleached segment with unbleached molecules that
moved in during the period of rapid recovery.

The lack of movement of microtubules during neu-
rite growth clearly confirms previous suggestions that
new microtubules assemble near the growth cone [16].
This, however, directly contradicts the idea of slow ax-
onal transport, which would predict a movement of the
bleached spot toward the growth cone at a rate of
> 1O~mh - 1. Although there is no definitive answer to
this paradox, several explanations should be considered.
Firstly, the transport may involve a limited fraction of mi-
crotubules and thus may be very difficult to detect with
photobleaching techniques. Secondly, the transport may
not occur or may occur more slowly under culture condi-
tions, possibly because of the lack of certain crucial fac-
tors. Thirdly, the transport may be inhibited by photo-
damages that are difficult to rule out despite careful con-
trols. It would be worthwhile to approach this question
using independent methods such as fluorescence pho-
toactivation techniques or direct observations of microin-
jected, taxol-stabilized fluorescent microtubules [17].

Dynamics of intermediate filaments

Intermediate filaments are commonly perceived as stable
structures because of their low solubility under physi-
ological ionic conditions. A certain degree of dynamics
in live cells, however, can be predicted from the exten-
sive reorganization of intermediate filaments during mito-
sis [18], from the exchange of protein subunits among
neurofilaments in vitro [19], and from the finite half-life
of the intermediate filament proteins in vivo. Moreover,
expression of a mutated keratin in PtK cells has been
shown to disrupt the organization of pre-existing keratin
structures [20], and direct evidence for the dynamics of
vimentin filaments has also been obtained based on the
incorporation of biotinylated vimentin into endogenous
vimentin filaments within 4 h of microinjection into BHK-
21 cells [21].

Two recent studies have extended these investigations us-
ing elegant molecular biological approaches to study the
incorporation of vimentin molecules. Ngai et aL [22"]
transfected mouse 3T3 cells with plasmids containing
an inducible chicken vimentin gene. After induction, the
chicken vimentin was detected along the endogenous vi-



Dynamics of the cytoskeleton in live cells Wang 29

mentin filaments throughout the cell, with no preferential
incorporation into the filaments in the perinuclear region.
Similar results were obtained by Sarria et ai. [23"] with
the expression of mouse vimentin in HeLa cells. Interest-
ingly, newly synthesized vimentin molecules appeared to
concentrate in small clusters interspersed by extended
segments of endogenous vimentin, suggesting that the
incorporation sites were not randomly distributed along
the length of filaments. Because of difficulty in resolving
the ends within a crosslinked network, however, it was
difficult to determine whether or not the incorporation
occurred more preferentially at the ends of existing fila-
ments.

In order to determine the role of pre-existing filaments
in the organization of newly synthesized vimentin, Sar-
ria et al [23--] have also transfected vimentin into a cell
line (SW-13/cl.2 vim -) that does not contain detectable
endogenous intermediate filaments. Newly synthesized vi-
mentin molecules were initially localized in discrete, short
segments throughout the cell, which subsequently ex-
tended into a network similar to that found in HeLa cells.
As in HeLa cells, no preferential assembly in the peri-
nuclear region was detected. Although it is possible that
the SW-13/cl.2 vim- cells may lack organizing centers
for the intermediate filaments, the random distribution of
the nascent segments argues against the involvement of
a perinuclear organizing center for the initial nucleation
of intermediate filaments. The results are in contrast to
those ofVikstrom et ai. [21], who observed an initial in-
corporation of microinjected, biotinylated vimentin into
vimentin filaments in the perinuclear region. One impor-
tant aspect of the microinjected vimentin, however, was
its initial distribution as aggregates in the perinuclear re-
gion, possibly resulting in a preferential release of solu-
bilized vimentin molecules in this region.

While intermediate filaments may be more dynamic than
previously anticipated, many questions remain to be an-
swered. On the one hand, the incorporation occurs over
many hours and may simply reflect the normal turnover
of intermediate filament proteins. On the other hand, it
is still unclear whether protein subunits exchange among
different filaments and whether any movement of inter-
mediate filaments can take place. To date, all experiments
have focused on the association reaction under a limited
supply of soluble/synthesized subunits. Thus, it would
be informative if the rate of dissociation, which proba-
bly represents the rate-limiting factor for the dynamics,
could also be investigated using such techniques as fluo-
rescence photo bleaching, or photoactivation.

Regulation of cytoskeletal dynamics

Current biochemical studies have painted an extremely
complicated picture for the regulation of the cytoskele-
ton, ranging from the levels of protein expression, self-as-
sembly, and crosslinking, to force generation. Most of the
known cellular regulatory mechanisms, including divalent
cations, phosphoinositides, GTP-binding proteins, and

post-translational modifications, have been implicated in
the controlling mechanism. This is perhaps not surpris-
ing given the involvement of cytoskeleton in a vast array
of transient functions.

One unresolved question concerns the polymerization of
actin, which appears to be tightly regulated both spatially
and temporally in the cell. A study by Sanders and Wang
[24-] indicated that the cell probably contains an ex-
cess of factors for inhibiting the polymerization of actin
subunits, but not for capping the ends of existing fila-
ments. Although profilin has been a favorite candidate for
this inhibitory function, recent biochemical analyses have
raised valid questions about both its abundance in the
cell [25,26], and possible inactivation by lipid molecules
[27]. On the other hand, strong indications, based on the
electroporation of GTP-y-S into neutrophils [28-,29,30],
have emerged suggesting the involvement of GTP-bind-
ing proteins in the regulation of actin assembly.

It is therefore important to identify the GTP-binding pro-
teins that are involved and to determine the mechanism
of regulation. A simple test for identifying the involve-
ment of membrane GTP-binding proteins, by examining
the sensitivity of GTP-y-S-induced polymerization to per-
tussis toxin, has so far yielded negative results [28-]. In
the meantime, there are indications that other classes of
GTP-binding proteins may be involved. Paterson et ai.
[31-] reported that the microinjection of a constitutively
active mutant form of rho (a small GTP-binding protein
related to ras [32]) can induce a dramatic contraction
of non-confluent 3T3 cells and formation of stress fibers
in confluent cultures, although it was unclear whether
these effects were coupled to a stimulation of actin poly-
merization. A different class of GTP-binding protein, the
elongation factor (EF)-la, has also been implicated in
the regulation of actin cytoskeleton [33,34--]. The pro-
tein has been shown to bind both G- and F-actins and
undergo a cAMP-stimulated association with filopodia in
Dictyostelium. Although the exact role of EF-1a in reg-
ulating actin structures awaits further clarification, these
results raise exciting possibilities directly linking the dy-
namics of cytoskeleton to the synthesis of proteins.

Regulation -of structural assembly may also be mediated
through various accessory proteins. The functional effects
of these proteins, however, are often difficult to assess
on the basis of biochemical characterization alone. An
elegant example in defining the function of actin-bind-
ing proteins in vivo involved the transfection of fibrob-
lasts with plasmids containing the gene for villin [35"],
one of the major actin-binding proteins found in the mi-
crovilli of intestinal brush border [36]. Expression of in-
tact villin induced a dramatic formation of microvilli on
the dorsal surface of the transfected cells, while no ef-
fect was detected with the expression of the crosslinking
incompetent core domain, indicating that the bundling
activity of villin is crucial for microvilli morphogenesis.
The important question remains: how did the microvilli
form? As villin does not appear to be directly responsi-
ble for membrane binding in intestinal microvilli [36], it
is likely that other proteins may be involved, and villin
may induce the formation of microvilli by initiating a cas-
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cade of binding eventsor by modifying existing cortical
structures.Thus, it will be of great interest to determine
the protein composition of the induced microvilli and the
pathway of their formation. Villinalso carries a number
of interesting calcium-activatedactivitiessuch nucleating
actin polymerization and severing existing filaments [36],
which may be evaluated in future studies by triggering the
release of calcium ions in transfected cells.
A similar study was performed to examine the effects
of tau, a microtubule-binding protein normally found in
neuronal cells, on the organization of microtubules [37.].
The expression of tau in L-cells was coupled to the for-
mation of striking bundles of microtubules that were not
associated with the microtubule-organizing center, sug-
gesting that tau may be able to mediate the formation
of microtubule bundles and possibly also nucleate the
assembly of microtubules. The expression of tau, how-
ever, also affected the amount of total tubulin and pos-
sibly the expression of other microtubule-binding pro-
teins, raising the possibility that the formation of micro-
tubule bundles may be caused by changes in a number
of proteins.

Effects of protein phosphorylation-dephospho-
rylation on cytoskeletal dynamics

Although various kinases have been implicated in the reg-
ulation of cytoskeleton, on the basis of biochemical stud-
ies, little is known about their roles in living cells. Re-
cently, Shoemaker et al [38.] investigated the functions
of muscle light chain kinase (MLCK) by microinjecting
antisense oligodeoxynucleotides against the MLCKgene
sequence. The suppression of MLCKsynthesis appeared
to induce a cell rounding similar to that induced by the
microinjection of MLCK antibodies [39], although de-
tailed studies of the organization of actin and myosin
were not performed. These investigators have also ob-
tained plasmids that code for various mutant forms of
MLCK,and it should be quite informative to study their
effects on cell structure, locomotion, and division upon
transfection into cultured cells.
Recently, the cell-cycle-dependent kinase p34cdc2, has at-
tracted a lot of attention [40]. Because all the three cy-
toskeletal systems undergo pronounced changes during
mitosis, it is possible that some cytoskeletal components
may be targeted by this enzyme [41,42]. Lamb et al
[43.] recently showed that the microinjection of active
p34cdc2 into interphase REF-52 cells could induce a dra-
matic retraction of cells and shortening of stress fibers.
Microtubules appeared partially disrupted, without the
formation of any mitotic spindle-like structures. Although
these effects were reminiscentof changes during the early
stages of mitosis, it is possible that similar events may be
induced through unrelated pathways such as the release
of free calciumions asobserved with the microinjection
of peptides of the PSTAIRdomain of p34cdc2 [44]. Of
particular interest will be the fate of vimentin and myosin
filaments in such injected cells, because p34cdc2has been
found to mediate the phosphorylation of the myosin light

chain and vimentin, and induce the disassembly of these
filaments in vitro [42,45].

An equally important question concerns the possible role
of dephosphorylation in regulating cytoskeletal struc-
tures. To date, little is known about the enzymes involved
or about their controlling mechanisms. A recent study
by Fernandez et al [46.] demonstrated the ability of
type 1 protein phosphatase to induce the dephosphory-
lation of the myosin regulatory light chain in vitro and
in vivo. After microinjection into fibroblasts, this phos-
phatase induced a transient disappearance of stress fibers
and an apparent net disassembly of actin filaments,as
judged by the decreased staining with fluorescent phal-
loidin. Although such effects may be mediated through
the dephosphorylation of the myosin light chain, it will
be important to determine whether type I phosphatase
has other cytoskeletal substrates, thus possibly regulating
the cytoskeleton through multiple pathways.

Conclusion

Despite the advancement in recent years, our understand-
ing of cytoskeletal dynamics is still very limited. On the
morphological level,continual efforts are required to de-
termine where and when protein molecules assemble
and disassemble, and how structures move within the
cell. On the molecular level, the functions of many pro-
teins in vivo have to be clarified, and pathways of sig-
nal transduction that affect cytoskeletal structures must
be defined. Although the complexity of the problem is
enormous, there is little doubt that significant progress
will be made with the recent refinement and combina-
tion of various powerful approaches. Clearly, living cells
will provide a fertile ground for the ultimate integration
of biochemistry, molecular biology, and morphology.
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