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ABSTRACT

An important problem that arises across different applications in
signal processing, machine learning, and data science is to reliably
estimate a tensor from a small number of measurements that are pos-
sibly corrupted. Leveraging the low-rank structure under the Tucker
decomposition, we propose a provably efficient algorithm that di-
rectly estimates the tensor factors by solving a nonsmooth and non-
convex composite optimization problem that minimizes the least ab-
solute deviation loss. The proposed algorithm—built on subgradient
methods—harnesses preconditioners that are designed to be equiv-
ariant w.r.t. the low-rank parameterization, and is shown to achieve
local linear convergence at a constant rate under the Gaussian design.
Numerical experiments are provided to corroborate the superior per-
formance of the proposed algorithm.

Index Terms— robust low-rank tensor regression, nonconvex
composite optimization, scaled subgradient method

1. INTRODUCTION

The modern data deluge has created a growing number of appli-
cations involving multi-dimensional or multi-attribute datasets, ex-
amples including video surveillance, hyperspectral imaging, neu-
roimaging, social network analysis, and so on. Tensors arise nat-
urally as a suitable data structure that captures the underlying multi-
way interactions, offering advantages over the matrix counterpart
[1,2]. An important problem, known as tensor regression, that arises
frequently across different applications is to recover a tensor from a
small number of its linear measurements, given by

y ≈ A(X ?),

where X ? ∈ Rn1×n2×···×nK is a K-way tensor, y ∈ Rm is the
collected measurements, and A(·) is a linear map that models the
data collection process. For ease of presentation, we consider the
case K = 3 throughout the paper, while our results hold for the
general case without difficulty.

Practical constraints such as sensing budgets or physical lim-
itations often lead to a highly ill-posed problem, where the num-
ber of measurements is much smaller than the ambient dimension
of the tensor, i.e. m �

∏3
k=1 nk. Fortunately, many real-world

datasets possess low-dimensional structures, where the correspond-
ing tensor can be appropriately decomposed into a small number of
factors using a drastically reduced number of parameters. In this
paper, we focus on the Tucker decomposition, where X ? admits
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the following decomposition with Tucker rank or multilinear rank
r = (r1, r2, r3), and ri � ni:

X ? = C? ×1 U? ×2 V? ×3 W? := (U?,V?,W?) · C?, (1)

where C? ∈ Rr1×r2×r3 is the core tensor, U? ∈ Rn1×r1 , V? ∈
Rn2×r2 , W? ∈ Rn3×r3 are orthonormal matrices corresponding to
the factors of each mode, and ×k denotes the tensor-matrix prod-
uct along mode k. Many provable algorithms have been proposed
to recover the low-rank tensor X ? from y both in statistically and
computationally efficient manners, e.g. [3–9].

To reduce the storage and computational complexities, a popu-
lar approach is to take advantage of the low-rank factorization and
optimize the factors directly by solving

min
F=(U,V ,W ,C)

‖A(X )− y‖22 , where X = (U ,V ,W ) · C, (2)

with the optimization variables U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈
Rn3×r3 and C ∈ Rr1×r2×r3 .

1.1. Our contributions: robust low-rank tensor regression

In practice, due to sensor failures and malicious attacks, it is com-
mon that the collected measurements may suffer from undesirable
and unknown corruptions, which are possibly adversarial. Conse-
quently, there is an imminent need to develop low-rank tensor re-
covery algorithms that are provably robust and efficient, which are
still lacking. To fill the gap, instead of minimizing the smooth loss
function in (2), which is known to be vulnerable to outliers, we re-
sort to the least absolute deviations (LAD) loss, which measures the
residual sum of absolute errors:

min
F=(U,V ,W ,C)

‖A(X )− y‖1 , where X = (U ,V ,W ) · C. (3)

Leveraging recent insights in preconditioning for ill-conditioned
low-rank matrix and tensor estimation [9–11], this paper proposes
an efficient algorithm for solving the nonconvex composite opti-
mization problem in (3), namely the scaled subgradient method
(ScaledSM), which incorporates carefully-designed preconditioners
in the local updates to preserve the equivariance of the low-rank
parameterization. Under the Gaussian design, the proposed method
provably finds the ground truth at a constant linear rate that is inde-
pendent of the condition number even under a constant fraction of
outliers, as long as it is initialized properly. The algorithm is much
more scalable than its counterpart without the preconditioners, espe-
cially when the ground truth tensor is ill-conditioned. To the best of
our knowledge, our work provides the first provable algorithm that
achieves robust low-rank tensor regression from corrupted measure-
ments, together with a fast rate of convergence independent of the
condition number of the ground truth tensor.



1.2. Related works

Low-rank tensor recovery has attracted significant research interest
in recent years, where many algorithms have been developed with
provable performance guarantees, e.g. [3–7, 9, 12–15]. Moreover,
spectral methods [16–18] are often applied to provide a smart ini-
tialization from which iterative algorithms refine locally to enable
global convergence despite the presence of nonconvexity. How-
ever, a majority of these algorithms are designed with respect to the
smooth least-squares loss and therefore their performance is very
sensitive to the existence of outliers.

Motivated by the success of robust principal component analy-
sis for the matrix setting [19], convex relaxation approaches are pro-
posed in [3, 20, 21] via unfolding the tensor of interest and invoking
matrix-based algorithms. However, their computational complexity
is often prohibitive for large-scale problems. On the other end, the
LAD loss is not new to handle outliers, and has been adopted for
high-dimensional signal recovery [11, 22–27], where the subgradi-
ent method has been analyzed in [23,26–28]. Another popular strat-
egy is to adaptively truncate or prune outliers in an iterative manner
guided by quantile statistics, as done in [29–32].

The preconditioner in our approach is directly inspired by [9],
which proposed a scaled gradient descent (ScaledGD) method to op-
timize the smooth loss function (2) for low-rank tensor regression.
In particular, the proposed subgradient method can be viewed as the
tensor counterpart of [11], which generalizes the preconditioner de-
signs to the nonsmooth setting.

1.3. Paper organization and notation

The rest of this paper is organized as follows. Section 2 describes
the problem formulation as well as the proposed algorithm. Sec-
tion 3 provides the theoretical guarantees in terms of local linear
convergence. Numerical experiments are illustrated in Section 4,
and finally, we conclude in Section 5.
Notation. Throughout this paper, boldface calligraphic letters
(e.g. A) denote tensors, and boldface capitalized letters (e.g. A)
denote matrices. σi(A) denotes its i-th largest singular value, and
‖A‖F, ‖A‖, and ‖A‖∞ denotes the Frobenius norm, the spec-
tral norm, and the entrywise `∞ norm of a matrix A, respectively.
The set of invertible matrices in Rr×r is denoted by GL(r). Let
⊗ denote the Kronecker product, and sign(x) denote the vector
containing the signs of the entries of x.

Given a tensor X := [X (i1, i2, i3)] ∈ Rn1×n2×n3 , its mode-1
matricizationM1(X ) ∈ Rn1×(n2n3) is defined by

[M1(X )]
(
i1, i2 + (i3 − 1)n2

)
= X (i1, i2, i3),

for 1 ≤ ik ≤ nk, k = 1, 2, 3; M2(X ) and M3(X ) can be de-
fined similarly. The inner product between two tensors is defined as
〈X 1,X 2〉 =

∑
i1,i2,i3

X 1(i1, i2, i3)X 2(i1, i2, i3). The Frobenius
norm ofX is then given by ‖X‖F =

√
〈X ,X 〉.

2. FORMULATION AND PROPOSED ALGORITHM

Let X ? := [X ?(i1, i2, i3)] ∈ Rn1×n2×n3 be the ground truth ten-
sor that satisfies the Tucker decomposition in (1), which equivalently
means that for k = 1, 2, 3, and 1 ≤ ik ≤ nk,

X ?(i1, i2, i3) =
r1∑
j1=1

r2∑
j2=1

r3∑
j3=1

U?(i1, j1)V?(i2, j2)W?(i3, j3)C?(j1, j2, j3).

Consider the robust low-rank tensor regression problem, in
which the measurements are corrupted by sparse outliers. Specifi-
cally, assume that we have access to a set of linear observations of
X ?, where the measurement vector y = {yi}mi=1 is given as

y = A(X ?) + s, (4)

where A(X ?) = {〈Ai,X ?〉}mi=1 is the measurement operator,
with Ai ∈ Rn1×n2×n3 denoting the i-th sensing tensor, and
s = {si}mi=1 corresponds to the outlier vector. We assume the out-
lier s is a sparse vector obeying ‖s‖0 = psm for some 0 ≤ ps ≤ 1,
which means that ‖s‖0 is much smaller than its ambient dimen-
sion m, so that only a small fraction ps of the measurements are
corrupted. However, the corrupted entries can take arbitrary or ad-
versarial magnitudes. The goal is to recover the low-rank tensorX ?

from y in a robust and scalable manner.
To cope with the outliers, it is natural to minimize the least ab-

solute deviation (LAD) loss of the measurements, given by

f(X ) := ‖A(X )− y‖1 =

m∑
i=1

|〈Ai,X 〉 − yi| . (5)

In addition, to take advantage of the low-rank structure and mini-
mize complexity, we factorize the tensor X = (U ,V ,W ) · C with
U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈ Rn3×r3 and C ∈ Rr1×r2×r3 ,
and optimize the factors directly via the following unconstrained
composite optimization problem:

min
F=(U,V ,W ,C)

L(F ) := f
(
(U ,V ,W ) · C

)
, (6)

which is nonconvex and nonsmooth.

2.1. Proposed scaled subgradient method

A natural idea to optimize (6) is via subgradient descent, which up-
dates the factor quadruple iteratively according to

Ut+1 = Ut − ηtM1(Gt)Ŭt,

Vt+1 = Vt − ηtM2(Gt)V̆t,

Wt+1 = Wt − ηtM3(Gt)W̆t,

Ct+1 = Ct − ηt
(
U>t ,V

>
t ,W

>
t

)
· Gt.

(7)

where ηt > 0 is the step size, Gt = A∗(sign(A(X t)) − y) ∈
∂X f(X t) is a subgradient of f(X ) with respect to X at X t =
(Ut,Vt,Wt) · Ct, and A∗(·) is the adjoint operator of A(·). Fur-
thermore, the following short-hand notation is introduced:

Ŭt := (Wt ⊗ Vt)M1(Ct)>, (8a)

V̆t := (Wt ⊗Ut)M2(Ct)>, (8b)

W̆t := (Vt ⊗Ut)M3(Ct)>. (8c)

While simple and straightforward, this approach tends to converge
very slowly when the tensor is ill-conditioned. Inspired by [9], we
propose to update the iterate along a preconditioned or scaled direc-
tion of the subgradient, leading to the following scaled subgradient



method (ScaledSM):

Ut+1 = Ut − ηtM1(Gt)Ŭt(Ŭ
>
t Ŭt)

−1,

Vt+1 = Vt − ηtM2(Gt)V̆t(V̆ >t V̆t)
−1,

Wt+1 = Wt − ηtM3(Gt)W̆t(W̆
>
t W̆t)

−1,

Ct+1 = Ct − ηt
(

(U>t Ut)
−1U>t ,

(V >t Vt)
−1V >t , (W

>
t Wt)

−1W>
t

)
· Gt.

(9)

Step size schedules. We still need to specify the choice of the step
size ηt > 0, which needs to be carefully scheduled in accordance
with the scaled update. Specifically, we apply a geometrically de-
caying learning rate schedule [33] with proper scaling,

ηt :=
λqt

Nt
, (10)

where q ∈ (0, 1), λ > 0 and

N2
t :=

∥∥∥M1(Gt)Ŭt(Ŭ
>
t Ŭt)

−1/2
∥∥∥2
F
+
∥∥∥M2(Gt)V̆t(V̆ >t V̆t)

−1/2
∥∥∥2
F

+
∥∥∥M3(Gt)W̆t(W̆

>
t W̆t)

−1/2
∥∥∥2
F

+
∥∥∥((U>t Ut)

−1/2U>t ,

(V >t Vt)
−1/2V >t , (W

>
t Wt)

−1/2W>
t

)
· Gt

∥∥∥2
F
. (11)

In fact, Nt can be viewed as the norm of the subgradient under a
scaled metric compatible with our preconditioners. This choice is
informed by our theory.

Remark 1. Ideally, one might be tempted to apply the Polyak’s step
size, given by ηt := f(X t)−f(X?)

N2
t

. However, it is impractical due to
the unknown optimal function value f(X ?). As illustrated in [11],
geometric step size achieves the same performance as Polyak’s step
size when parameters λ, q are tuned appropriately.

Equivariance to low-rank parameterization. A crucial property
of ScaledSM is that the update of the low-rank tensor X t is invari-
ant w.r.t. the low-rank parameterization. Suppose that at the t-th
iteration, we reparameterize the factor Ft = (Ut,Vt,Wt,Ct) by

F̃t = (UtQ1,VtQ2,WtQ3, (Q
−1
1 ,Q−1

2 ,Q−1
3 ) · Ct)

via any invertible matrices Qk ∈ GL(rk), k = 1, 2, 3, where
both Ft and F̃t correspond to the same low-rank tensor X t =
(Ut,Vt,Wt) · Ct. By checking (9) and (10), it is straightforward
to verify that the next iterate from F̃t follow the same change of
parameterization, i.e.

F̃t+1 = (Ut+1Q1,Vt+1Q2,Wt+1Q3, (Q
−1
1 ,Q−1

2 ,Q−1
3 ) · Ct+1),

which ensures the update rule of ScaledSM is insensitive to the im-
balance of the factors in the low-rank parameterization—a key prop-
erty that is absent in the vanilla subgradient method and contributes
to the performance gain.

2.2. Truncated spectral initialization

Inspired by the median-truncated spectral initialization in [29–31],
we propose a tensor counterpart that is tailored to our problem to

initialize ScaledSM. Denote ytrunc as the vector after discarding ps
fraction of measurements with largest magnitudes:

[ytrunc]i =

{
yi

1−ps , if |yi| ≤ |y|(dpsme)
0, otherwise

, (12)

where |y|(k) denotes the k-th largest amplitude of y. Let A∗(·) be
the adjoint operator of A(·). The truncated spectral initialization
F0 = (U0,V0,W0,C0) is then given by the top-r higher-order
SVD (HOSVD) of A∗(ytrunc):

(U0,V0,W0) · C0 = Hr(A∗(ytrunc)), (13)

where U0 is the top-r1 left singular vectors of M1(A∗(ytrunc)),
analogously for V0,W0, and C0 = (U>0 ,V

>
0 ,W>

0 ) ·A∗(ytrunc)
is the core tensor.

3. THEORETICAL GUARANTEES

We focus on presenting the local linear convergence of the proposed
scaled subgradient method while leaving a complete account of
global convergence to the future work. To begin with, we introduce
a key metric that defines a sort of condition number of the low-rank
tensor. The condition number ofX ? is defined as

κ :=
σmax(X ?)

σmin(X ?)
=

maxk=1,2,3 σmax(Mk(X ?))

mink=1,2,3 σmin(Mk(X ?))
, (14)

where σmax(X ) = maxk=1,2,3 σmax(Mk(X )), σmin(X ) =
mink=1,2,3 σmin(Mk(X )), and σmax(Mk(X )), σmin(Mk(X ))
are the largest and the smallest nonzero singular values ofMk(X ).

3.1. A general theory of local linear convergence

Our convergence guarantees are built on standard geometric as-
sumptions [11, 23, 26] on the loss function f(·) for the analysis of
subgradient-type algorithms, which are defined as follows.

Definition 1 (Restricted Lipschitz continuity). A function f :
Rn1×n2×n3 7→ R is said to be rank-r restricted L-Lipschitz contin-
uous for some quantity L > 0 if

|f(X 1)− f(X 2)| ≤ L‖X 1 −X 2‖F

holds for any X 1,X 2 ∈ Rn1×n2×n3 such that X 1 −X 2 has mul-
tilinear rank at most 2r.

Definition 2 (Restricted sharpness). A function f : Rn1×n2×n3 7→
R is said to be rank-r restricted µ-sharp w.r.t.X ? for some µ > 0 if

f(X )− f(X ?) ≥ µ‖X −X ?‖F

holds for anyX ∈ Rn1×n2×n3 with multilinear rank at most r.

The condition number of a function f(·) that is both restricted
L-Lipschitz continuous and µ-sharp is then denoted by

χf := L/µ. (15)

To fully capture the performance progress of ScaledSM, we
measure the performance of factor quadruple F = (U ,V ,W ,C)
using the following error metric [9]

dist2(F ,F?) := inf
Qk∈GL(rk)

‖(UQ1 −U?)Σ?,1‖2F
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Fig. 1. Performance comparisons of the proposed method (ScaledSM) and the vanilla subgradient method (SM). (a) The reconstruction errors
‖X t−X ?‖F/‖X ?‖F w.r.t. the iteration count under different condition numbers κ = 1, 2, 5, 10 with ps = 0.2. (b) The iteration complexities
w.r.t. the condition number for achieving ‖X t −X ?‖F ≤ 10−3‖X ?‖F with ps = 0.2. (c) The reconstruction errors w.r.t. the iteration count
under different amounts of outliers ps = 0.1, 0.2, 0.3, 0.4 with κ = 5.

+ ‖(V Q2 − V?)Σ?,2‖2F + ‖(WQ3 −W?)Σ?,3‖2F
+
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · C − C?
∥∥2
F
, (16)

which takes into consideration both the representation ambiguity of
the factorization up to invertible transforms and the scaling of dif-
ferent factors due to the presence of preconditioners, where Σ?,k

denotes the diagonal matrix composed of nonzero singular values of
Mk(X ?). With this metric in place, we state the linear convergence
of the scaled subgradient method when f(·) satisfies both the rank-r
restricted L-Lipschitz continuity and µ-sharpness, as follows.

Theorem 1 (Scaled subgradient method with exact convergence).
Suppose that f(X ) : Rn1×n2×n3 7→ R is convex inX , and satisfies
rank-r restricted L-Lipschitz continuity and µ-sharpness (cf. Defini-
tions 1 and 2). In addition, suppose that the initialization F0 satisfies

dist(F0,F?) ≤ 10−3σmin(X ?)/χf , (17)

and the scaled subgradient method adopts the geometrically decay-

ing step sizes in (10) with λ = (
√

2−1)3/2

2
10−3σmin(X ?)/χ

2
f and

q = (1− 0.016/χ2
f )1/2. Then for all t ≥ 0, the iterates satisfy

dist(Ft,F?) ≤ (1− 0.016/χ2
f )t/210−3σmin(X ?)/χf ,

and ‖X t −X ?‖F ≤ 3 dist(Ft,F?).

Theorem 1 shows that the iterates of the scaled subgradient
method converges at a linear rate; to reach ε-accuracy, i.e. ‖X t −
X ?‖F ≤ εσr(X ?), it takes at most O(χ2

f log 1
ε
) iterations, which,

importantly, is independent of the condition number κ of X ?. Fi-
nally, it is worth noting that the choices of constants in Theorem 1
are pessimistic to simplify analysis. Due to space limits, we defer
the full proof to [34].

3.2. Case study: Gaussian design

It turns out that under the Gaussian design, where all the sensing
tensors are composed of i.i.d. Gaussian entries, the resulting loss
function obeys the rank-r restricted L-Lipschitz continuity and µ-
sharpness with high probability.

Proposition 1 (Gaussian designs). Let n := max{n1, n2, n3}
and r := max{r1, r2, r3}. Suppose that [A(X )]i = 1

m
〈Ai,X 〉

with tensors A1, . . . ,Am composed of i.i.d. standard Gaussian
entries. Then with probability exceeding 1− c1n−c2 , the loss func-
tion f(X ) = ‖A(X ) − y‖1 in (5) satisfies the rank-r restricted
L-Lipschitz continuity and µ-sharpness with

L = 0.8, µ = 0.79(1− 2ps), (18)

as long as m ≥ C(nr+r3)

(1−2ps)2
log
(

1
1−2ps

)
. Here, C, c1, c2 are some

universal constants.

Combining Theorem 1 and Proposition 1, ScaledSM is guaran-
teed to reach ε-accuracy in at mostO

(
1

(1−2ps)2
log 1

ε

)
iterations, as

long as the sample size is sufficiently large. This amounts to a near-
optimal sample complexityO(nr+r3) and dimension-free iteration
complexity O(log 1

ε
) even with a constant fraction of outliers.

Beyond the Gaussian design, similar guarantees can be estab-
lished when the observation operator satisfies the mixed-norm re-
stricted isometry property [11].

4. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments to illustrate the
performance of ScaledSM for robust tensor regression, and highlight
its advantage compared to the vanilla subgradient method (SM). For
simplicity, we set n1 = n2 = n3 = 30, and r1 = r2 = r3 = 3,
and collect m = 5000 measurements according to (4). The ground
truth tensorX ? is generated as described in [9]. Each outlier is inde-
pendently generated as si = s̄iΩi, with Ωi drawn from a Bernoulli
distribution with parameter ps, and s̄i drawn from a uniform dis-
tribution in [−10‖A(X ?)‖∞, 10‖A(X ?)‖∞]. Both ScaledSM and
SM start from the same truncated spectral initialization (13), and for
simplicity use the Polyak’s step size (which amounts to using opti-
mally tuned geometrically decaying step sizes).

Fig. 1 shows the detailed performance comparison of ScaledSM
and SM under various settings. Thanks to the robustness of the
least absolute deviation loss, both algorithms converge linearly in
the presence of outliers. Noteworthily, ScaledSM converges as a fast
rate that is independent with κ, while SM slows down dramatically
as κ increases. Indeed, the iteration complexity of SM grows super
linearly with respect to condition number κ, while ScaledSM takes
a much smaller number of iterations and therefore accelerates the
convergence for ill-conditioned instances.

5. CONCLUSIONS

This paper develops a scaled subgradient method for robust low-rank
tensor regression from corrupted measurements, by minimizing the
a natural nonsmooth and nonconvex loss function based on least ab-
solute deviation. For future work, it is of interest to examine if it
is possible to develop provably efficient algorithms for the related
problem called robust low-rank tensor completion [21].



6. REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and ap-
plications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[2] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for sig-
nal processing and machine learning,” IEEE Transactions on
Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[3] B. Huang, C. Mu, D. Goldfarb, and J. Wright, “Provable mod-
els for robust low-rank tensor completion,” Pacific Journal of
Optimization, vol. 11, no. 2, pp. 339–364, 2015.

[4] H. Rauhut, R. Schneider, and Ž. Stojanac, “Low rank tensor
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