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Abstract—Recent work has demonstrated the effectiveness of
gradient descent for recovering low-rank matrices from random
linear measurements in a globally convergent manner. However,
their performance is highly sensitive in the presence of outliers
that may take arbitrary values, which is common in practice. In
this paper, we propose a truncated gradient descent algorithm
to improve the robustness against outliers, where the trunca-
tion is performed to rule out the contributions from samples
that deviate significantly from the sample median. A restricted
isometry property regarding the sample median is introduced to
provide a theoretical footing of the proposed algorithm for the
Gaussian orthogonal ensemble. Extensive numerical experiments
are provided to validate the superior performance of the proposed
algorithm.

Index Terms—median, gradient descent, outliers, low-rank
matrix recovery

I. INTRODUCTION

A considerable amount of work has been done on low-rank
matrix recovery in recent years, and it is shown that low-
rank matrices can be recovered accurately and efficiently from
a much smaller number of observations than their ambient
dimensions [1]–[5]. An extensive overview can be found in
[6]. It has been well recognized that convex relaxation is a
popular strategy which replaces the low-rank constraint by a
convex surrogate, such as nuclear norm minimization [7]–[9].
However, despite statistical (near-)optimality, their computa-
tional costs are prohibitive for high-dimensional problems.

In practice, a widely used alternative, pioneered by Burer
and Monteiro [10], is to directly estimate the factors of a low-
rank matrix, which has a much lower-dimensional representa-
tion and therefore admits more computationally and memory
efficient algorithms. This typically leads to a non-convex loss
function. Recently, a series of work has demonstrated that,
starting from a careful initialization, simple algorithms such
as gradient descent [11]–[15] enjoy global convergence guar-
antees under a near-optimal sample complexity. On the other
hand, the global geometry of non-convex low-rank matrix
estimation has been investigated in [16]–[19], and it is proven
that no spurious local optima, except strict saddle points, exist
under suitable conditions, which implies global convergence
from random initialization, provided the algorithm of choice
can escape saddle points [20].

In this paper, we focus on low-rank matrix recovery from
random linear measurements in the presence of outliers, which

is formulated in a way similar to [11]. Specifically, the
low-rank matrix of interest is a positive semidefinite (PSD)
matrix and the sensing matrices are drawn i.i.d. from the
Gaussian orthogonal ensemble. Moreover, we assume the
measurements are corrupted by sparse outliers, possibly in
an adversarial fashion with arbitrary amplitudes. Although
convex optimization can be still effective [21], [22], our goal
is to develop fast and robust non-convex alternatives that are
globally convergent.

Unfortunately, the vanilla gradient descent algorithm in [11]
is not robust in the presence of outliers, as the outliers can
perturb the search directions arbitrarily. In [23], a median-
truncated gradient descent algorithm is proposed for non-
convex robust phase retrieval, where the sample median is
exploited to control both the initialization and the gradient
step, where only a subset of samples are selected to contribute
to the search direction in each iteration. Inspired by [23], we
design a median-truncated gradient descent algorithm for low-
rank matrix recovery, where we carefully set the truncation
strategy to mitigate the impact of outliers. The sample median
is a highly robust object against adversarial outliers, which can
be computed in linear time [24]. A highlight of the proposed
algorithm is that it does not assume a priori information re-
garding the outliers. A restricted isometry property (RIP) of the
sample median is established to provide theoretical grounds of
the proposed algorithm. Numerical experiments demonstrate
the excellent empirical performance of the proposed algorithm
for low-rank matrix recovery from outlier-corrupted measure-
ments, which significantly outperforms existing algorithms
that are not resilient to outliers [11].

The remainder of this paper is organized as follows. In
Section II, we mathematically formulate the low-rank PSD ma-
trix recovery problem. The details of the proposed algorithm
are given in Section III. Numerical experiments are provided
in Section IV to validate the performance of the proposed
algorithm. Finally, we conclude and discuss the future work
in Section V. Throughout this paper, we denote vectors by
bold lowercases and matrices by bold capitals. The transpose
of a matrix A is denoted by AT , and ‖A‖F represents the
Frobenius norm. med(y) denotes the median of the entries in
vector y, and |y| denotes entry-wise absolute value. Besides,
the inner product between two matrices A and B is defined
as 〈A,B〉 = Tr

(
BTA

)
, where Tr(·) denotes the trace.



II. PROBLEM FORMULATION

Let M ∈ Rn×n be a rank-r PSD matrix that can be written
as M =XXT , where X ∈ Rn×r. Denote the set of sensing
matrices by {Ai}mi=1, where Ai ∈ Rn×n is the ith symmetric
sensing matrix, generated i.i.d. from the Gaussian orthogonal
ensemble with (Ai)k,k ∼ N (0, 2), (Ai)k,t ∼ N (0, 1) for
k < t, and (Ai)k,t = (Ai)t,k.

Denote the index set of corrupted measurements by S,
and correspondingly, the index set of clean measurements
is given as the complementary set Sc. Mathematically, the
measurements y = {yi}mi=1 can be represented as

yi =

{
〈Ai,M〉, if i ∈ Sc;

ηi, if i ∈ S, (1)

where η = {ηi}i∈S is the set of outliers that can take arbitrary
values. Further assume the cardinality of S as |S| = s · m,
where 0 ≤ s < 1 is the fraction of outliers. Our goal is to
recover M from the corrupted measurements, without a priori
knowledge of the outliers, in a computationally efficient and
provably accurate manner.

III. MEDIAN-TRUNCATED GRADIENT DESCENT

Instead of recoveringM , we aim to directly recover its low-
rank factor X . It is straightforward that for any orthonormal
matrix P ∈ Rr×r, we have (XP )(XP )T =XXT , and con-
sequently, X can be recovered only up to orthonormal trans-
formations. Furthermore, we introduce the shorthand notations
for the linear maps Ai(U) = {Rn×r 7→ R : 〈Ai,UU

T 〉}, and
A(U) = {Rn×r 7→ Rm : {Ai(U)}mi=1}.

A. Algorithm description

To begin, consider the following oracle loss function,

foracle(U) =
1

4m

∑
i∈Sc

(yi −Ai(U))
2
, (2)

which aims to minimize the quadratic loss over clean measure-
ments only. However, since the oracle information regarding
the support of outliers is absent, we cannot directly minimize
foracle(U). Moreover, foracle(U) is non-convex. To proceed,
define the sample-wise loss function as

fi(U) =
1

4m
(yi −Ai(U))

2
, (3)

whose gradient with respect to U can be written as

∇fi(U) =
1

m
(Ai(U)− yi)AiU . (4)

In sharp contrast to the gradient descent approach in [11],
we propose to control the initialization and the search direc-
tions more carefully in order to adaptively eliminate outliers.
For initialization, we adopt the spectral method, which uses the
top eigenvectors of the sample-weighted matrix in (6), where
only the samples whose values do not significantly digress
from the sample median are included. In the gradient loop,
we update the estimate via (7), which can be viewed as a

Algorithm 1 Median-Truncated Gradient Descent Algorithm
Parameters: Thresholds αy and αh, the step size µt, and the
rank r.
Input: The measurements y = {yi}mi=1, and the sensing
matrices {Ai}mi=1.
Initialization: U0 = ZΣ, where the columns of Z contain
the normalized eigenvectors corresponding to the r largest
eigenvalues in terms of absolute values, i.e. |σ1| ≥ |σ2| ≥
· · · ≥ |σr|, of the matrix

Y =
1

m

m∑
i=1

yiAi1{|yi|≤α2
ymed(|y|)/0.9539}, (6)

and Σ is a r× r diagonal matrix, with the ith diagonal entry
given as

√
|σi| /2.

Gradient Loop: For t = 0 : 1 : T − 1 do

Ut+1 = Ut − µt ·
1∑r

k=1 |σk| /2

· 1
m

m∑
i=1

(Ai(Ut)− yi)AiUt1Eti ,
(7)

where

Eti = {|yi −Ai(Ut)| ≤ αhmed (|y −A(Ut)|)} . (8)

Output: X̂ = UT .

truncated gradient descent update:

Ut+1 = Ut − µ̃t
∑

i∈{i|Eti is true}
∇fi(Ut), (5)

where only samples whose measurement residuals at the
current iteration do not digress from the sample median
significantly are included. Note that the set {i|Eti is true}
varies per iteration, and therefore can adaptively prune the
outliers. Details of the proposed algorithm are provided in
Algorithm 1, where the stopping criterion is simply set as
reaching a preset maximum number of iterations. In practice,
it is also possible to set the stopping criteria by examining the
progress between iterations.

The computational advantage of gradient descent has been
justified in the earlier work, e.g. [11]. It is worthwhile to note
that the key difference between the proposed Algorithm 1 and
the one in [11] is the truncation strategy used in (6) and (7),
both of which improve the robustness of the algorithm guided
by the sample median.

B. RIP-like property for sample median

RIP plays a critical role in the analysis of both convex [7]
and non-convex [12] procedures for low-rank matrix recovery.
In particular, it is shown in [23] that a similar property for the
sample median holds for the phase retrieval problem. Below,
for the problem of low-rank matrix recovery, we establish
that the sample median also possesses RIP-like property, even
when a constant fraction of the measurements are arbitrarily



corrupted, as long as the sample complexity is on the order of
nr log n.

Proposition 1 (RIP of sample median). Suppose s ≤ s0,
where s0 is a small enough constant. Fix a small ε ∈ (0, 1).
If m ≥ c0

(
ε−2 log ε−1

)
nr log n, we have

(γ1 − ε)
∥∥XXT

∥∥
F
≤ med (|y|) ≤ (γ2 + ε)

∥∥XXT
∥∥
F
,

and

med (|y −A(U)|) ≥ (γ3 − ε)
∥∥XXT −UUT

∥∥
F
;

med (|y −A(U)|) ≤ (γ4 + ε)
∥∥XXT −UUT

∥∥
F
,

with probability at least 1− c1 exp
(
−c2mε2

)
for all matrices

U ,X ∈ Rn×r, where both γi, i = 1, 2, 3, 4, and ci, i =
0, 1, 2, are some universal constants only depending on s0.
Specifically, when s0 = 0, we can set γ1 = γ2 = 0.9539 and
γ3 = γ4 = 0.9539.

Our ongoing investigation suggests that this critical concen-
tration property provides theoretical footings on the success
of Algorithm 1, whose complete theoretical guarantee will be
presented in a later draft.

IV. NUMERICAL EXPERIMENTS

In this section, we numerically evaluate the performance
of the proposed Algorithm 1. In all the experiments, we pick
αy = 3, αh = 5 and consider a constant step size µt = 0.4.
We set the maximum number of iterations as T = 104.

Let n = 40, r = 4 and m = 480. We randomly generate
a rank-r PSD matrix as M = XXT , where X is com-
posed of i.i.d. standard Gaussian variables. The i-th sensing
matrix Ai is generated as Ai =

(
Bi +B

T
i

)
/
√
2, where

Bi ∈ Rn×n is composed of i.i.d. standard Gaussian variables,
i = 1, 2, . . . ,m. The support of the outliers are uniformly se-
lected at random and their values are i.i.d. generated following
the distribution N (0, 104‖XXT ‖2F ). The normalized recon-
struction error is defined as ‖X̂X̂T −XXT ‖F /‖XXT ‖F ,
where X̂ is the estimate of the matrix factor.
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Median−truncated without outliers

No truncation without outliers

Median−truncated with 1% outliers

No truncation with 1% outliers

Median−truncated with 10% outliers

No truncation with 10% outliers

Fig. 1. Normalized reconstruction errors with respect to iteration count using
Algorithm 1 and the algorithm in [11] under different corruption scenarios,
when n = 40, r = 4 and m = 480.

Fig. 1 shows the normalized reconstruction errors with
respect to the iteration count using Algorithm 1 and the algo-
rithm in [11], which does not employ the median-truncation
strategy, under different fractions of outliers. It can be seen
that both algorithms yield comparable convergence rates in
the absence of outliers. However, even with very few outliers
(e.g. 1%), the algorithm in [11] suffers a dramatic performance
degradation, while Algorithm 1 is much more robust and can
still converge at a linear rate.

We next examine the phase transitions of Algorithm 1. Fix
n = 40. Each trial is deemed a success if the normalized
reconstruction error is below 10−6, and the success rate is
calculated by averaging over 10 Monte Carlo trials. Fig. 2 (a)
shows the success rates of Algorithm 1 with respect to the
number of measurements and the rank, when the percent of
outliers is fixed as s = 5%, and (b) shows the success rates
with respect to the percent of outliers and the rank, when
the number of measurements is fixed as m = 360. It implies
that the sample complexity of Algorithm 1 is near-optimal
even under a constant fraction of outliers, and it is capable of
tolerating a larger fraction of outliers when the rank is small.

Finally, we examine Algorithm 1 when the measurements
are contaminated by both sparse outliers and dense noise. Fix
n = 40, r = 4 and s = 5%. The dense noise is generated
with i.i.d. Gaussian entries following N

(
0, 0.01‖XXT ‖F

)
.

Fig. 3 depicts the average normalized reconstruction errors
with respect to the number of measurements using both
Algorithm 1 and the algorithm in [11]. The performance
of Algorithm 1 is comparable to that of the algorithm in
[11] without outliers, therefore, it can handle outliers in an
oblivious fashion. Moreover, the performance keeps stable as
long as an upper bound of the true rank is provided.

V. CONCLUSION

We propose an efficient median-truncated gradient descent
algorithm to improve the efficacy and robustness of low-
rank PSD matrix recovery from random linear measurements
in the presence of sparse outliers, with possibly arbitrary
magnitudes. The effectiveness of the proposed algorithm is
validated through extensive numerical experiments. We also
provide some initial evidence towards the theoretical guarantee
of the proposed algorithm. The complete theoretical analysis
will be presented in a future publication, together with the
extension to the general rectangular low-rank matrix recovery
problem.
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