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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize;,  f(x;data) —  loss function may be nonconvex
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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize;  f(ax;data) —  loss function may be nonconvex

low-rank matrix completion

blind deconvolution

dictionary learning

e mixture models

deep learning

3/125



Nonconvex optimization may be super scary

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)
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Example: solving quadratic programs is hard

Finding maximum cut in a graph is about solving a quadratic program

maximize,, z Wz

subj. to  2?=1, i=1,---,n
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Example: solving quadratic programs is hard
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"I can't find an efficient algorithm, but neither can all these people.”
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One strategy: convex relaxation

Can relax into convex problems by

e finding convex surrogates (e.g. matrix completion)

e lifting into higher dimensions (e.g. Max-Cut)
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Example of convex surrogate: matrix completion
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figure credit: Candés et al.

Netflix challenge

Predict unseen
ratings
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Example of convex surrogate: matrix completion

— Fazel '02, Recht, Parrilo, Fazel '10, Candes, Recht'09
minimizeps rank(M) subj. to data constraints

CvX surrogate

minimizeps nuc-norm(M) subj. to data constraints
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Example of convex surrogate: matrix completion

— Fazel '02, Recht, Parrilo, Fazel '10, Candes, Recht'09
minimizeps rank(M) subj. to data constraints

CvX surrogate

minimizeps nuc-norm(M) subj. to data constraints

Robust variation used everyday by
Netflix Candeés, Li, Ma, Wright '10

Problem: operate in full matrix space even though X is low-rank J
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Example of lifting: Max-Cut

— Goemans, Williamson '95

maximize, ' Wz

subj. to  2?=1, i=1,---,n
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Example of lifting: Max-Cut

maximize,,

subj. to

maximize x

subj. to

— Goemans, Williamson '95
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Example of lifting: Max-Cut

maximize,,

subj. to

maximize x

subj. to

— Goemans, Williamson '95

@ let X be zx '

(X,w)

X;=1, i=1,,n
X >0

rank{X )=t
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Example of lifting: Max-Cut

— Goemans, Williamson '95

maximize, ' Wz

subj. to  2?=1, i=1,---,n

maximize x (X, W)
subj. to X;i=1 i=1---,n
X >0
rank{X )=t

E ﬂ let X be zx '

Problem: explosion in dimensions (R — R"*") |

9/125



How about optimizing nonconvex problems directly
without lifting?
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Nonconvex optimization

Complicated nonconvex problems are solved on a daily basis via
simple algorithms such as stochastic gradient descent
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Nonconvex optimization

Complicated nonconvex problems are solved on a daily basis via
simple algorithms such as stochastic gradient descent
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e How come simple nonconvex algorithms work so well in practice?
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Statistical models come to rescue

statistical models

4

benign
landscape

$

tractable algorithms

When data are generated by certain statistical models, problems are
often much nicer than worst-case instances
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Sometimes they are much nicer than we think

Under certain statistical models,
we see benign global geometry: no spurious local optima J

global minimum saddle point
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Even the simplest possible nonconvex methods
might be remarkably efficient under suitable statistical models
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Nonconvex optimization with performance
guarantees

regularization Vanable
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Phase retrieval: Gerchberg-Saxton '72, Netrapalli et
al.’13, Candés, Li, Soltanolkotabi’14, Chen, Candés'15,
Cai, Li, Ma'15, Zhang et al. 16, Wang et al.’16, Sun et
al.’16, Ma et al.'17, Chen et al.'18, ...

Matrix completion: Keshavan et al.'09, Jain et al.'09,
Hardt'13, Sun, Luo'15, Chen, Wainwright '15, Zheng,
Lafferty '16, Ge et al.'16, Jin et al.'16, Ma et al.'17, ...

Matrix sensing: Jain et al.'13, Tu et al.'15, Zheng,
Lafferty '15, Bhojanapalli et al. 16, Li, Zhu, Tang'18, ...

Blind deconvolution / demixing: Li et al.'16, Lee et
al.'16, Ling, Strohmer '16, Huang, Hand '16, Ma et al.'17,
Zhang et al.'18, Li, Bresler '18, Dong, Shi'l8, ...

Dictionary learning: Arora et al. 14, Sun et al.'15,
Chatterji, Bartlett'17, ...

Robust principal component analysis: Netrapalli et al.'14,
Yi et al.’16, Gu et al.'16, Ge et al.'17, Cherapanamjeri et
al.'17, ...

e http://sunju.org/research/nonconvex/

e “Nonconvex Optimization Meets Low-Rank Matrix Factorization: An

Overview,"” Chi, Lu, Chen '18
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Outline

Part Il: Phase retrieval: a case study
o
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Solving quadratic systems of equations

A z* Azx* y = |Az*|?
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Recover * € R™ from m random quadratic measurements

e = (afx*)? k=1,...,m
assume w.l.o.g. ||lx*|2 =1
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Motivation: phase retrieval

Detectors record intensities of diffracted rays
e electric field x(¢1,t2) — Fourier transform Z( f1, f2)

figure credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,tg)eﬂz“(fltl+f2t2)dt1dt2
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Motivation: phase retrieval

Detectors record intensities of diffracted rays
e electric field x(¢1,t2) — Fourier transform Z( f1, f2)

figure credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,tg)e*ﬁ“(fltl+f2t2)dt1dt2’

Phase retrieval: recover signal z(t1,t2) from intensity |Z(f1, f2)|2 J
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Motivation: covariance estimation from quadratic
sketches

— Chen, Chi, Goldsmith '13, Cai, Zhang '13

e Data: m quadratic measurements about low-rank covariance
matrix X

Yi = a; EaZ + noise,

e Goal: recover X € R**" A - I
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Motivation: learning neural nets with quadratic
activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
e x
‘V\\V) I~
a .é—@f 0———-¢+ LN
.ﬁ///’ \'* o - output layer

‘/, hidden layer

input layer
input features: a; weights: X* = [z], -+, x}]
T
output: y = Za(aTm*)
i=1
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Motivation: learning neural nets with quadratic
activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
e x
‘V\\V) I~
a .é—@f 0———-¢+ LN
.ﬁ///’ \'% o - output layer

‘/, hidden layer

input layer
input features: a; weights: X* = [z], -+, x}]
" o(z)=22 "
output: y = Za(aTm*) = Z(aTmf)Q
i=1 i=1

We consider simplest model when r =1
20/125



An equivalent view: low-rank factorization

Introduce X = x| to linearize constraints

pe =(ajz)’ =ag(zz’)a = y=ayXay
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An equivalent view: low-rank factorization

Introduce X = x| to linearize constraints

pe =(ajz)’ =ag(zz’)a = y=ayXay

| -

find X
s.t. Y = a,l—Xak, k=1,---.m
rank(X) =1
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An equivalent view: low-rank factorization

Introduce X = x| to linearize constraints

yr = (ax)’ = aj (xz")a = yr = aj, Xay

=... | [ =....... ||
||

[ |

[ |

||

| |

| |

|

find X

s.t. Yp = a,l—Xak, k=1,---,m

rank(X) =1

Solving quadratic systems is essentially low-rank matrix completion J
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A natural least squares formulation

given: e = (agz)? 1<k<m
U
L 1 & 2 2
minimizezere  f(x) = i > [(ak x)” — yk}
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A natural least squares formulation

given: e = (agz)? 1<k<m
U
minimizezere  f(x) = L f: {(aTa:)2 — ykr
xe 4m ~ k

e pros: often exact as long as sample size is sufficiently large
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A natural least squares formulation

given: e = (agz)? 1<k<m
U
minimizezere  f(x) = L f: {(aTal:)2 — ykr
xe 4m ~ k

e pros: often exact as long as sample size is sufficiently large

e cons: f(-) is highly nonconvex
— computationally challenging!
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

m 2
minimize, Z [ aka: — yk}

1
dm =
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

1 & 2
minimize, f(x — E [ ak,a: —yk}
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

minimize,
////—_\\\\
/ RN
Y W\
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1
dm =

e spectral initialization: ° < leading

eigenvector of certain data matrix
e gradient descent:

! =t — nVf(xh), t=0,1,---
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Spectral initialization

0

x” <— leading eigenvector of

1 & -
Y =— Z?/kakak
m=

Rationale: under random Gaussian design a; g N(0,1),

1 m
E[Y]:=E lm > yraral | = ||e* |31 + 2z x*"
k=1

leading eigenvector: +ax*
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Rationale of two-stage approach

initial guess x”

|
|
|
|
|
|
|
x |
|
1

basin of attraction

1. initialize within local basin sufficiently close to x*

(restricted) strongly convex; no saddles / spurious local mins
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Rationale of two-stage approach

initial guess x”
1

~~
~
~~e

basin of attraction basin of attraction

1. initialize within local basin sufficiently close to x*

(restricted) strongly convex; no saddles / spurious local mins

2. iterative refinement
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A highly incomplete list of two-stage methods

phase retrieval: other problems:

Keshavan, Montanari, Oh '09
Sun, Luo'14

Chen, Wainwright '15

Tu, Boczar, Simchowitz, Soltanolkotabi, Recht '15
Zheng, Lafferty '15

Balakrishnan, Wainwright, Yu'14
Chen, Suh’'15

Chen, Candeés'16

Li, Ling, Strohmer, Wei'16

Yi, Park, Chen, Caramanis’'16
Jin, Kakade, Netrapalli'16
Huang, Kakade, Kong, Valiant'16
Ling, Strohmer'17

Li, Ma, Chen, Chi'18

Aghasi, Ahmed, Hand '17

Lee, Tian, Romberg '17

Li, Chi, Zhang, Liang'17

Cai, Wang, Wei'l7

Abbe, Bandeira, Hall '14

Chen, Kamath, Suh, Tse'16
Zhang, Zhou'17

Boumal '16

Zhong, Boumal '17

Netrapalli, Jain, Sanghavi’'13
Candes, Li, Soltanolkotabi'14
Chen, Candés’'15

Cai, Li, Ma'15

Wang, Giannakis, Eldar'16
Zhang, Zhou, Liang, Chi’'16
Kolte, Ozgur'16

Zhang, Chi, Liang'16
Soltanolkotabi '17

Vaswani, Nayer, Eldar’'16

Chi, Lu'16

Wang, Zhang, Giannakis, Akcakaya, Chen'16
Tan, Vershynin'17

Ma, Wang, Chi, Chen’17

Duchi, Ruan'17

Jeong, Gunturk '17

Yang, Yang, Fang, Zhao, Wang, Neykov'17
Qu, Zhang, Wright'17
Goldstein, Studer'16

Bahmani, Romberg '16

Hand, Voroninski'16

Wang, Giannakis, Saad, Chen'17
Barmherzig, Sun'17
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Computational cost

Ax = [a,;rac]lgkgm

e Spectral initialization: leading eigenvector — a few
applications of A and AT

— Zyk ara; = —A diag{yr} A
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Computational cost

Ax = [a,;rac]lgkgm

e Spectral initialization: leading eigenvector — a few
applications of A and AT

— Z Yk apa; = —A diag{yr} A
e lterations: one application of A and AT per iteration

2! =t~V f(a')
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Asymptotic notation

e f(n) S g(n)or f(n)=0(g(n)) means
|f(n)]

im < const
n=co |g(n)|
e f(n) 2 g(n) means
im |f(n)| > const
n=oco |g(n)|

e f(n) < g(n) means

const; < lim |£(n) < consty
n=oo [g(n)|
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First theory of WF

dist(z!, *) := min{ ||z’ + z*||2}

Theorem 1 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

t/2
dist(2", ) < (1 _ Z) 2|2,

with high prob., provided that step size n < 1/n and sample size:
m 2 nlogn
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First theory of WF

dist(z!, £*) := min{||x’ &+ =*||2}

Theorem 1 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

£/2
dist(@’ e 5 (1) ot

with high prob., provided that step size and sample size:

e lteration complexity: O(nlog?)
e Sample complexity: O(nlogn)

e Derived based on (worst-case) local geometry

29/125



Improved theory of WF

dist(z!, *) := min{ ||z’ + z*||2}

Theorem 2 (Ma, Wang, Chi, Chen’17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

t
dist(@' ) 5 (1-7) o]l

with high prob., provided that step size n = 1/logn and
sample size m 2 nlogn.

e lteration complexity: O(nlog2) N\, O(lognlog?)
e Sample complexity: O(nlogn)

e Derived based on finer analysis of GD trajectory
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Gradient descent theory revisited

Consider unconstrained optimization problem

minimize, f(x)

Two standard conditions that enable geometric convergence of GD
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Gradient descent theory revisited

Consider unconstrained optimization problem

minimize, f(x)

Two standard conditions that enable geometric convergence of GD
e (local) restricted strong convexity (or regularity condition)

e (local) smoothness

V2f(z) =0 and is well-conditioned
31/125



Gradient descent theory revisited

f is said to be a-strongly convex and -smooth if

0 < ol < V2f(a:) < AI, YV
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Gradient descent theory revisited

f is said to be a-strongly convex and B-smooth if

0 < ol < sz(w) < AI, Ve

¢y error contraction: GD with 1 = 1/ obeys

o~ oz < (1= 5 ) o = ol

e Condition number 3/« determines rate of convergence
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Gradient descent theory revisited

f is said to be a-strongly convex and B-smooth if

0 < ol < sz(w) < AI, Ve

¢y error contraction: GD with 1 = 1/ obeys

o~ oz < (1= 5 ) o = ol

e Condition number 3/« determines rate of convergence

e Attains e-accuracy within O(g log 1) iterations

32/125



What does this optimization theory say about WF?

Gaussian designs: ay b N(,I,), 1<k<m
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What does this optimization theory say about WF?

Gaussian designs: ay b N(,I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n

Consequence (Candes et al '14): WF attains e-accuracy within
O(nlog ) iterations if m =< nlogn

33/125



Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations
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i}
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Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations

i}

Step size taken to be = O(1/n)

i}

This choice is suggested by worst-case optimization theory

i}

Does it capture what really happens?
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Numerical efficiency with n, = 0.1

10°
-
2
5 10°
©
=
k=
= 1007
e

10-15 L L L I
0 100 200 300 400 500
Iteration count
Vanilla GD (WF) converges fast for a constant step size! J
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

m
Z{ aka: — agm*)ﬂ apa;

1
oom k=1
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

ii{ (ajx)” — aTm*)Q} aipa;
m 2 k k k

e Not sufficiently smooth if  and ay, are too close (coherent)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

ay

}a:(m —r:)} < Vlegn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

as ay
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

as ay

g (x —2%)| < VA
‘az (@—2 )| ~ Voosn Ja] (x — 2| < /logn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)

Prior works suggest enforcing regularization (e.g. truncation,
projection, regularized loss) to promote incoherence

36/125



Encouraging message: GD is implicitly regularized

region of local strong convexity + smoothness
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Encouraging message: GD is implicitly regularized
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37/125



Encouraging message: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent with {ay}
maxy |a] (z¢ — z*)| < Viogn||z*|2, Wt

— cannot be derived from generic optimization theory; relies on
finer statistical analysis for entire trajectory of GD

37/125



Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen’17)
Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a] z'| < logn ||z*||2 (incoherence)
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Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen’17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a] z'| < logn ||z*||2 (incoherence)

o dist(zf,x*) < (1— g)t |lx*||2 (linear convergence)

provided that step size n < 1/logn and sample size m 2 nlogn.

e Attains ¢ accuracy within O(logn log 1) iterations
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Key proof idea: leave-one-out analysis

For each 1 <[ < m, introduce leave-one-out iterates zH0
by dropping Ith measurement

A
||
H R
HEE B
H N
+ 1 N

8
*

ADOg*

—>

y» =1AWg*?

a;
H N
HEN
||
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Key proof idea: leave-one-out analysis

a;
ety
o~

Y
| &

incoherence region
w.r.t. a;

e Leave-one-out iterate 2'() is independent of q;
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Key proof idea: leave-one-out analysis

a)
{mt,(l)}
[ DN
t \
Zr
f=') \
N
| &
incoherence region
w.r.t. a;

e Leave-one-out iterate 2'() is independent of q;

e Leave-one-out iterate zt() ~ true iterate x!
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Key proof idea: leave-one-out analysis

a)
{mt,(l)}
[ DN
t \
Zr
f=') \
N
| &
incoherence region
w.r.t. a;

e Leave-one-out iterate 2'() is independent of q;
e Leave-one-out iterate () ~ true iterate =

= =z is nearly independent of a;

nearly orthogonal to

40/125



No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

2! 3 5

N\
fresh samples
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

z! 23 5

.
fresh samples

z
22

e This tutorial: reuses all samples in all iterations
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Questions

So far we have presented theory for

spectral initialization + vanilla gradient descent (WF)
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Questions

So far we have presented theory for

spectral initialization + vanilla gradient descent (WF)

Questions:
e |s carefully-designed initialization necessary for fast convergence?
e Can we further improve sample complexity?

e Robustness vis a vis noise and outliers?
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Is carefully-designed initialization necessary for fast convergence?



Initialization

spectral
initialization|

e Spectral initialization gets us reasonably close to truth
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Initialization

saddle points

spectral
initializationf

e Spectral initialization gets us reasonably close to truth

e Cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)
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Initialization

saddle points

spectral
initialization]

random
initialization [

e Spectral initialization gets us reasonably close to truth

e Cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)

Can we initialize GD randomly, which is simpler and model—agnostic?J
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Numerical efficiency of randomly initialized GD

ny = 0.1, a; ~ N(0,1I,,), m = 10n, z° ~ N (0,n"'1,)

100
. \
o
—
—
(5]
il
0
2
=
<
& 5| —n=100 N
10 1 n = 200
—n = 500
n = 800
n = 1000
0 50 100 150 200

t : iteration count
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Numerical efficiency of randomly initialized GD

ny = 0.1, a; ~ N(0,1I,,), m = 10n, z° ~ N (0,n"'1,)

Stage 1
—
0 1
107 [ !
5 \
s}
—
= 1
(<5} 1
S i
= 1
g
=
=
& 5| ——n=100
10° 1 n = 200
—n = 500
n = 800
n = 1000
0 50 100 150 200

t : iteration count

Randomly initialized GD enters local basin within a few iterations J
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Numerical efficiency of randomly initialized GD

ny = 0.1, a; ~ N(0,1I,,), m = 10n, z° ~ N (0,n"'1,)

Stage 1 Stage 2

relative ¢y error

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations J
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A geometric analysis

e if m > nlog®n, then (Sun et al.'16)

o there is no spurious local mins

o all saddle points are strict (i.e. associated Hessian matrices have
at least one sufficiently negative eigenvalue)
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A geometric analysis

e With such benign landscape, GD with random initialization
converges to global min almost surely (Lee et al. '16)

No convergence rate guarantees for vanilla GD!

46 /125



Exponential growth of signal strength in Stage 1

relative ¢y error
1

100 F o=

:

—o—dist(z!, %) (n = 500)

50 100 150
t : iteration count
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Exponential growth of signal strength in Stage 1

relative o error  |(x!,x*)| : signal component
1 1

»::r :

vl v

—a—|(z!, 2%)| (n = 500)

—o—dist(z, 2%) (n = 500)

50 100 150
t : iteration count

Numerically, O(logn) iterations are enough to enter local region

J
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Linear / geometric convergence in Stage 2

—_
=}
-
—
<)
N
<
o
>
B
+
<
—
o
—

5 n = 100
107 [ n =200
n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count
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Linear / geometric convergence in Stage 2

[]
d S
100F f
~
]
-
—
<)
N .
= linear convergence
g 1
=
=
qs.j 5 n = 100
10 [ —n =200
—n = 500
n = 800
n = 1000
0 50 100 150 200
t : iteration count
Numerically, GD converges linearly within local region J
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Theoretical guarantees for randomly initialized GD

These numerical findings can be formalized when a; "~

N(0,I,,):

Theorem 4 (Chen, Chi, Fan, Ma’18)

Under i.i.d. Gaussian design, GD with " ~ N'(0,n~1I,,) achieves
dist(at, @) <A(1— o) Tl t2T,

for T’y < logn and some constants -y, p > 0, provided that step size
n =< 1 and sample size m 2 n polylogm
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) < ~v(1 — p)"" || |2, t > Ty < logn J

s
B

relative ¢y error

0 50 100 150 200
t : iteration count

50/125



Theoretical guarantees for randomly initialized GD

dist(x?, 2*) <~v(1 — p)"" |||, t > T, =< logn J

O(logn)

100F

relative ¢y error

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(z!, z*) < v
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) <~v(1 — p)"" T ||x*||l2, t> Ty < logn )
O(logn) O(log %)
100

relative ¢y error

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(z!, z*) < v

e Stage 2: linear convergence
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) < ~v(1 — p)"" || |2, t > Ty < logn )
O(logn) O(log 1)
100

relative ¢y error

0 50 100 150 200
t : iteration count

e near-optimal compututational cost:
— O(logn + log %) iterations to yield € accuracy
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) < ~v(1 — p)"" || |2, t > Ty < logn )
O(logn) O(log 1)
100

relative ¢y error

0 50 100 150 200
t : iteration count

e near-optimal compututational cost:
— O(logn + log %) iterations to yield € accuracy

e near-optimal sample size: m 2 npoly logm
50 /125



Experiments on images

e coded diffraction patterns
P = R256X256

o m/n =12
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GD with random initialization

T (x!, z*)* x! — (xt, x*)x*
GD iterate signal component perpendicular component

use Adobe Acrobat to see animation
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Saddle-escaping schemes?

E H
8 0.7 [ o aama

. ;eﬁinwﬂm\oi‘
0.6L ; 0 0.05 0,

4
- V~\\~ / \
QU saddle points %

0.4t \
—1 =0.01
027 . 5 =0.05 Y
n =0.1 3
o]
0 02 04 06 08 1 k\
&7

WV
global minimizer

Randomly initialized GD never hits saddle points in phase retrieval! J
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Other saddle-escaping schemes

iteration num of iterations needed | local iteration
complexity to escape saddles complexity
Trust-region
(Sun et al.g '16) n" + log logé n’ log log%
Perturbed GD - .
(Jin et al. '17) n®+n 1ogé n? n logé
Perturbed accelerated

GD n2? 4+ /nlog % n%o Vnlog %
(Jin et al. '17)

GD logn + log 1 logn log %

(Chen et al. '18)

€

Generic optimization theory yields highly suboptimal convergence

guarantees
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Can we further improve sample complexity?



Truncated spectral initialization

1 *
Tax? %Y @k

4

1.

12000

1 = |le*|3 T + 222" T

1 m
E[Y]:=E [m E Yrara,
k=1

1
1

6000
k (m=6n)

problem: unless m > n, dangerous to use empirical average
because large observations yj, = (a; £*)? bear too

much influence
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Truncated spectral initialization

1 *
Tax? %Y @k

4

1.

12000

1 TS S I

2

1 m
E[Y]:=E [m 3" yeara]
k=1

1
1

6000
k (m=6n)
problem: unless m > n, dangerous to use empirical average
: _ T .%x)2
because large observations vy, = (a, **)° bear too
much influence

solution: discard high leverage samples and compute leading
eigenvector of truncated sum

1 m
.
— > Uk - Ly <02 Ava(ly )}

k=1
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Importance of truncated spectral initialization

Relative error

spectral method

I
truncated épectral method

1000 2000 3000

n: signal dimension

4000

real Gaussian m = 6n

5000

Relative error

spectral method

s, truncated spectral method
|

0.4

0.5 1 15 2 25 3 35
n : signal dimension (105)

complex CDP m = 12n

4
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Importance of truncated spectral initialization

Original image
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Importance of truncated spectral initialization

Spectral initialization
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Importance of truncated spectral initialization

Spectral initialization

Truncated spectral initialization
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Precise asymptotic characterization (Lu, Li’17)

e m/n =<1

e i.i.d. Gaussian design

Fig. credit: Lu, Li’'17
Theorem 5 (Lu, Li’17, Mondelli, Montanari '17)

There exist analytical formulas p(-) and constants cuyin and auax S.t.

(a;*Taco)2 {0, ifm/n < amin
lz=[13]|C]13 p(m/n), ifm/n> Gmax
—_—

cosine similarity
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Theoretical prediction vs. simulations

image size: 64 x 64

(m*TmO)Q
[ERHESE

0.8

0.6

0.4}

0.2 F

Rademacher
complex Gaussian

1 1 1 1 1

0 2 4 6 8 10 12
a=m/n

Fig. credit: Lu, Li’17
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Improving search directions
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Improving search directions

WF (GD): 2" = ! — % > V()

k
\»“\\\\\:‘ w.h
RS §
\\\\0\ ‘.’.lft
N,
;,/7/{\\\ N
SRR
| 300
VNN AR
N\ S
LN

locus ;%_{ka(z)}
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Improving search directions

WF (GD): 2" = ! — % > V()

S

locus of-_{ka(z)}

Problem: descent direction might have large variability

J
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Solution: variance reduction via trimming

: C ot ot t
More adaptive rule: '™ =x' — L5, -V fi(x')
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Solution: variance reduction via trimming

More adaptive rule: x!t! =zt — ke V fi(2)
~_ B
N
XA
SRV
A

//l \\t\ X
// Ns
‘ /] \\\\ P \}\‘:\:\
Vo
N

e 7; trims away excessively large grad components

Te = {k: |V fu@)ll, < typical-size{ |V fula!), }1Sl§m}

Slight bias 4+  much reduced variance J
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Summary: truncated Wirtinger flow

(1) Regularized spectral initialization: x" < principal component of

1

.
— ara
mzke%yk R

(2) Follow adaptive gradient descent

t_ ot Tt t
T == Zkeﬂ V fr(x")

m

Adaptive and iteration-varying rules: discard high-leverage data

{yk k¢ Ti}
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Theoretical guarantees (noiseless data)

—
Q10
initial guess x° 8
! 0]
! >
| : | L2
I I - .
| | O10
| | =
| | o
| | [}
| | ;
| x* : ©
I . . -
| basin of attraction &)mso

20 . 40
Iteration

Theorem 6 (Chen, Candeés'15)

~

Suppose ay. Hid. N(0, I,,) and sample size m = n. With high prob.,

dist (2!, 2*) := min ||z’ £ 2*[]2 < v (1 —p)"[|=*||2

where 0 < v, p < 1 are universal constants

v

64/125



Empirical success rate (noiseless data)

1} = TWF
|~ WF

Empirical success rate
o
o

04

5n 6n

“Mm: number of measurements (n=1000)

Empirical success rate vs. sample size
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Stability vis a vis noise and outliers?



Stability under noisy data

e Noisy data: yi, = (a, £*)% +

e Signal-to-noise ratio:

T ,.x\4 * (|4
SNR :— Zk(aka; ) ~ 3mH332H2
ank HTIH2

o i.i.d. Gaussian design ay, 5 N(0,1,,)
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Stability under noisy data

e Noisy data: yi, = (a, £*)% +

e Signal-to-noise ratio:

N o Salal@)!  3mla

Sk i Imli3
o i.i.d. Gaussian design ay, 5 N(0,1,,)

Theorem 7 (Chen, Candeés’15)

Relative error of TWF converges to O( SlN )

Py
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Relative MSE vs. SNR (Poisson data)

-20

257 - m=6n

—“+ m=8n
-+ m=10n

=30+

35}

40

-45 | ’

/

Slop'e = -1

-50 F

-55}

Relative MSE (dB)

-60 |

65 L . . . . . . .
15 20 25 30 35 40 45 50 55

SNR (dB) (n=1000)

Empirical evidence: relative MSE scales inversely with SNR J
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This accuracy is nearly un-improvable (empirically)

Comparison with ideal MLE (with phase info. revealed)

ideal knowledge: y; ~ Poisson( \a;x*|2) and ¢, = sign(a, =*)

truncated WF

Little loss due to
missing phases!
" genie-aided MLE

Relative MSE (dB)

15 20 25 30 35 40 45 50 55
SNR (dB) (n=100)
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This accuracy is nearly un-improvable (theoretically)

e Poisson data: y;, "> Poisson( laf z*|?)

e Signal-to-noise ratio:

~ 3”3
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This accuracy is nearly un-improvable (theoretically)

e Poisson data: y;, "> Poisson( laf z*|?)

e Signal-to-noise ratio:

~ 3”3

Theorem 8 (Chen, Candes’15)

Under i.i.d. Gaussian design, for any estimator x,

) E [dist (z,z*) | {ar}] 1
inf sup ~ > ,
T v |a*||2>log! S m ]2 VSNR

provided that sample size m < n
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Robust recovery vis a vis outliers

Consider now two sources of corruption: sparse outliers and bounded
noise
T,.%x12 .
yi = la; " +ni+w;, i=1,...,m,

e ||n]lo < s-m: sparse outlier, where 0 < s < 1 is fraction of
outliers

e w: bounded noise

Motivation: outliers happen with sensor failures, malicious attacks ...
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Robust recovery vis a vis outliers

Goal: develop algorithms that are oblivious to outliers, and
statistically and computationally efficient
e performs equally well regardless of existence of outliers
e small sample size: ideally m < n
e large fraction of outliers: ideally s < 1

e low computational complexity and easy to implement
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Existing approaches are not robust in the presence
of arbitrary outliers

e Spectral initialization would fail: leading eigenvector of Y can
be arbitrarily perturbed

1 m
Y = = yaa]  (WF
m;yaaz (WF)

1 m
or Y =—3 yiaia; Ly <mean((yy  (TWF)
=1
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Existing approaches are not robust in the presence
of arbitrary outliers

e Spectral initialization would fail: leading eigenvector of Y can
be arbitrarily perturbed

1 m
Y = = yaa]  (WF
- ;y aa;  (WF)
1 m
or Y =% 1iaia] Ly smean((niy  (TWF)
i=1
e GD would fail: search directions can be arbitrarily perturbed
t+1 _ ¢t - t
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Solution: median truncation

Median is often more stable for various levels of outliers

e well-known in robust statistics to be outlier-resilient

Inl, =0, s=01 Il =IxI%, s=01 il =20IxP%, 5=0.1

2500 2500) 2500)

2000 20m) 2000 mean threshold
I

- * | o [Fecian threshol

medis T o
1000 e 1000) 1000
‘ 1 |
S0 s00) 500) Tp-k hreshold
“Top-k threshold ok trestold

no outliers

small outlier magnitudes

large outlier magnitudes
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Solution: median truncation

Median is often more stable for various levels of outliers

e well-known in robust statistics to be outlier-resilient

Inl, =0, s=01 ol =, 501 Inl, =20 s=0.1

hean threshold

[ecian threshol

) T |

500 [t6p-k threshold

“Top-k threshold

Measurements

no outliers small outlier magnitudes  large outlier magnitudes

Key idea: “median-truncation” — discard samples adaptively
based on how large sample gradients / values deviate from median J
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Median-truncated gradient descent

(1) Median-truncated spectral initialization: ° < leading eigenvector
of

1 & T
Y — — Zyiaiai Ly1y; | <median({y: 1)}

=1

(2) Median-truncated gradient descent:

xltt —mt——Zka

keT:

where

To={k: |y — o &'|| < median ({|yx — |aj =']|})}
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Performance guarantees

Theorem 9 (Zhang, Chi and Liang '16)

< 2, and a; Hig N(0,I,). If m 2 nlogn and
s < so, then with high prob., median-TWF / RWF yields

Assume ||w||s < c1|x*

dist(z!, z*) < lwlloe

~ —i—(l—p)tHx*Hg, t=0,1,---
[|z*]2

for some constants 0 < p,sg < 1

e Exact recovery when w = 0 but with a constant fraction of
outliers s < 1

e Stable recovery with additional bounded noise

e Resist outliers obliviously: no prior knowledge of outliers (except
sparsity)
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Numerical experiment with both dense noise and
sparse outliers

10° " "
X TWF with outliers
i -=--median-RWF with outliers
\6 O median-TWF with outliers
\6( TWF without outliers
o)
107 F g
IS &
=
5%
o &
= \ o
© \
K] | Sk
c | 0%
10°F \ o
\ o
o
g
108 . . .
0 20 40 60 80 100
Iterations

Median-TWF with outliers achieves almost identical accuracy as
TWEF without outliers
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Outline

Part Ill: Low-rank matrix estimation



Motivation

Low-rank matrix estimation problems arise in many applications

A popular example is recommendation systems: how to predict
unseen user ratings for movies?

REEEEE -

%
§

§
%
%

figure credit: E. Candés
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Low-rank modeling

ad ~
=] 4

7 tmmr 7 ) vee

[}

- E IR
.v
v
v
:
.
:
:
Frequency
S

? Yoy fonor 7 Wt eee
2
-, R N - 0 lHHHm“ﬂm’hmm ﬂﬂﬂnnnnnﬂnrﬂm cocf. oo
figure credit: E. Candés 0 1 2 25
Elgenvalue (l) % 10°

A few factors explain most of the data
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Low-rank modeling

&Dn IE-

0

7 vy ot 7 fE eee

mﬁmnw
-
v
u
v

figure credit: E. Candés

A few factors explain most of the data —— low-rank approximation

How to exploit (approx.) low-rank structure in prediction?

80/125



Other problems with low-rank matrices

sensor network localization

structure from motion

system identification and time series analysis
spatial-temporal data modeling, e.g. video, network traffic, ..
face recognition

quantum state tomography

community detection
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Rank-constrained optimization

Rank-constrained optimization:

minimizeysepnxn  F(M) s.t. rank(M) <,

where F'(M) is convex in M, and r < n

e useful model for many low-rank estimation problems;

e computationally intractable.
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Convex relaxation

Convex relaxation:
minimizeyrepnxn  F(M) st |[|[M]s <¢

where || - ||« is nuclear norm — convex relaxation of rank

e Pros: mature theory; versatile to incorporate other constraints

e Cons: run-time in O(n?); even M itself takes O(n?) storage

Question: can we develop algorithms that work with computational
and memory complexities nearly linear in n?
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Burer-Monteiro factorization

Matrix factorization:
minimizey v f(U,V):= F{UV")

where M = UV ", where U,V € R,

e pioneered by Burer, Monteiro '03

e highly non-convex

e global ambiguity: for any orthonormal R € R™*" and « # 0,
UV' =(aUR)(a"'VR)"
i.e. if (U, V) is a global minimizer, so does (¢UR,a 'V R)
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Revisiting PCA

Given PSD M € R™*™ (not necessarily low-rank), solve low-rank
approximation problem (best rank-r approximation):

M =argming |Z — M|j2 st rank(Z) <r

nonconvex optimization!

Solution is truncated eigen-decomposition (Eckart-Young theorem)
o let M =", o;uu; be EVD of M (01 > --- > 0,), then

'
i=1
— nonconvex, but tractable
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Optimization viewpoint

Factorize Z = X X T with X € R™*". We're interested in the
landscape of

1
F(X) = XX - M3
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Optimization viewpoint

Factorize Z = X X T with X € R™*". We're interested in the
landscape of

1
F(X) = XX - M3
To simplify exposition: set r = 1.
1 T 2
fw) = glleaT - MR

Definition 10 (critical points)

A first-order critical point (stationary point) of f satisfies

Vf(x)=0
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Several types of critical points

0

2 2

(a) strict saddle (b) local minimum (c) global minimum

figure credit: Li et al. '16
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Critical points of f(x)

x is critical point, i.e. Vf(x) = (xzx' — M)z =0

)

Mz = ||z|3=

)

x aligns with eigenvectorsof M or x =0

Since Mu; = o;u;, set of critical points is given by

{0} U{ou, i=1,...,n}
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Categorization of critical points

Critical points can be further categorized based on Hessians:

Vif(x) = 2zxx" + ||x|3] — M

e For any non-zero critical points @ := /oL u:

VQf(wk) = QUkukug + UkI - M
n n
= 2akuku;€r + oy, (Z um?) — Z UiuiuiT
i=1 i=1

= Z (O’k — O'Z)’LI@’LI%T + 20’].6’1,%11,;r
ik
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Categorization of critical points

Critical points can be further categorized based on Hessians:

Vif(x) = 2zxx" + ||x|3] — M

o lfoy >09>...>0,>0, then
o k=1 V2f(x;) =0 — local minima

o 1<k<n: Anin(V23f(zr)) <0, )\maX(VQf(a:k)) >0
—  strict saddle

ox=0: V2f(0) <0 — local maxima (or strict saddle)
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Good news: benign landscape

For example, for 2-dimensional case f(z) =

F

Fx) = xx" = 1177

global minima = + E] & strict saddle = and £+ [ 1 }

o) o= |

— No “spurious” local minima!
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Key messages from landscape analysis

1
f(X):= Z”XXT - M|, X eR™

If o, > oy

e all local minima are global: X contains top-r eigenvectors (up
to orthonormal transformation)

e strict saddle points: all stationary points are saddle points
except global optimum
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Low-rank recovery with few measurements

Consider linear measurements:
y=AM), yecR™ m<n?
where M € R"*™ is rank-r (r < n) and PSD (for simplicity).
e Consider least-squares loss function:
1
F(X) = JIAXXT - M)
e If A is isotropic (i.e. E[A*A] = T), then
1
Elf(X)] = ZHXXT - M|

e Does f(X) inherit benign landscape?
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Landscape preserving under RIP

Definition 11
Rank-r restricted isometry constants 4, is smallest quantity obeying

(1—-6)|M|E < [AM)[E < (1+6,)|M|E, VM : rank(M) <r
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Landscape preserving under RIP

Definition 11
Rank-r restricted isometry constants 4, is smallest quantity obeying

(1—-6)|M|E < [AM)[E < (1+6,)|M|E, VM : rank(M) <r

Key message: benign landscape is preserved when A satisfies RIP
e.g., when A follows the Gaussian design
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Landscape preserving under RIP

Definition 11
Rank-r restricted isometry constants 4, is smallest quantity obeying

(1—-6)|M|E < [AM)[E < (1+6,)|M|E, VM : rank(M) <r

Theorem 12 (Bhojanapalli et al.’16, Ge et al.’17)

If A satisfies RIP with 65, < 5, then
e all local min are global: any local minimum X of f(-) satisfies
XX'=M
e strict saddle points: any non-local min critical point X of f(-)
satisfies Amin[V2f(X)] < —%O’T
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Landscape without RIP

Matrix completion:

Complete M from partial entries M; ;, (i,j) €

where (i, 7) is included in € independently with prob. p

find low-rank M st. Pqo(M) = Pqo(M) ]

In matrix completion, RIP does not hold
— need to regularize loss function by promoting incoherent
solutions
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Incoherence for matrix completion

Definition 13 (Incoherence for matrix completion)

A rank-r matrix M with eigendecomposition M = UXU | is said to

[ pr
<4 /= =/ —.
10100 <\ 2110 = /2

be p-incoherent if

100
0 00
e.g.

0 00

o O

hard p=n

VS.

1 11 1

1 11 1

1 11 1
easy pu=1
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Regularization

One possible regularizer:

n n

QX) = ;(H:?fk —a)i = ; Qille] X|l2)

where « is regularization parameter, and z; = max{z,0}

10| f
0.8 {
0-65 / (x from -0.2t0 2.2)
0.4| /

96 /125



MC has no spurious local minima under proper
regularization

Consider regularized loss function

1
freg(X) = —[Pa(X X" = M)[F+  AQ(X)
p ——
promote incoherence

where \: regularization parameter

Theorem 14 (Ge et al, 2016)

If sample size n?p > p*nrSlogn and if o« and \ are chosen properly,
then with high prob.,

e all local min are global: any local minimum X of freg(-) satisfies
XX'=M

e saddle points that are not local minima are strict saddles
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Initialization-free theory

Implications:

e Under benign landscape, local search algorithms that can find
local minima are often sufficient, regardless of initialization

e Key algorithm issue: how to escape saddle points
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Saddle-point escaping algorithms

e Vanilla GD with random initialization: converges to global
minimizers almost surely, but no rates are known (Lee et al. '16)

e Second-order algorithms (Hessian-based): trust-region methods,
... (Sun et al.'16)

e First-order algorithms: (perturbed) gradient descent, stochastic
gradient descent, ... (Jin et al.’17)

Open problem: does MC converge fast with random initialization? J
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Gradient descent for matrix completion

Let M = X*X*". Observe
Yij=M;+E; (i,j) €Q

where P ((i, j) € Q) = p and E; ; ~ N(0,02)!

—

minimize HPQ(.Z/\E — Y)H sit. rank(M) <r

2
F

can be relaxed to sub-Gaussian noise and asymmetric case
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Gradient descent for matrix completion

Let M = X*X*". Observe
Yij=M;+E; (i,j) €Q

where P ((i, j) € Q) = p and E; ; ~ N(0,02)!

—

minimizeHPQ(ﬁ — Y)Hi sit. rank(M) <r

minimize x cgnxr  f(X) = Z (e;—XXTek_Yj,k)z
(4,k)€Q

unregularized least-squares loss

can be relaxed to sub-Gaussian noise and asymmetric case
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Gradient descent for matrix completion

(1) Spectral initialization: let U’S°U°" be rank-r

eigendecomposition of

;PQ(Y).

and set X% =U"Y (20)1/2

(2) Gradient descent updates:

X = Xt - VE(XY, t=0,1,---
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Gradient descent for matrix completion

Define optimal transform from the tth iterate Xt to X* as

Q' := argmingeor | X'R — X*||,

Theorem 15 (Noiseless MC, Ma, Wang, Chi, Chen’17)

Suppose M = X*X*" is rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization ) achieves

* 1XQ X le 5 |
S

\ﬁ | X*|,  (spectral)

o | X'Q" - X*H2,oo < p’um/%HX*Hg,oo, (incoherence)

where 0 < p < 1, if step size 1 X 1/0pmax and sample complexity
n?p > pnrdlog® n

e vanilla gradient descent converges linearly for matrix completion!
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Numerical evidence for noiseless data

10°
relative || - [|p error
relateive || - || error
relative || - ||o error
5L
5 10
=1
g
3
o
2
el
<
=
3
A o0k
10—15

50 100 150 200 250 300 350 400 450 500
Iteration count

Relative error of Xt X' (measured by |-|Ip, ||l , [I]lo) Vs iteration
count for MC, where n = 1000, » = 10, p = 0.1, and n; = 0.2
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Noisy matrix completion

Theorem 16 (Noisy MC, Ma, Wang, Chi, Chen'17)

Under sample complexity of Theorem 15, if noise satisfies
a\/7 < U“““ , then GD iterates satisfy

nﬂuﬂlog n’
1 o n
IX'Qt - X*, < (p =+ f) 1%

1
xQ X*nm(pm/ R [EA N8
Q- x5 (2 1)

e minimax entrywise error control in || X' X' — X*X*T||__

104 /125



Numerical evidence for noisy data

||M [
Set SNR : =
710 T T T
——relative | - [[¢ error for X
20 F relateive | - || error for X
m relateive || - [|2,00 error for X
T 30} relative || - [|o error for M| |
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2
g a0t
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£ 50t
E
3]
=~ 60k
o
)
=]
S 70t
T
wn
80k
90 . . . . . .
10 20 30 40 50 60 70 80

SNR (dB)

Squared relative error of the estlmate X (measured by
Fllg > 111+ 1+1],0) @nd M = XX (measured by ||-],) vs. SNR,
where n = 500, r = 10, p=20.1,and n, = 0.2
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Related theory

minimize x cgnxr  f(X) = Z (GJ—XXTek:_Yj,k)Q
(J,k)€Q

Related theory promotes incoherence explicitly:
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Related theory

minimize x cgnxr  f(X) = Z (GJ—XXTek:_Yj,k)Q
(J,k)€Q

Related theory promotes incoherence explicitly:

e regularized loss (solve minx f(X) + Q(X) instead)

o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
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Related theory

minimizexcgnxr  f(X) = Y (e;—XXTek - Y]k)2
(4,k)eQ
Related theory promotes incoherence explicitly:

e regularized loss (solve minx f(X) + Q(X) instead)
o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

e projection onto set of incoherent matrices
o e.g. Chen, Wainwright '15, Zheng, Lafferty '16

Xt =P (X' = Vf(XY)), t=0,1,---
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Quadratic sampling

A X AX i = lla] X|3
(ANE NE I HEN [ |
= E i HER [2]
HEE B B - 2 zjo [ |
H N = —> &
H B 1 | HEE [ |
m < EEE ||

I N E I

EE —— [ [ ] [ |
B EEE r EcE [ |
] HEE [ |
 H EE B | [ || [ |

3

Recover X* € R™ " from m random quadratic measurements

yi = |laf X*|2,  i=1,....m

Applications: quantum state tomography, covariance sketching, ...
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Gradient descent with spectral initialization

L 1 & 2
minimize x cgnxr  f(X) = i > (HakTXH; — yk>
k=1
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Gradient descent with spectral initialization

N 1 & 2
minimizex cgnxr  f(X) = i > (Hang; _ yk>
k=1

Theorem 17 (Quadratic sampling)

Under i.i.d. Gaussian designs a; i~ N(0,I), GD (with spectral
initialization) achieves

e max [|a] (X'Q' — X*)||, < Viogn % (incoherence)
* t
o | X'Q!— X*||r < (1 - m) | X*||¢ (linear convergence)

provided that 1 < 4 and m > nrtlogn

1
lognVvr)2o2(X*)
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Demixing sparse and low-rank matrices

Suppose we are given a matrix

M= L + S eR™
~— —~—

low-rank sparse

Question: can we hope to recover both L and S from M?
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Applications

e Robust PCA

.
Q
.
° °
P o ° L
X ° .
@ ~ o * . . o °0 °
. o . o .
° ° o o . LR . ° °
. ° e o ) - o..
L]
o0 L ou” . o ) o ®
e ®, o _°°
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Nonconvex approach

e rank(L) < r; if we write the SVD of L = UXV', set
X*=U,xY? yr=vx!?

e non-zero entries of S are “spread out” (no more than s fraction
of non-zeros per row/column), but otherwise arbitrary

Ss={SeR™: [[Silo<s-n; [|Sllo <s-n}

1
minimize F(X,Y,8):=|M - XY - S|i +-| X' X -Y'Y|3
X,Y,S€ES; 4

least-squares loss . A
q fix scaling ambiguity

where XY € R™*".
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Gradient descent and hard thresholding

minimizex y ses, F(X,Y,S)

e Spectral initialization: Set S° = H,,(M). Let U’V be
rank-r SVD of MO := Po(M — S°); set X° = U° (20)1/2 and
YO — VO (20)1/2
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Gradient descent and hard thresholding

minimizeX’y75633 F(X, Y, S)

e Spectral initialization: Set S° = H,,(M). Let U’V be
rank-r SVD of M := Pq(M — 8°); set X0 = U (£%)"/? and
YO — VO (20)1/2

o fort=0,1,2,

o Hard thresholding: S'*! =#H (M — X'Y'T)

o Gradient updates:
X't = X' —nVxF (X' Y" 8"
Y =Y —npVyF (X' YY" 8"
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Efficient nonconvex recovery

Theorem 18 (Nonconvex RPCA, Yi et al.’16)

Sety =2 and n = 1/(360max). Suppose that

s < min { —

1 1
pVkrd psT }
Then GD-+HT satisfies

¢
3.2

1 L
XYLl s (1 g ) R0

e O(rlog %) iterations to reach € accuracy

e for adversarial outliers, optimal fraction is s = O(1/ur);

Theorem 18 is suboptimal by a factor of \/r

e extendable to partial observation models
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Outline

e Part IV: Closing remarks



A growing list of “benign” nonconvex problems

e blind deconvolution / self-calibration
e dictionary learning

e tensor decomposition

e robust PCA

e mixed linear regression

e Gaussian mixture models

e etc...
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Topics we did not cover

e other algorithms: alternating minimization, stochastic gradient
descent, mirror descent, singular value projection, etc...

¢ additional structures: e.g. sparsity, piece-wise smoothness

e saddle-point escaping algorithms
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“Nonconvex Optimization Meets Low-Rank Matrix Factorization: An
Overview”

— Y. Chi, Y. Lu and Y. Chen, arXiv: 1809.09573
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