Nonconvex Optimization for High-Dimensional Signal Estimation:
Spectral and lterative Methods — Part |

Yuejie Chi Yuxin Chen Cong Ma
Carnegie Mellon Princeton UC Berkeley

EUSIPCO Tutorial, December 2020



Acknowledgement

e Our students and collaborators: Emmanuel J. Candeés, Jianging
Fan, Yuanxin Li, Yingbin Liang, Yue M. Lu, Laixi Shi, Vincent
Monardo, Tian Tong, Kaizheng Wang, Huishuai Zhang.

e This work is supported in part by ARO, AFOSR, ONR and NSF.

S eor

y\
Cence & 'l'ec\““)\“\:1

2/36



Outline

Part I: Introduction and Warm-Up

Why nonconvex? basic concepts and a warm-up example (PCA)

Part Il: Gradient Descent and Implicit Regularization

phase retrieval, matrix completion, random initialization

Part Ill: Spectral Methods

a general recipe, ¢ and /o, guarantees, community detection

Part IV: Robustness to Corruptions and Ill-Conditioning

median truncation, least absolute deviation, scaled gradient descent
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Outline

e Part I: Introduction and Warm-Up

Why nonconvex? basic concepts and a warm-up example (PCA)
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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize;,  f(x;data) —  loss function may be nonconvex
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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize;  f(ax;data) —  loss function may be nonconvex

low-rank matrix completion

blind deconvolution

dictionary learning

e mixture models

deep learning
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Nonconvex optimization may be super scary

e.g. 1-layer neural net (Auer, Herbster, Warmuth '96; Vu '98)
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Example: solving quadratic programs is hard

Finding maximum cut in a graph is about solving a quadratic program

maximize,, z Wz

subj. to  2?=1, i=1,---,n
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Example: solving quadratic programs is hard
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One strategy: convex relaxation

Can relax into convex problems by

e finding convex surrogates (e.g. matrix completion)

e lifting into higher dimensions (e.g. Max-Cut)
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Example of convex surrogate: matrix completion
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figure credit: Candés et al.

Netflix challenge

Predict unseen
ratings
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Low-rank modeling
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A few factors explain most of the data
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Low-rank modeling
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figure credit: E. Candés

A few factors explain most of the data —— low-rank approximation

How to exploit (approx.) low-rank structure in prediction?
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Example of convex surrogate: matrix completion

— Fazel '02, Recht, Parrilo, Fazel '10, Candes, Recht'09
minimizeps rank(M) subj. to data constraints

CvX surrogate

minimizeps nuc-norm(M) subj. to data constraints

11/36



Example of convex surrogate: matrix completion

— Fazel '02, Recht, Parrilo, Fazel '10, Candes, Recht'09
minimizeps rank(M) subj. to data constraints

CvX surrogate

minimizeps nuc-norm(M) subj. to data constraints

robust variation used by Netflix
— Candes, Li, Ma, Wright '10
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Example of convex surrogate: matrix completion

— Fazel '02, Recht, Parrilo, Fazel '10, Candes, Recht'09
minimizeps rank(M) subj. to data constraints

CvX surrogate

minimizeps nuc-norm(M) subj. to data constraints

robust variation used by Netflix
— Candes, Li, Ma, Wright '10

Problem: operate in full matrix space even though X is low-rank J
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Example of lifting: Max-Cut

— Goemans, Williamson '95

maximize, ' Wz

subj. to  2?=1, i=1,---,n
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Example of lifting: Max-Cut

maximize,,

subj. to

maximize x

subj. to

— Goemans, Williamson '95
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Example of lifting: Max-Cut

maximize,,

subj. to

maximize x

subj. to

— Goemans, Williamson '95

@ let X be zx '

(X,w)

X;=1, i=1,,n
X >0

rank{X )=t
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Example of lifting: Max-Cut

— Goemans, Williamson '95

maximize, ' Wz

subj. to  2?=1, i=1,---,n

maximize x (X, W)
subj. to X;i=1 i=1---,n
X >0
rank{X )=t

E ﬂ let X be zx '

Problem: explosion in dimensions (R — R"*") |
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How about optimizing nonconvex problems directly
without lifting?

13/36



Nonconvex optimization

Complicated nonconvex problems are solved on a daily basis via
simple algorithms such as stochastic gradient descent
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Nonconvex optimization

Complicated nonconvex problems are solved on a daily basis via
simple algorithms such as stochastic gradient descent
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e How come simple nonconvex algorithms work so well in practice?
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Statistical models come to rescue

statistical models

4

benign
landscape

$

tractable algorithms

When data are generated by certain statistical models, problems are
often much nicer than worst-case instances
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Sometimes they are much nicer than we think

Under certain statistical models,
we see benign global geometry: no spurious local optima J

global minimum saddle point
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Even the simplest possible nonconvex methods
might be remarkably efficient under suitable statistical models
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Nonconvex optimization with guarantees

i : vodel [\
:,ri?gsﬂdmdl\g"ab'eR ubie A Nar IySISET?\a(;I‘VT?Q Phase retrieval: Gerchberg-Saxton '72, Netrapalli et
o < ensor FI secnnnamevm al. 13, Candeés, Li, Soltanolkotabi'14, Chen, Candés'15,
i OWW’E‘S—— o Cai, Li, Ma'15, Zhang et al. 16, Wang et al.'16, Sun et

al.’'16, Ma et al.’'17, Chen et al.'18, ...

Matrix completion: Keshavan et al.’09, Jain et al.’09,
Hardt '13, Sun, Luo'15, Chen, Wainwright '15, Zheng,
Lafferty '16, Ge et al.'16, Jin et al.'16, Ma et al.'17, ...

Matrix sensing: Jain et al.'13, Tu et al.'15, Zheng,
Lafferty '15, Bhojanapalli et al. 16, Li, Zhu, Tang'18, ...

Blind deconvolution / demixing: Li et al.'16, Lee et
al.'16, Ling, Strohmer '16, Huang, Hand '16, Ma et al.'17,
Zhang et al.'18, Li, Bresler '18, Dong, Shi'18, ...

ﬁhase&‘
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Dictionary learning: Arora et al.’14, Sun et al.'15,
Chatterji, Bartlett '17, ...

E Ma""esw"hou' “o Robust principal component analysis: Netrapalli et al. '14,
Bifder u) ef] m‘ m S d‘ Yi et al.'16, Gu et al.'16, Ge et al.'17, Cherapanamjeri et
Optlmallty R O_ Ihethod al.’17
Curvature ? ewton ¥ Burer-| Mon(elroBounds Models ) o

e http://sunju.org/research/nonconvex/

e “Nonconvex Optimization Meets Low-Rank Matrix Factorization: An
Overview,” Y. Chi, Y. M. Lu, and Y. Chen, IEEE Trans. on Signal
Processing, vol. 67, no. 20, pp. 5239-5269, 2019.
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A bit preliminaries of optimization



Unconstrained optimization

Consider an unconstrained optimization problem
minimize, f(x)

Definition 1 (first-order critical points)

A first-order critical point of f satisfies

Vf(x)=0
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Unconstrained optimization

Consider an unconstrained optimization problem

minimize, f(x)

Definition 2 (second-order critical points)

A second-order critical point @ satisfies

Vi(x)=0 and VZf(z)>=0
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Several types of critical points

For any first-order critical point :
e V2f(xz) <0
e V2f(x)>~0

o Anin(V2f(x)) <0

A R o N s

-

2

a
v

(a) strict saddle

2

—  local maximum
—  local minimum

—  strict saddle point

(b) local minimum

(c) global minimum

figure credit: Li et al. '16
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Gradient descent theory

Two standard conditions that enable geometric convergence of GD
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Gradient descent theory

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity (or regularity condition)
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Gradient descent theory

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity (or regularity condition)

e (local) smoothness

V2f(x) = 0 and is well-conditioned

22/36



Gradient descent theory revisited

f is said to be a-strongly convex and (-smooth if

0 < ol < V3f(x) < BI, Vx

23/36



Gradient descent theory revisited

f is said to be a-strongly convex and B-smooth if

0 < ol < V3f(x) =< BI, Va

{5 error contraction: GD (z'™! = 2! — nV f(z!)) with n = 1/
obeys .
o~ onlle < (1= 5 ) 12 = @onel

e Condition number 3/« determines rate of convergence
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Gradient descent theory revisited

f is said to be a-strongly convex and B-smooth if

0 < ol < V3f(x) =< BI, Va

{5 error contraction: GD (z'*! =z — nV f(2')) with n =1/
obeys .
o~ onlle < (1= 5 ) 12 = @onel

e Condition number 3/« determines rate of convergence

e Attains e-accuracy within O(g log 1) iterations

23/36



Regularity Condition (RC)

f(=)

Lopt = 0

Definition 3 (Regularity Condition (RC))
g(-) is said to obey RC(u, A, () for some p, A\, > 0 if

2(g(x), 2 — zopr) = ullg(@) |3 + A& — zopell; Ve
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Convergence under RC

e g(-): more general search directions
o example: in vanilla GD, g(z) = Vf(x)
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Convergence under RC

/5 error contraction: The update rule (! = x! — ng(x?)) with
7 = | obeys

[ — Topell2 < (1= ) ! — wopell

e g(-): more general search directions
o example: in vanilla GD, g(x) = V f(x)

e The product pA determines the rate of convergence

25/36



Convergence under RC

/5 error contraction: The update rule (! = x! — ng(x?)) with
7 = | obeys

[ — Topell2 < (1= ) ! — wopell

e g(-): more general search directions
o example: in vanilla GD, g(x) = V f(x)

e The product pA determines the rate of convergence

e Attains e-accuracy within O(#A log 1) iterations
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RC = one-point strong convexity + smoothness

e One-point a-strong convexity:

f@op) = f(@) > (VI (@), @ope — ) + G 1@ —zopel} (1)
e [-smoothness:
(o) — f (@) < f(z - ;Vﬂw)) - f()

B
1
=733 IV £ ()ll3 (2)

< (wrt@)-hvsel) 5] s sc]
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RC = one-point strong convexity + smoothness

Combining (1) and (2) yields

(VF@):@ = o) 2 5o = @onelf + 55 IVI@IE (3)

— RC holds with yn =1/ and \ = «
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A toy example: rank-1 matrix factorization
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Revisiting PCA
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Given M > 0 € R™™™ (not necessarily low-rank), find its best rank-r
approximation:

M = argming ||Z — M|? st rank(Z) <r

nonconvex optimization!

28/36



Revisiting PCA
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This problem admits a closed-form solution

o let M=3%", )\luluzT be eigen-decomposition of M
(A1 >--->A\p), then

T
M =>" Nuu/
=1

— nonconvex, but tractable
28/36



Optimization viewpoint

If we factorize Z = X X T with X € R™ ", then it leads to a
nonconvex problem:

1
minimize x cgnxr  f(X) = i||XX—r — M|}

To simplify exposition, set r = 1:

1
minimize, f(x) = 1||:chac—r — M]3
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Questions

1
minimize, f(x) = 1||:13:1:—r — M|}

e Where / what are the critical points?

e What does the curvature behave like, at least locally around the
global minimizer?
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Critical points of f(-)

x is a critical point, i.e. Vf(z) = (zx' — M)z =0

)

Mz = ||z|3=

)

x aligns with an eigenvectorof M or x =0

Since Mu; = \;ju;, the set of critical points is given by

{oyu{tvNu;, i=1,...,n}
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Categorization of critical points

The critical points can be further categorized based on the Hessians:

V3f(x) = 2zxx" + ||x|3] — M

e For any non-zero critical point @ = £/ Apuy:

V2f(’£k) = 2>\kukuz + M — M

n n
= 20kuku,—€r + A (Z uzu:> — Z )\Zulu:
=1 =1
= Z ()\k — )\Z)uzu: + 2)\kuku;—
IREDS
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Categorization of critical points

The critical points can be further categorized based on the Hessians:

V3f(x) = 2zxx" + ||x|3] — M

e lf Ay > X >... 2> A, >0, then
o V2f(x1) =0 —  local minima

o 1< k<n: )\min(VQf(iL'k)) <0, )\max(VQf(wk)) >0
—  strict saddle

ox=0: V2f(0) 0 — local maxima

32/36



Good news: benign landscape

2
For example, for 2-dimensional case f(x) =

x| — E ﬂ
F
169 = e - 117

<2

0
1 -

-1

— No “spurious” local minima!

global minima: = = + E] strict saddles: © = {8] and + [ 1 ]

33/36



Local strong convexity and local linear convergence

e The global minimizers: xopr = v/ A1uq

e For all x obeying ||« one has

— Topt| <M
opt 2 > 15\/T11

basin of attraction

0.25(\1 — X\o)I,, < V2f(x) < 4.5\ 1,

34/36



Local strong convexity and local linear convergence

e The global minimizers: xopr = v/ A1uq

e For all x obeying ||« one has

— Topt| <M
Opt 2 > 15\/T11

basin of attraction

0.25(\1 — X\o)I,, < V2f(x) < 4.5\ 1,

fo error contraction: The GD iterates obey

A —A2)!
ot = VAl < (1= i) 12 = VAl £ 0

18\

as long as [|£° — v Ajuq |2 < %
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Two vignettes

Two-stage approach:

2

basin of attraction

smart initialization

_/_
local refinement
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Two vignettes

Two-stage approach: Global landscape:

2

basin of attraction

smart initialization benign landscape
+ +
local refinement saddle-point escaping
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Two vignettes

Two-stage approach: Global landscape:

2

|

|
| |
| [
| [
| |
| |
| |
| |
1 1

basin of attraction

smart initialization benign landscape
+ +
local refinement saddle-point escaping

This tutorial will mostly focus on the two-stage approach.
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Global landscape

Benign landscape:

e all local minima = global minima

e other critical points = strict saddle points %”/w
Saddle-point escaping algorithms: .

e trust-region methods;

e perturbed gradient descent;
e perturbed SGD;
e etc...

Check the recent overview: Zhang, Qu, Wright “From Symmetry to
Geometry: Tractable Nonconvex Problems”
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Outline

Part Il: Gradient Descent and Implicit Regularization

phase retrieval, matrix completion, random initialization
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A case study: solving quadratic systems of equations



Solving quadratic systems of equations

A x* Ax* y = |[Az*?
(HNE BE N [ | [ |
| BN I | [ | [ |
EE B B _ ©H [ |
"W | - H —> =
m< 1 B [ | [ | [ |
[ T B e o -
H B [ | [ |

[ B [ ] ] | |
] [ | [ |
(I PH N | |

3

Recover * € R™ from m random quadratic measurements

ue = (afx*)? k=1,....,m
assume w.l.o.g. ||x*|2 =1
4/44



Motivation: phase retrieval

Detectors record intensities of diffracted rays
e electric field x(t1,t2) — Fourier transform Z( f1, f2)
figure credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,b)eﬂzﬂ(fltl+f2t2)dt1dt2
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Motivation: phase retrieval

Detectors record intensities of diffracted rays
e electric field x(t1,t2) — Fourier transform Z( f1, f2)
figure credit: Stanford SLAC

. 2
intensity of electrical field: |E(f1,f2)|2 = ‘/x(tl,tg)eﬂz“(fltl+f2t2)dt1dt2’

Phase retrieval: recover signal x(t1,t2) from intensity |Z(f1, f2)|2 J

5/44



Motivation: learning neural nets with quadratic
activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
e x
.?\\V 2T~
a .e—»e U———++ LN
./// /—\* o~ output layer
., hidden layer

input layer
input features: a; weights: X* = [z7, -+, x}]

r

output: yzz (a'xF)
i=1
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Motivation: learning neural nets with quadratic
activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
e x
.?\\V 2T~
a .e—»e U———++ LN
./// /—\* o~ output layer
., hidden layer

input layer
input features: a; weights: X* = [z7, -+, x}]
r o(2)=22 r
output: y = Z (aTw*) = Z(aTazf)Q
i=1 i=1
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Motivation: learning neural nets with quadratic
activation

— Soltanolkotabi, Javanmard, Lee '17, Li, Ma, Zhang '17
e x
.V\\V AT~
a .é—@f U———++ LN
.A///’\i 97 output layer
., hidden layer

input layer
input features: a; weights: X* = [z7, -+, x}]
s (Z):ZQ 7
output: y = Z (aTw*) = (axF)?
i=1 i=1
We consider simplest model when r = 1 (higher r is similar)
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An equivalent view: low-rank factorization

Introduce X = x| to linearize constraints
")

T

y = (af2) =al @z )a —  y—alXa
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An equivalent view: low-rank factorization

Introduce X = x| to linearize constraints

T T)

y = (af2) =al @z )a —  y—alXa

! -

find X
s.t. Yp = a;chak, k=1,---,m
rank(X) =1
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An equivalent view: low-rank factorization

Introduce X = x| to linearize constraints

Yk = (akTa:)2 = aZ(mmT)a = Yk = agXak
=lll HEENEEN
| |
| |
| |
B
| |
| |
B
find X
s.t. Yp = a;chak, k=1,---,m

rank(X) =1

Solving quadratic systems is essentially low-rank matrix completion J

7/44



A natural least-squares formulation

given: e = (ajz)? 1<k<m
I
L 1 & 2 2
minimizezere  f(x) = i > [(ak x)” — yk}
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A natural least-squares formulation

given: e = (ajz)? 1<k<m
I
minimizezere  f(x) = L f: {(aTa:)2 — ykr
e dm =~ k

e pros: often exact as long as sample size is sufficiently large
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A natural least-squares formulation

given: e = (ajz)? 1<k<m
I
minimizezere  f(x) = L f: {(aTa:)2 — ykr
e dm =~ k

e pros: often exact as long as sample size is sufficiently large

e cons: f(-) is highly nonconvex
— computationally challenging!

8/44



Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

m 2
minimizeg Z [ :E - yk}

k=1
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

minimize, f(x i[ x) _ykr

1
dm =

RN « ege ge . .
PPN e spectral initialization: ° « leading
/ ’ \\\ . . .

AN NN eigenvector of certain data matrix

| / —— N \\\\
\1 [\\ I, I/ \\\\\\ \\\
A NS
’\ | | “‘ ! 77N \\ \| /I'
VNN Y
NN ) S
N \\\\\\\\:\“:’/‘//7

N ~S—— ==/
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Wirtinger flow (Candeés, Li, Soltanolkotabi’14)

minimizeg
///(—_\\\\
/ P ERNAN
/ // \\\
AN
Pl / \ \\\\
] ~
AN I, a8 AN AN \\
[ N N W
T T A N AR
[T RN \\ \
Vouou o Ny
NV N\ b
NN N NN
NI NN
-~
\\\\\_ \\_///://
~—— ~—"7
\\ //

f(= i[ ) _ykr

k=1
e spectral initialization: ° « leading
eigenvector of certain data matrix
e gradient descent:

J’.H_l:wt_nvf(wt)v t:()?l?

9/44



Spectral initialization

0

x” <— leading eigenvector of

1 & -
Y =— Z?/kakak
m=

Rationale: under random Gaussian design a; g N(0,1),

1 m
E[Y]:=E lm > yraral | = ||e* |31 + 2z x*"
k=1

leading eigenvector: +ax*

10/44



Rationale of two-stage approach

0

initial guess x

|
|
|
|
|
|
|
|
basin of attraction I

1. initialize within local basin sufficiently close to x*

(restricted) strongly convex; no saddles / spurious local mins
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Rationale of two-stage approach

0

initial guess x

~

basin of attraction

1. initialize within local basin sufficiently close to x*

(restricted) strongly convex; no saddles / spurious local mins

2. iterative refinement

11/44



A highly incomplete list of two-stage methods

phase retrieval: other problems:
Netrapalli, Jain, Sanghavi’13 Keshavan, Montanari, Oh'09
Candgs, Li, Soltanolkotabi'14 Sun, Luo'14

Chen, Wainwright '15

Tu, Boczar, Simchowitz, Soltanolkotabi, Recht '15
Zheng, Lafferty '15

Balakrishnan, Wainwright, Yu'14
Chen, Suh'15

Chen, Candés’16

Li, Ling, Strohmer, Wei'16

Yi, Park, Chen, Caramanis'16
Jin, Kakade, Netrapalli'16
Huang, Kakade, Kong, Valiant'16
Ling, Strohmer'17

Li, Ma, Chen, Chi’'18

Aghasi, Ahmed, Hand '17

Lee, Tian, Romberg '17

Li, Chi, Zhang, Liang'17

Cai, Wang, Wei'l7

Abbe, Bandeira, Hall '14

Chen, Kamath, Suh, Tse'16
Zhang, Zhou'17

Boumal '16

Zhong, Boumal'17

Chen, Candés’'15

Cai, Li, Ma'15

Wang, Giannakis, Eldar'16
Zhang, Zhou, Liang, Chi’'16
Kolte, Ozgur'16

Zhang, Chi, Liang'16
Soltanolkotabi '17

Vaswani, Nayer, Eldar’'16

Chi, Lu'16

Wang, Zhang, Giannakis, Akcakaya, Chen'16
Tan, Vershynin'17

Ma, Wang, Chi, Chen’17

Duchi, Ruan'17

Jeong, Gunturk '17

Yang, Yang, Fang, Zhao, Wang, Neykov'17
Qu, Zhang, Wright'17
Goldstein, Studer'16

Bahmani, Romberg '16

Hand, Voroninski'16

Wang, Giannakis, Saad, Chen'17
Barmherzig, Sun'17

12/44



First theory of WF

dist(z!, *) := min{ ||z’ + z*||2}
Theorem 1 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

t/2
dist(z!, 2*) < (1 - Z) l|2*|2,

with high prob., provided that step size n < 1/n and sample size:
m 2 nlogn.
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t/2
dist(z',2*) < (1 - Z) |z*]2,

with high prob., provided that step size n < 1/n and sample size:
m 2 nlogn.

e lteration complexity: O(nlog?)

e Sample complexity: O(nlogn)
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First theory of WF

dist(x!, £*) := min{||z! £ =*||2}

Theorem 1 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
t/2
dist(a!, @) < (1 - Z) |2,

with high prob., provided that step size and sample size: .

e lteration complexity: O(nlog %)
e Sample complexity: O(nlogn)

e Derived based on (worst-case) local geometry

13/44



Improved theory of WF

dist(z!, *) := min{ ||z’ + z*||2}
Theorem 2 (Ma, Wang, Chi, Chen’17)
Under i.i.d. Gaussian design, WF with spectral initialization achieves

t
dist(@'. ) 5 (1-7) ol

with high prob., provided that step size n = 1/logn and
sample size m 2 nlogn.

e lteration complexity: O(nlog 1) \, O(lognlog?)
e Sample complexity: O(nlogn)

e Derived based on finer analysis of GD trajectory

14/ 44



What does optimization theory say about WF?

Gaussian designs: ay NS N(,I,), 1<k<m
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What does optimization theory say about WF?

Gaussian designs: ay NS N(,I,), 1<k<m

Finite-sample level (m < nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n

Consequence (Candés et al '14): WF attains e-accuracy within
O(nlog?) iterations if m < nlogn

15/ 44



Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations
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Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations

i}

Step size taken to be = O(1/n)

i}

This choice is suggested by worst-case optimization theory

]

Does it capture what really happens?

16/ 44



Numerical efficiency with n, = 0.1

10°

10-10 L

Relative || - || error

1015 | | | I
0 100 200 300 400 500
Iteration count

Vanilla GD (WF) converges fast for a constant step size!
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

m
Z{ ajx)” — agm*)z} apa;

1
oom k=1
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

ii{ (ajx)” — aTm*)z} arpa;
m ~ k k k

e Not sufficiently smooth if  and ay are too close (coherent)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

a;

[a] (x — 2| < logn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

az a

20

T _ a0 < )
‘az(m m)|N\/logn ol (= — )| < v/iogT

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

az a

P

T _ a0 < )
“12 (x —x )| < Vlegn ol (= — )| < v/iogT
e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)

Prior works suggest enforcing regularization (e.g. truncation,
projection, regularized loss) to promote incoherence

18/44



Encouraging message: GD is implicitly regularized

region of local strong convexity + smoothness
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Encouraging message: GD is implicitly regularized

region of local strong convexity + smoothness
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Encouraging message: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent with {ay}
maxy |a] (z¢ — x*)| < Viogn||z*|2, Wt

— cannot be derived from generic optimization theory; relies on
finer statistical analysis for entire trajectory of GD

19/44



Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen’17)
Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a] z'| < logn ||x*||2 (incoherence)
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Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen’17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a] z'| < logn ||x*||2 (incoherence)
o dist(z!,x*) < (1— g)t ||lx*||2 (linear convergence)

provided that step size n < 1/logn and sample size m 2 nlogn.

e Attains ¢ accuracy within O(logn log 1) iterations

20/ 44



Key proof idea: leave-one-out analysis

For each 1 <[ < m, introduce leave-one-out iterates b0
by dropping Ith measurement

*

A0 ADp* y® = A0z

8

—

21/44



Key proof idea: leave-one-out analysis

a;
{mt,(l)}
0--,\
AS
N
| 4

incoherence region
w.r.t. a;

e Leave-one-out iterate () is independent of a;
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Key proof idea: leave-one-out analysis

a
(i
{at} oo

3
| 4
incoherence region
w.r.t. a;
e Leave-one-out iterate () is independent of a;

e Leave-one-out iterate zt() = true iterate x!
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Key proof idea: leave-one-out analysis

22}
{wt,(l)}
==b.
{z'} \
\
N
| 4
incoherence region
w.r.t. a;

e Leave-one-out iterate () is independent of a;
e Leave-one-out iterate zt() ~ true iterate !

= =z is nearly independent of a;

nearly orthogonal to

22 /44



No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

z! 23 5

N\
fresh samples
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

z! 23 5
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Other examples: low-rank matrix estimation

24 /44



Low-rank matrix completion

Complete M from partial entries M; ;, (i,j) €

where (i, j) is included in € independently with prob. p

find low-rank M st. Pq(M) = Po(M)

In matrix completion, strong convexity and smoothness do not hold in
general

— need to regularize the loss function by promoting
incoherent solutions

25 /44



Incoherence for matrix completion

Definition 4 (Incoherence for matrix completion)

A rank-r matrix M with eigendecomposition M = UXU | is said to

be p-incoherent if
[ pr
Ul < /2101 = 2

1 00 0 1 11 1
0 00 0 1 11 1
e.g. o VS.
000 ---0 111 -1
hard p=n easy p=1

26 / 44



Gradient descent for matrix completion

Let M = X*X*". Observe
Yij=M;+E;; (i,j) €

where (i,7) € Q independently with prob. p, and E; j ~ N(0,0?)?

—

minimizeHqu(]\//I — Y)H; s.t. rank(M) <r

can be relaxed to sub-Gaussian noise and the asymmetric case
27 /44



Gradient descent for matrix completion

Let M = X*X*". Observe
Yij=M;+E;; (i,j) €

where (i,7) € Q independently with prob. p, and E; j ~ N(0,0?)?

o~

minimizeHqu(]\//I — Y)H; s.t. rank(M) <r

minimize x cgnxr  f(X) = Z (GIXXTek:—Yj,k)Q

(4,k)eQ

unregularized least-squares loss

can be relaxed to sub-Gaussian noise and the asymmetric case
27 /44



Gradient descent for matrix completion

(1) Spectral initialization: let U°S°U°" be rank-r

eigendecomposition of

;;T%)(}’).

and set X0 = U° (£0)"/2

(2) Gradient descent updates:

X = Xt VXY, t=0,1,---

28 /44



Gradient descent for matrix completion

Define the optimal transform from the tth iterate X! to X* as

X'R—- X*

Q' = argmin georxr | HF

where O"*" is the set of r x 7 orthonormal matrices

e orthogonal Procrustes problem

20 /44



Gradient descent for matrix completion

Theorem 5 (Noiseless MC, Ma, Wang, Chi, Chen’17)

Suppose M = X*X*T is rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization) achieves

QX e S
o | X'Q'—X*| < p,ur ||X* ,

(spectral)

o | X'Q' - X",  Sp um/%HX*HQ,OO, (incoherence)
where 0 < p < 1, if the step size n < 1/0pq: and the sample
complexity n®p > p*nrlog3n

e vanilla gradient descent converges linearly for matrix completion!

30/ 44




Numerical evidence for noiseless data

10°
relative || - [|p error
relateive || - || error
relative || - ||o error
5
5 10
=1
g
3
o
2
el
<
=
3
A o0k
10—15

50 100 150 200 250 300 350 400 450 500
Iteration count

Relative error of Xt X' (measured by |-|Ip, ||l , [I]lo) Vs iteration
count for MC, where n = 1000, » = 10, p = 0.1, and n; = 0.2
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Related theory

minimize x cgnxr  f(X) = Z (GJ—XXTek:_Yj,k)Q
(J,k)€Q

Related theory promotes incoherence explicitly:
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Related theory

minimize x cgnxr  f(X) = Z (GJ—XXTek:_Yj,k)Q
(J,k)€Q

Related theory promotes incoherence explicitly:

e regularized loss (solve minx f(X) + Q(X) instead)

o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
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Related theory

minimizexcgnxr  f(X) = Y (e;—XXTek - Y]k)2
(4,k)eQ
Related theory promotes incoherence explicitly:

e regularized loss (solve minx f(X) + Q(X) instead)
o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

e projection onto set of incoherent matrices
o e.g. Chen, Wainwright '15, Zheng, Lafferty '16

Xt =P (X' = Vf(XY)), t=0,1,---

32/44



Quadratic sampling

A X AX i = lla) X3
(ANE NE I HEn [ |
= E i ] [ |
HEE B B - 2 2o [ |
H N = e —> &
B B 0 | RN [ |
m BEEE 12

HE H B I — ]

EE — || [ |
B EEE r a0t [ |
] HEN [ |
 H O E [ | ] [ |

3

Recover X* € R™*" from m random quadratic measurements

y = |l X*|2,  i=1,...,m

Applications: quantum state tomography, covariance sketching, ...

33/44



Gradient descent with spectral initialization

L 1 & 2
minimize x cgnxr  f(X) = i > (HakTXH; — yk>
k=1
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Gradient descent with spectral initialization

N 1 & 2
minimizex cgnxr  f(X) = i > (Hang; _ yk>
k=1

Theorem 6 (Quadratic sampling)

Under i.i.d. Gaussian designs a; i~ N(0,I), GD (with spectral
initialization) achieves

e max [|a] (X'Q' — X*)||, < Viogn % (incoherence)
* t
o | X'Q!— X*||r < (1 - m) | X*||¢ (linear convergence)

provided that 1 < 4 and m > nrtlogn

1
lognVvr)2o2(X*)

34 /44



Are carefully-designed initialization or saddle-point escaping
schemes necessary for fast convergence?



Initialization

spectral 3
initialization|

e Spectral initialization gets us reasonably close to truth
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Initialization

saddle points

spectral
initializationf =

e Spectral initialization gets us reasonably close to truth

e Cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)
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Initialization

saddle points

spectral
initialization|

random
initialization
e Spectral initialization gets us reasonably close to truth

e Cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)

Can we initialize GD randomly, which is simpler and model—agnostic?J

36 /44



Numerical efficiency of randomly initialized GD

n = 0.1, a; ~N(0,1,), m = 10n, z° ~ N (0,n"11,)

100»\
—
IS]
-
—
)
Il
0
o
2
=3
=

& 5 —n=10

107 [ n = 200

n =500

n = 800

n = 1000

0 50 100 150 200

t : iteration count
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Numerical efficiency of randomly initialized GD

n = 0.1, a; ~N(0,1,), m = 10n, z° ~ N (0,n"11,)

Stage 1

relative {9 error

5| —n=100
107 [ n = 200
n =500

n = 800
n = 1000

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations J
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Numerical efficiency of randomly initialized GD

n = 0.1, a; ~N(0,1,), m = 10n, z° ~ N (0,n"11,)

Stage 1 Stage 2
— :
100 i
. \
o $
-
= 1
(5] 1
1
Il
= i
4
2
=
8 5] — n =100
107 [ n = 200
n = 500
n = 800
n = 1000
0 50 100 150 200

t : iteration count

Randomly initialized GD enters local basin within a few iterations J
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A geometric analysis

e if m > nlog®n, then (Sun et al.'16)

o there is no spurious local mins

o all saddle points are strict (i.e. associated Hessian matrices have
at least one sufficiently negative eigenvalue)
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A geometric analysis

e With such benign landscape, GD with random initialization
converges to global min almost surely (Lee et al. '16)

No convergence rate guarantees for vanilla GD!
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Exponential growth of signal strength in Stage 1

relative {5 error
1

102 ¢

107 ¢

—e—dist(z!, ) (n = 500)

50 100 150
t : iteration count
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Exponential growth of signal strength in Stage 1

relative o error  |(x!,x*)| : signal component
1 1

»::r :

vl v

—a—|(z!, 2%)| (n = 500)

—o—dist(z, 2%) (n = 500)

50 100 150
t : iteration count

Numerically, O(logn) iterations are enough to enter local region J
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Linear / geometric convergence in Stage 2

—_
=}
-
—
<)
N
<
o
>
B
+
<
—
o
—

5 n = 100
107 [ n =200
n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count
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Linear / geometric convergence in Stage 2

A

linear (;onvergence

relative ¢y error

5 n = 100
107 [ —n =200
—n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

Numerically, GD converges linearly within local region
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Theoretical guarantees for randomly initialized GD

. T . i.i.d.
These numerical findings can be formalized when a; "~

N(0,1I,,):

Theorem 7 (Chen, Chi, Fan, Ma’18)

Under i.i.d. Gaussian design, GD with " ~ N'(0,n~1I,,) achieves
dist(z',2) <y(1—p)" D22 2T,

for T’y < logn and some constants -y, p > 0, provided that step size
n =< 1 and sample size m 2 n polylogm
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) < y(1 — p)"" T ||x* |2, t > Ty <logn )

relative /o error

5| —n=10
1077 n = 200
—n =500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

42/44



Theoretical guarantees for randomly initialized GD

dist(x?, 2*) <v(1 — )" ||x* |2, t> T, =< logn )

O(logn)

10° ?

relative /o error

5| —n=10
1077 n = 200
—n =500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(z!, z*) < v
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) <~v(1 — p)"" T ||x* |2, t>Ty <logn )

O(logn) O(log?)

10° ?

relative /o error

5| —n=10
1077 n = 200
—n =500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(z!, z*) < v
e Stage 2: linear convergence

42/44



Theoretical guarantees for randomly initialized GD

dist(x?, 2*) < y(1 — p)"" T ||x* |2, t > Ty <logn J

O(logn) O(log?)

10° ?

relative /o error

5| —n=100
1077 n = 200
—n =500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

e near-optimal compututational cost:
— O(logn + log %) iterations to yield £ accuracy
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Theoretical guarantees for randomly initialized GD

dist(x?, 2*) < y(1 — p)"" T ||x* |2, t > Ty <logn )

O(logn) O(log?)

10° ?

relative /o error

5| —n=10
1077 n = 200
—n =500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

e near-optimal compututational cost:
— O(logn + log %) iterations to yield £ accuracy

e near-optimal sample size: m 2 npoly logm

42/44



Saddle-escaping schemes?

E H
8 0.7 [ o aama

. ;eﬁinwﬂm\oi‘
0.6L ; 0 0.05 0,

4
- V~\\~ / \
QU saddle points %

0.4t \
—1 =0.01
027 . 5 =0.05 Y
n =0.1 3
o]
0 02 04 06 08 1 k\
&7

WV
global minimizer

Randomly initialized GD never hits saddle points in phase retrieval! J
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Other saddle-escaping schemes

iteration num of iterations needed | local iteration
complexity to escape saddles complexity
Trust-region 7 1 7 1
(Sun et al. '16) n' +loglog - n log log ¢
Perturbed GD 3 1 3 Bl
(Jin et al. '17) n” +nlog 2 n nlog 2
Perturbed accelerated
GD n%® +/nlog 1 n25 Vnlogl
(Jin et al. '17)
GD
log log L logn log L
(Chen et al. '18) ogn +log; g™ o8¢

Generic optimization theory yields highly suboptimal convergence
guarantees
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Nonconvex Optimization for High-Dimensional Signal Estimation:
Spectral and lterative Methods — Part 1ll

Yuejie Chi Yuxin Chen Cong Ma
Carnegie Mellon Princeton UC Berkeley

EUSIPCO Tutorial, December 2020



Outline

Part Ill: Spectral Methods

a general recipe, ¢ and /o, guarantees, community detection
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Outline for Part IlI

A motivating application: community detection

A general recipe for spectral methods (with more applications)
Classical spectral analysis: /o perturbation theory

Fine-grained analysis: /., perturbation theory

A bird’s-eye view of extensions

3/40



A motivating application: community detection



Community detection / graph clustering

Community structures are common in many social networks

figure credit: The Future Buzz figure credit: S. Papadopoulos

Goal: partition users into several clusters based on their
friendships / similarities

5/40



A simple model: stochastic block model (SBM)

xr = 1: 15t community xr = —1: 2" community

e n nodes {1,--- ,n}
e 2 communities

e 1 unknown variables: z7,--- x5 € {1,—1}
o encode community memberships

6/40



A simple model: stochastic block model (SBM)

e observe a graph G

if 7 and j are from same co it
(i,7) € G with prob. D, ||z nd j are from sam mmunity
q, else

Here, p > ¢
e Goal: recover community memberships of all nodes, i.e., {2}

7/40



Adjacency matrix

Consider the adjacency matrix A € {0,1}"*" of G:

A _{1, if (i,5) € G

.’j -
0, else

e WLOG, suppose z] = - - - =x;/2 =1; w;/2+1 =..-



Adjacency matrix

+  A-E[A]

[ p1aT 1T ] ptaq..+  p—q 1 T 4T
]E[A]_[an it | T g Mt oy | ]
N—_——

uninformative bias
=z*=[zi]1<i<n

9/40



Spectral clustering

-1 ,r ._
w ;h,lﬁ ?_1*-.
-'.v l'llﬂlﬂ -." :|| i
Eﬂ:‘ :
A = E[A] + A-E[A]
——
rank 2

1. computing the leading eigenvector u = [u;]1<i<p of A — 1%11T
1, if u; >0

2. rounding: output x; =
& ompt T {—1, if u; <0

10/40



Rationale behind spectral clustering

Recovery is reliable if A — E[A] is sufficiently small

N—_——
perturbation

o if A—E[A] =0, then

1

U xX =* 1

] —  perfect clustering

11/40



A general recipe for spectral methods

Three key steps:

e identify a key matrix M*, whose eigenvectors disclose crucial
information

e construct a surrogate matrix M of M™ using data

e compute corresponding eigenvectors of M

12/40



Low-rank matrix completion

.Q{\

.Q\

.

\.\3.\3\.\3&.\')
R T N

.\3<\.\3.\3.\').\3§\
0N VY

\3\4\
.\3\.\3 G UG, S, S

?

s K A y 2=
2 3 " B L eee
iy 7w ? ? ? .

ey

ririoicly iy
. .
. .

e consider a low-rank matrix M* = U*S*V*T

? o inwnr Xy
itk P .
? ? ot eee

figure credit: Candés

e cach entry Mz*] is observed independently with prob. p

¢ intermediate goal: estimate U*, V*
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Spectral method for matrix completion

1. identify the key matrix M*

2. construct surrogate matrix M € R™*" as

1arx ; *
o {pMi,j, if M7, is observed
Z?] -

0, else

o rationale for rescaling: ensures E[M] = M*

3. compute the rank-r SVD USV " of M, and return (U, 3, V)

14/40



Ranking from pairwise comparisons

Nastas
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pairwise comparisons for ranking tennis players

figure credit: Bozdki, Csatd, Temesi
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Bradley-Terry-Luce (logistic) model

wj - preference score

. i: rank
e 7 items to be ranked

e assign a latent score {w}}1<i<y, to each item, so that
item 4 = item j if w] > w}
e each pair of items (7, j) is compared independently

w*

P {item j beats item ¢} = J
{item j } ot

16 /40



Bradley-Terry-Luce (logistic) model

1

preference score

wj

HHHHWHWH (T,

i: rank

n items to be ranked
assign a latent score {w}}1<i<y, to each item, so that
item 4 = item j if w] > w}
each pair of items (7, j) is compared independently
. w}
ind. ) 1, with prob. 2~
Yij = L
0, else

intermediate goal: estimate score vector w* (up to scaling)

16 /40



Spectral ranking

1. identify key matrix P*—probability transition matrix

w*

%.F#M;, if i £ 7
1- Zl:l;ﬁi Piflv ifi=y

Rationale:
o P* obeys

* D*x . x D*
wi Pl = w; P;

P (detailed balance)

o Thus, the stationary distribution 7* of P* obeys

* — 1 w
o wf

T *

(reveals true scores)

17/40



Spectral ranking

2. construct a surrogate matrix P obeying

o {;ym, if i £ j
1,0 — P .
’ V=20 Pigy ifi=7

3. return leading left eigenvector 7t of P as score estimate

— closely related to PageRank
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Spectral ranking

2. construct a surrogate matrix P obeying

o {;ym, if i # j
v, T . . .
V=20 Pigy ifi=7

3. return leading left eigenvector 7t of P as score estimate

— closely related to PageRank

Key: stability of eigenspace against perturbation M — M*?

18/40



Classical spectral analysis:
{5 perturbation theory



Setup and notation

Consider two symmetric matrices M* and its perturbed version
M=M*"+E e R™"

with eigendecompositions
A* 0 U*T
* *T * .

M:ZAiuiuI -|U Ui}lg AOLHZW

20/40



Setup and notation

* * *
ul ur ur+l un :|
U~* Uy
— « -
/\1
*
/\'r
—_————
A*
*
/\r—i-l
*
)‘n
— ——m—m———
L AY i

U*T

* T
UJ_

21/40



Eigenspace perturbation theory

Main focus: how does the perturbation E affect the distance
between U and U*?

Question: how to define distance between two subspaces?

o |[U —U*||r and |[U — U*|| are not appropriate, since they fall
short of accounting for global orthonormal transformation

V orthonormal RER"*", U and U R represent same subspace

22/40



Distance between two subspaces

One solution: taking best rotation into consideration

dist(U,U*) == min |[UR-U"||;
RGO’I‘XT‘
diste(U,U*) = min |[UR— U*

ReOTxr le

23/40



Davis-Kahan sin ® Theorem: a simple case

Chandler Davis William Kahan

Theorem 1
Suppose M* = 0 and has rank r. If | E| < A\.(M™), then

1EU-| E2ll
Ar(MF) = | B[] = Ar(M*) — || E||

dist(U,U*) <

e depends on smallest non-zero eigenvalue of M* and perturbation size

eigengap between \,.(M*) and A, (M*)
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Back to stochastic block model

1
Let M*:=E[A]-2H11T =24 L ] 17 }
1

Then the Davis-Kahan sin ® Theorem yields
| M — M| _ A —E[A]|

AM(M*) —[|M — M| @=on _ 4 _E[A]|

M:=A- erqllT, and u* %

dist(u, u*) <

(1)

as long as ||A — E[A]]| < \(M*) = W
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Bounding ||A — E[A]|

Matrix concentration inequalities tell us that
Lemma 2

Consider SBM with p > q and p 2, k’%. Then with high prob.

IA —E[A]]| < v/np (2)
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Statistical accuracy of spectral clustering

Substitute (2) into (1) to reach

o A=A 7
) S G 4 _gpa)) ¥ -

provided that (p — ¢)n > /np
Thus, under condition % > \/g with high prob. one has

dist(u, u*) < 1 = nearly perfect clustering
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Statistical accuracy of spectral clustering

P—4q
VP

e dense regime: if p < ¢ < 1, then this condition reads

1
P—qg>—
n

e “sparse” regime: if p = ak’% and g = blo% for a,b =<1, then

a—b>+/alogn

1
> \/7 —> nearly perfect clustering
n

This condition is information-theoretically optimal (up to log factor)
— Mossel, Neeman, Sly '15, Abbe '18

28/40



Empirical performance of spectral clustering

1.0+

0.9+

0.84

0.74

0.6

empirical success rate

0 0.1 0.2 0.3 0.4 0.5
mean difference : §

£y perturbation theory alone cannot explain exact recovery guarantees |

— call for fine-grained analysis
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Reverse engineering

Spectral clustering uses signs of u to cluster nodes
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Reverse engineering

Spectral clustering uses signs of u to cluster nodes

i}

It achieves exact recovery iff u;u;y > 0 for all ¢

i}

A sufficient condition is* ||lu — u*|le < 1/y/n

i}

Need /., perturbation theory
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Fine-grained analysis:

/., perturbation theory



Setup and notation (rank-1 case)

Groundtruth: consider a rank-1 psd matrix M* = A u*u*" € R
Incoherence: define

pe=nlutll  (1<p<n)
Observations:

M:M*+E€Rnxn

with E a symmetric noise matrix
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Noise assumptions

The entries in the lower triangular part of E = [E; j]1<; j<n are
independently generated obeying

E[E; ;] =0, E[E;{j] <o? |Eij|<B, foralli>j

Further, assume that

B

Ch ' = —F——— =

o/ (ilogn)
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(~, perturbation theory

Theorem 3
With high prob, there exists z € {1,—1} such that
V1
|zu —u*]| < TVt ogn’ (3a)
oo )\*
1 a2y/nlo n+ oBy/ulo 3n
[|zu — FM’UI*HOO N J)\\C'E + & )2 oe (3b)

provided that ov/nlogn < c,A* for some sufficiently small constant
co > 0.

Key message:
e when 1 < /logn, (3a) is \/n/logn smaller than ¢ bound

qu — u*H2 Sovn/\*
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Back to stochastic block model

4| 1
Recall M*::E[A]p;ﬁﬂ:P;Il_lMﬂ -17 |,

M::A—pgﬂllT,andu*: 1 [ 1 ]

VN |
These imply
A = Up—a)
w=1
B=1
0% < max{p,q} = p
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Invoke /., perturbation theory

{~ perturbation theory (3b) yields
2/nlogn oB 10g3/2n
A* A*
pvlogn n \/ﬁlog?’/2 n)

23w — Mu*|| S o+ 2

<C(p+ = A
(‘[ vnlp—q)  nlp—q)
for some constant C' > 0
it boils down to controlling the entrywise behavior of Mu* |
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Bounding entries in Mu”*

Again concentration inequalities tell us that
Lemma 4

Suppose that

2 2logn
(VP—va)" = (1+e) (4)
for some quantity € > 0. Let gg := ﬁ%g_q; - % Then with
q(l—p
probability exceeding 1 — n~¢/2, one has
* n * n
M u* > ¢eq foralll < 5 and M;.u* < —¢gq foralll > 3

Key message: entries in Mu* are bounded away from 0 with correct
sign
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Completing the picture

On one hand

Mj.u* > e forall I < g and  Mj.u* < —gq for all | > g
On the other hand
|22\ — Mu*||OO <A
In sum, if one can show
go > A
then it follows that

zuyuf >0 forall1<l<n = exact recovery
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Exact recovery of SBM

Theorem 5

. _ alogn __ Blogn
Fix any constant € > 0. Suppose p = =5+ and q = == >~ for some
sufficiently large constants o > (8 > 0. In addition, assume that

logn

(VP = V)" 2 2(1+e) = (5)

With probability 1 — o(1), spectral clustering achieves exact recovery.

This condition is information-theoretically optimal
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A bird’s-eye view of extensions

e Davis-Kahan for general symmetric matrices (not necessarily
PSD)

e Wedin's theorem on singular subspace perturbation theory
e Eigenvector perturbation for probability transition matrices

e General {5 o, eigenspace and singular space perturbation

Advertisement: “Spectral Methods for Data Science: A Statistical Perspective”,
Y. Chen, Y. Chi, J. Fan and C. Ma, 2020

Foundations and Trends® in Machine Learning

Spectral Methods for Data Science

A Statistical Perspective
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Nonconvex Optimization for High-Dimensional Signal Estimation:
Spectral and lterative Methods — Part IV

Yuejie Chi Yuxin Chen Cong Ma
Carnegie Mellon Princeton UC Berkeley

EUSIPCO Tutorial, December 2020



Outline

e Part IV: Robustness to Corruptions and Ill-Conditioning

median truncation, least absolute deviation, scaled gradient descent
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Robustness to ill-conditioning?



A factorization approach to low-rank matrix sensing

M c R?’Ll X1no A(')
rank(M) =r linear map

<

m

A
3

y = A(M) + noise

find X € Rm*" Y = R"2*" such that y ~ A(XY ") ]
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Prior art: GD with balancing regularization

)

gy XY= - AGY D[] XXy

e Spectral initialization: find an initial point
in the “basin of attraction”.

“Basin of attraction”
(X0, Yp) < SVD,(A*(y))
e Gradient iterations:

Xi11 = Xt — VX freg( X1, Y7)
Yir1 =Y, — 1 Vy freg( X1, Y7)

fort=0,1,...
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Prior theory for vanilla GD

Theorem 1 (Tu et al., ICML 2016)

Suppose M = X,Y,' is rank-r and has a condition number
Kk = Omax(M)/omin(M). For low-rank matrix sensing with
i.i.d. Gaussian design, vanilla GD (with spectral initialization) achieves

1X:Y," — Mlp < & - oumin(M)

e Computational: within O(rlog 1) iterations;
e Statistical: as long as the sample complexity satisfies

m > (ny + no)rk>.

Similar results hold for many low-rank problems.

(Netrapalli et al. '13, Candés, Li, Soltanolkotabi '14, Sun and Luo '15, Chen and

Wainwright '15, Zheng and Lafferty '15, Ma et al. '17, ....) 6/3



Convergence slows down for ill-conditioned matrices

win  f(X,Y) = 2H7> (xXyT - M)H;

10-2 \anll GD '720
10
g 10°
% 108
o
1070 K /\ s
1072
1O-MO 200 460 600 800 1000
Iteration count
Vanilla GD converges in O(r log 1) iterations. J

— Can we provably accelerate the convergence to O(log %) ?
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Condition number can be large

40

30t

Singular values
n
o

101

0 5 10 15 20
Index

chlorine concentration levels
120 junctions, 180 time slots

power-law spectrum

8/39
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Condition number can be large

40

30} 88%
g
%
! Kk~ 20
5
g
(2]

10+

. -

0 5 10 15 20

Index

chlorine concentration levels
120 junctions, 180 time slots

rank-5 approximation
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Condition number can be large

40

wl 96%
.
[}
3 Kk ~ 60
520f
5
2
(7]

101

. _

0 5 10 15 20

Index

chlorine concentration levels
120 junctions, 180 time slots

rank-10 approximation

8/39
Data source: www.epa.gov/water-research/epanet


www.epa.gov/water-research/epanet

A new algorithm: scaled gradient descent

e Spectral initialization: find an initial point

1 2
X7Y =3 -A XYT - i“ B . "
£ )=3 Hy ( )Hz in the “basin of attraction”.
e Scaled gradient iterations:

X1 =X —nVx (X, Y3) (Y, Y;) !
—_——

preconditioner

Y1 =Y, —nVyf(X,Y) (X X,)!
“.Illlllllllllli" ———

preconditioner

-4 S fort=0,1,...
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A new algorithm: scaled gradient descent

e Spectral initialization: find an initial point

1 2
X7Y =3 -A XYT - i“ B . "
s ) =3 [l v = AC ), in the “basin of attraction”.

e Scaled gradient iterations:

X1 =X —nVx (X, Y3) (Y, Y;) !
—_——

preconditioner

Y1 =Y, —nVyf(X,Y)) (X X,)"
~—— —_—

preconditioner

4 \ fort=0,1,...

ScaledGD is a preconditioned gradient method
without balancing regularization!
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ScaledGD for low-rank matrix completion

10 T
-o-ScaledGD « = 1
% ——ScaledGD k =5
1028 —*-ScaledGD k=10 |
ES -&-ScaledGD & = 20
ih VanillaGD & = 1
10'4 (% VanillaGD £ =5 |]
'5 VanillaGD x = 10
. P VanillaGD & = 20
s % ,
[}
e %
> i
= 4o % 1
T i
®
1010k }‘; ]
%
1 0-12 L 4
b
%
1 0714 .S L L L
0 200 400 600 800 1000

Iteration count

Huge computational saving: ScaledGD converges in an
k-independent manner with a minimal overhead!
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A closer look at ScaledGD

Invariance to invertible transforms: (Tanner and Wei, '16; Mishra '16)
(Xfa Yf

M,=X,Y,
/\ ﬁﬂ XY,

t+17Yt+1) Xf+1Q YH»lQ

11/39



A closer look at ScaledGD

Invariance to invertible transforms: (Tanner and Wei, '16; Mishra '16)
(Xfa Yf

M, =X, Y
/ /\ ﬁ+l = Xt+1Y;r+1

X1, Y _
(Xev1, Yer) (X41Q.Y111Q ")

New distance metric as Lyapunov function:

. X| | X, .
oo (7] [3]) - et hoxa-xom
v T v S—
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Theoretical guarantees of ScaledGD

Theorem 2 (Tong, Ma and Chi, 2020)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

1X:Y," = Mllp < € Omin(M)

e Computational: within O(log1) iterations;
e Statistical: the sample complexity satisfies

m > nr?k?.
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Theoretical guarantees of ScaledGD

Theorem 2 (Tong, Ma and Chi, 2020)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

1X:Y," = Mllp < € Omin(M)

e Computational: within O(log1) iterations;
e Statistical: the sample complexity satisfies

m > nr?k?.

Compared with Tu et. al.: ScaledGD provably accelerates vanilla
GD at the same sample complexity!
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Stability: a numerical result

For the chlorine concentration levels dataset, ScaledGD converges
faster than vanilla GD in a small number of iterations.

1 T T T
-&-ScaledGD
VanillaGD

Relative error

200 300 400
Iteration count
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Robustness to outliers and corruptions?



Outlier-corrupted low-rank matrix sensing

M ¢ Rmne A() e R™
rank(M) =r linear map Y
1 ||
.
|
—> =
Matiious sttacs =

y = AM)+ s, AM)={{A; M)},

outliers

Arbitrary but sparse outliers: [|s|lp < a-m, where 0 < a < 1is
fraction of outliers.
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Existing approaches fail

e Spectral initialization would fail: X <

top-r SVD of

N m
N 1

W\

N Y — yA

N0 144g
NN m Z

\ N\ =1
~¢ O\

N AARY

\

A
N \ - . - -
0\ e Gradient iterations would fail:

i=1

1=

fort=0,1,...

Even a single outlier can fail the algorithm!
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Median-truncated gradient descent

Key idea: “median-truncation” —
discard samples adaptively based on how
large sample gradients / values deviate
from median
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Median-truncated gradient descent

— Key idea: “median-truncation” —

Robust Statistics

discard samples adaptively based on how
large sample gradients / values deviate
from median

¢ Robustify spectral initialization: X < top-r SVD of

y=— > YiA;

i:|yi|Smedian(Jyi|)
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Median-truncated gradient descent

Key idea: “median-truncation” —
discard samples adaptively based on how
large sample gradients / values deviate
from median

Robust Statistics

¢ Robustify spectral initialization: X < top-r SVD of

y=— > YiA;

i:|yi|Smedian(Jyi|)

¢ Robustify gradient descent:
Xepn=Xi— L S Yy Xi), t=0,1,...

i:|ri|S<median(|r])

where 7} :=

yi — (A, XtXtT)‘ is the size of the gradient.

17/39



Theoretical guarantees

Theorem 3 (Li, Chi, Zhang, and Liang, IMIAI 2020)

For low-rank matrix sensing with i.i.d. Gaussian design,
median-truncated GD (with robust spectral initialization) achieves

1X: X," — Mllp <& - omin(M),

e Computational: within O (k log %) iterations;
e Statistical: the sample complexity satisfies
m > nr’poly(k,logn);

e Robustness: and the fraction of outliers

a1/ r.
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Theoretical guarantees

Theorem 3 (Li, Chi, Zhang, and Liang, IMIAI 2020)

For low-rank matrix sensing with i.i.d. Gaussian design,
median-truncated GD (with robust spectral initialization) achieves

1X: X," — Mllp <& - omin(M),

e Computational: within O (k log %) iterations;
e Statistical: the sample complexity satisfies
m > nr’poly(k,logn);

e Robustness: and the fraction of outliers

a1/ r.

Median-truncated GD adds robustness to GD obliviously.
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Numerical example

Low-rank matrix sensing:

yi = (Ai, M) + s,

Ground truth GD GD median-TGD
! ! no outliers 1% outliers 1% outliers
Median-truncated GD achieves similar performance as if
performing GD on the clean data.

Li, Chi, Zhang and Liang, “Non-convex low-rank matrix recovery with arbitrary outliers via median-truncated
gradient descent”, Information and Inference: A Journal of the IMA, 2020. 19/39



Dealing with outliers: subgradient methods

Least absolute deviation (LAD): (Charisopoulos et.al.19; Li et al'18)

pip S0V = [y —axv D),

)

Subgradient iterations:

X1 =Xy —n0x f(X1,Y,)
Y=Y —n 3Yf(Xt7 Yt)

where 17, is set as Polyak’s or geometric
decaying stepsize.
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Dealing with outliers: scaled subgradient methods

Least absolute deviation (LAD):

mip f(X,Y) = |y - AXY )|,

)

Scaled subgradient iterations:

X=X, —m0x f(X, Y1) (Y, Y,)~!
——
preconditioner
Yo =Y, — oy f(Xe. Y2) (X, X)7!
———’

preconditioner

where 7; is set as Polyak's or geometric
decaying stepsize.
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Performance guarantees

| matrix sensing || quadratic sensing

Subgradient Method £ log L rE og L
(Charisopoulos et al, '19) (I—20)? 08 ¢ (T—2a)? 98 ¢
ScaledSM 1 1 1

R 1 o L T t 1 1

(Tong, Ma, Chi, '20) (1—2a)2 08 ¢ (T-2a)? 98 ¢

[—ScaledSM = 1
—ScaledSM = 5
102 —+ScaledSM £ = 10
-5-ScaledSM = 20
VanillaSM # = 1
10t VanillaSM & = 5
VanillaSM # = 10
VanillaSM « = 20

Relative error
3

5

1070

1012
0 200 400 600 800 1000
Iteration count

Robustness to both ill-conditioning and adversarial corruptions! )
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Demixing sparse and low-rank matrices

Suppose we are given a matrix

M= L + S eR™
~— —~—

low-rank sparse

Question: can we hope to recover both L and S from M?
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Applications

e Robust PCA

.
Q
.
° °
P o ° L
X ° .
@ ~ o * . . o °0 °
. o . o .
° ° o o . LR . ° °
. ° e o ) - o..
L]
o0 L ou” . o ) o ®
e ®, o _°°
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Nonconvex approach

e rank(L) < r; if we write the SVD of L = UXV', set
X*=U,xY? yr=vxl?

e non-zero entries of S are “spread out” (no more than s fraction
of non-zeros per row/column), but otherwise arbitrary

SS = {S € R™*" . HSLZHO <s-mn; HS:,j”O <s- TL}

minimize F(X,Y,8):=|M - XY — S|3
X,Y,SeS;

least-squares loss

where XY € R™*".

25/39



Gradient descent and hard thresholding

minimizex y secs, F(X,Y,S)

e Spectral initialization: Set S° = 1,;(M). Let U’V be
rank-r SVD of MY := Pq(M — 8°); set X" = U (20)1/2 and
YO — VO (20)1/2

26/39



Gradient descent and hard thresholding

minimizex y secs, F(X,Y,S)

e Spectral initialization: Set S° = 1,;(M). Let U’V be
rank-r SVD of M := Po(M — S§°); set X° = U° (2°)"/? and
YO0 — yoO (20)1/2

o fort=0,1,2,---

o Hard thresholding: S'™!' =H (M — X'Y'T)

o Scaled gradient updates:
X+l — xt 0V x F (Xt,Yt7 St+1) (YZTY’t)il
Yt =Y —pVy F (X', Y8 (X[ X))
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Efficient nonconvex recovery

Theorem 4 (Nonconvex RPCA, Tian, Ma, Chi’20)

Set v =2 and 0.1 < n < 2/3. Suppose that

1
™~ ourd/2g

Then GD-+HT satisfies

XY~ Ll < (1=0.6n)" omin(L)

e O(log %) iterations to reach e accuracy

e for adversarial outliers, optimal fraction is s = O(1/ur);
Theorem 4 is suboptimal by a factor of k\/r
e Improves over GD (Yi et al '16) which requires

N L
~ max{,ur3/2/i3/2,,urn2} ~ ,LL’V'3/2H

and O(klog %) iterations;

27/39




Concluding remarks



Statistical thinking + Optimization efficiency

statistical models

benign
landscape

tractable algorithms

When data are generated by certain statistical models, problems are
often much nicer than worst-case instances
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A growing list of “benign” nonconvex problems

e phase retrieval

e matrix sensing

e matrix completion

e blind deconvolution / self-calibration
e dictionary learning

e tensor decomposition / completion
e robust PCA

e mixed linear regression

e learning one-layer neural networks

30/39



Open problems

characterize generic landscape properties that enable fast
convergence of gradient methods from random initialization

relax the stringent assumptions on the statistical models
underlying the data

develop robust and scalable nonconvex methods that can handle
distributed data with strong statistical guarantees

identify new classes of nonconvex problems that admit efficient
optimization procedures
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Advertisement: overview and monographs

e “Nonconvex Optimization Meets Low-Rank Matrix Factorization:
An Overview”, Y. Chi, Y. M. Lu and Y. Chen.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 20, OCTOBER 15, 2019

Nonconvex Optimization Meets Low-Rank Matrix
Factorization: An Overview

Yuejie Chi, Yue M. Lu*, and Yuxin Chen

(Overview Article)

e “Spectral Methods for Data Science: A Statistical Perspective”,
Y. Chen, Y. Chi, J. Fan and C. Ma.

Foundations and Trends® in Machine Learning

Spectral Methods for Data Science

A Statistical Perspective
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