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Abstract—We consider simultaneously identifying the mem-
bership and locations of point sources that are convolved with
different low-pass point spread functions, from the observation
of their superpositions. This problem arises in three-dimensional
super-resolution single-molecule imaging, neural spike sorting,
multi-user channel identification, among others. We propose a
novel algorithm, based on convex programming, and establish
its near-optimal performance guarantee for exact recovery by
exploiting the sparsity of the point source model as well as inco-
herence between the point spread functions. Numerical examples
are provided to demonstrate the effectiveness of the proposed
approach.

Keywords—super-resolution, parameter estimation, atomic
norm minimization, mixture models

I. INTRODUCTION

In many emerging applications in applied science and
engineering, the acquired signal at the sensor can be regarded
as a superposition of returns from multiple channels (or
users), where the return from each channel is governed by
the underlying physical field that produced it, e.g. the Green’s
function, the point spread function, the signature waveform,
etc. The goal is to invert for the field parameters of each
channel that produced the acquired signal which reflects the
ensemble behavior of all channels.

Mathematically, consider the acquired signal, y(t), given
as

y(t) =

I∑
i=1

xi(t) ∗ gi(t) =

I∑
i=1

(
Ki∑
k=1

aikgi(t− τik)

)
, (1)

where ∗ denotes convolution, xi(t) =
∑Ki

k=1 aikδ(t − τik) is
the point source signal observed through the ith channel, gi(t)
is the point spread function of the ith channel, respectively, and
I denotes the total number of channels. For the ith channel,
let τik ∈ [0, 1) and aik ∈ C be the location and the amplitude
of the kth point source, 1 ≤ k ≤ Ki, respectively. In typical
applications, we are interested in resolving the point sources
of each channel at a resolution much higher than that of the
acquired signal y(t), determined by the Rayleigh limit, or in
other words, the bandwidth of the point spread functions.

The proposed model (1) occurs in a wide range of practi-
cal problems, ranging from three-dimensional super-resolution
single-molecule imaging, to spike sorting in neural recording
and DNA sequencing, to multi-user multi-path channel identi-
fication in communication systems, and many others.

Three-dimensional super-resolution imaging: By employing
photoswitchable fluorescent molecules, the imaging process
of stochastic optical reconstruction microscopy (STORM) [1]
is divided into many frames, where in each frame, a sparse
number of fluorophores (point sources) are randomly activated,
localized at a resolution below the diffraction limit, and
deactivated. The final image is thus obtained by superimposing
the localization outcomes of all the frames. This principle
can be extended to reconstruct a 3-D object from 2-D image
frames [2], by introducing a cylindrical lens to modulate the
ellipticity of the point spread function based on the depth of the
fluorescent object. Therefore, the acquired image in each frame
can be regarded as a superposition of returns from multiple
depth layers, where the return from each layer corresponds
to the convolution outcome of the point sources in that depth
layer with the depth-dependent PSF, as modeled in (1). The
goal is thus to recover the locations and depth membership
of each point source given the image frame that records the
returns from all depth layers.

Spike sorting for neural recording: Neurons in the brain
communicate by firing action potentials, i.e. spikes, and it
is possible to hear their communications through a single or
multiple microelectrodes, which record simultaneously activ-
ities of multiple neurons within a local neighborhood. Spike
sorting [3], thus, refers to the grouping of spikes according
to each neuron, from the recording of the microelectrodes.
Interestingly, it is possible to model the spike fired by each
neuron with a characteristic shape [4]. The neural recording
can thus be modeled as a superposition of returns from
multiple neurons, as in (1), where the return of each neuron
corresponds to the convolution of its characteristic spike shape
with the sequence of its firing times. A similar formulation also
arises in DNA sequencing [5].

Multi-path identification in random-access channels: In
multi-user multiple access model [6], the base station receives
a superposition of returns from active users, as in (1), where
the received signal component for each active user corresponds
to the convolution of its signature waveform with the unknown
sparse multi-path channel from the user to the base station.
The goal is to identify the set of active users, as well as their
channel states, from the received signal at the base station.

A. Related Work and Contributions

There’s extensive research literature on inverting (1) when
there is only a single channel with I = 1, where conven-
tional methods such as matched filtering, MUSIC [7], matrix
pencil [8], to more recent approaches based on total variation



minimization [9], can be applied. However, these approaches
can not be applied directly when multiple channels exist in
the observed signal, due to the mutual interference between
channels. To the best of the authors’ knowledge, methods
for inverting (1) with multiple channels have been extremely
limited. In [6], [10], [11], sparse recovery algorithms have been
proposed to invert (1) by assuming the source locations lie on
a fine-grain grid, which is mismatched from the actual source
locations, resulting in possibly performance degradation [12].
Even when all the point sources indeed lie on the grid, existing
work [11] shows that the sample complexity needs to grow
logarithmically with the size of the discretized grid, which is
undesirable. The continuous basis pursuit algorithm [13] can
be applied to retrieve source locations off the grid, but lacks
performance guarantees.

In this paper, we study the problem of super-resolving (1)
when there’re two channels, i.e. I = 2. We start by recognizing
that in the frequency domain, the observed signal can be re-
garded as a linear combination of two spectrally-sparse signals,
each composed of a small number of complex sinusoids. We
then separate and recover the two signals by motivating their
spectral structures using atomic norm minimization, which
has been recently shown as an efficient convex optimization
framework to motivate parsimonious structures [14], [9], [15],
as well as satisfying the observation constraints.

The separation and identification of the two channels, using
the proposed algorithm, denoted by convex demixing, is made
possible with two additional conditions. The first condition
is that the point source models satisfy a mild separation
condition, such that the locations of the point sources are
separated by at least four times the Rayleigh limit; this is
in line with the separation condition required by Candès
and Fernandez-Granda [9] even with a single channel. The
second condition is that the point spread functions of differ-
ent channels has to be sufficiently incoherent for separation,
which is supplied in our theoretical analysis by assuming
they’re randomly generated from a uniform distribution on the
complex circle. We demonstrate that, as soon as the number
of measurements, or alternatively, the bandwidth of the point
spread functions, is on the order max(K1,K2) log(K1 +K2)
up to logarithmic factors, the proposed algorithm, denoted by
convex demixing, recovers the locations of the point sources
for each channel exactly, with high probability. Since at
least an order of K1 + K2 measurements is necessary, our
sample complexity is near-optimal up to logarithmic factors.
Moreover, the point sources can be recovered from the dual
solution of the proposed algorithm, without estimating or
knowing the model order a priori. Our proof is based on
constructing two related polynomials that certify the optimality
of the proposed algorithm. The effectiveness of the proposed
algorithm is demonstrated in numerical experiments.

B. Organization

The rest of this paper is organized as follows. The proposed
algorithm based on convex programming and its performance
guarantee are provided in Section II. The proof of the per-
formance guarantee is sketched in Section III. Numerical
experiments are shown in Section IV, and we conclude the
paper in Section V. Throughout the paper, (·)T and (·)∗
denote the transpose and Hermitian transpose respectively, (̄·)

denotes the element-wise conjugate, Tr (·) denotes the trace
of a matrix, and toep (u) denotes a Toeplitz Hermitian matrix
with u as its first column.

II. SUPER-RESOLUTION OF MUTUALLY INTERFERING
SIGNALS

Denote the discrete-time Fourier transform (DTFT) of gi(t)
as

gi,n =

∫ ∞
−∞

gi(t)e
−j2πntdt, (2)

which satisfies gi,n = 0 whenever n /∈ ΩM =
{−2M, . . . , 0, . . . , 2M}, where 2M is the cut-off frequency of
band-limited gi (t). Typically, M is determined by the physics,
such as the aperture of the imaging device or the steering array.
Taking the DTFT of (1) with I = 2, we obtain

yn =

∫ ∞
−∞

y(t)e−j2πntdt

= g1,n ·

(
K1∑
k=1

a1ke
−j2πnτ1k

)
+ g2,n ·

(
K2∑
k=1

a2ke
−j2πnτ2k

)
,

(3)

with n ∈ ΩM . The measurements yn’s in (3) can be considered
as a linear combination of two spectrally-sparse signals, with
gin’s determining the combination coefficients. Multiplying
both sides of (3) with g−1

1n , and with slight abuse of notation,
we rewrite (3) into a vector form:

y = x?1 + g � x?2, (4)

where y = [y−2M , . . . , y0, . . . , y2M ]
T ∈ C4M+1, g =

[g−2M , . . . , g0, . . . , g2M ]
T ∈ C4M+1 with gn = g2,n/g1,n,

and � denotes the Hadamard element-wise product operator.
Furthermore, let x?1 = [x1,−2M , . . . , x1,0, . . . , x1,2M ]

T ∈
C4M+1 and x?2 = [x2,−2M , . . . , x2,0, . . . , x2,2M ]

T ∈ C4M+1

denote two spectrally-sparse signals, each composed of a small
number of distinct complex harmonics, represented as

x?1 =

K1∑
k=1

a1kc (τ1k) ∈ C4M+1,

x?2 =

K2∑
k=1

a2kc (τ2k) ∈ C4M+1,

(5)

where K1 and K2 are the spectral sparsity levels of each signal.
The atom c (τ) is defined as

c(τ) =
[
e−j2π(−2M)τ , . . . , 1, . . . , e−j2π(2M)τ

]T
,

which corresponds to a point source at the location τ ∈ [0, 1].
Further denote the sets of point sources in x?1 and x?2 by Υ1 =
{τ11, . . . , τ1K1

} and Υ2 = {τ21, . . . , τ2K2
} respectively. The

goal is thus to recover Υ1 and Υ2, and their corresponding
amplitudes, from (4).

Define the atomic norm [14], [15] of x ∈ C4M+1 with
respect to the atoms c(τ) as

‖x‖A = inf
ak∈C,τk∈[0,1)

{∑
k

|ak| | x =
∑
k

akc (τk)

}
,



which can be regarded as the tightest convex relaxation of
counting the smallest number of atoms that is needed to
represent a signal x. Therefore, we seek to recover the signals
x1 and x2 by motivating their spectral sparsity via minimizing
the atomic norm, with respect to the observation constraint:

{x̂1, x̂2} = argmin
x1,x2

‖x1‖A + ‖x2‖A,

s.t. y = x1 + g � x2.
(6)

The above algorithm is referred to as convex demixing. Inter-
estingly, (6) can be equivalently rewritten with the following
semidefinite programming characterization [15], which can be
solved efficiently using off-the-shelf solvers, as

min
x1,x2,u1,u2,t1,t2

Tr (toep (u1)) + Tr (toep (u2))

4M + 1
+ (t1 + t2),

s.t.
[
toep (u1) x1

x∗1 t1

]
� 0,

[
toep (u2) x2

x∗2 t2

]
� 0,

y = x1 + g � x2.
(7)

Define the separation condition of point sources of each
channel as

∆i = min
k 6=j
|τik − τij | ,

which is the wrapped-around distance on [0, 1], and the min-
imum separation of all channels as ∆ = mini ∆i. Our main
theorem is stated below.

Theorem 1. Let M ≥ 4. Assume that gn = ej2πφn ’s are
i.i.d. randomly generated from a uniform distribution on the
complex unit circle with φn ∼ U [0, 1], and that the signs of
the coefficients aik’s are i.i.d. generated from a symmetric
distribution on the complex unit circle. Provided that the
separation ∆ ≥ 1/M , there exists a numerical constant C
such that

M ≥ C max

{
log2

(
M (K1 +K2)

η

)
,

max {K1,K2} log

(
K1 +K2

η

)
log

(
M (K1 +K2)

η

)}
is sufficient to guarantee that x?1 and x?2 are the unique
solutions of (6) with probability at least 1− η.

Theorem 1 indicates that as soon as the number of mea-
surements, or alternatively, the bandwidth of the point spread
functions, is on the order M = O(max(K1,K2) log(K1 +
K2) logM), the proposed convex demixing algorithm recovers
the locations of the point sources for each channel exactly,
with high probability. This suggests that the performance of
the convex demixing algorithm is near optimal in terms of the
sample complexity.
Remark 1. The point source separation condition ∆ ≥ 1/M
is used as a sufficient condition in Theorem 1 to guarantee
accurate signal demixing. It is implied in [9] that a reasonable
separation is also necessary to guarantee stable superresolution.
Interestingly, no separation between point sources is necessary
across channels, as long as their point spread functions are
sufficiently incoherent.
Remark 2. Theorem 1 assumes gn’s are generated with

uniformly random phase, which may be reasonable when
gn’s can be designed, such as the spreading sequences in
multi-user communications. This assumption may be further
relaxed. The proof procedure reveals that same results can be
obtained as long as gn’s satisfy E [ḡn] = E

[
ḡ−1
n

]
= 0 and

C1 ≤ |gn| ≤ C2.
Remark 3. Both sign (a1k) and sign (a2k) are required to be
randomly generated, which we believe are technical require-
ments of the proof, and may be removed with finer proof
techniques.

Define the inner product of two vectors as 〈p,x〉 = x∗p
and the real-valued inner product as 〈p,x〉R = Re (x∗p). Then
the dual norm of ‖·‖A can be represented as

‖p‖?A = sup
‖x‖A≤1

〈p,x〉R = sup
τ∈[0,1)

∣∣∣∣∣
2M∑

n=−2M

pne
j2πnτ

∣∣∣∣∣ .
We have the dual problem of (6) written as

p̂ = argmax
p

〈p,y〉R,

s.t. ‖p‖?A ≤ 1, ‖ḡ � p‖?A ≤ 1,
(8)

which comes from standard Lagrangian calculations. Construct
two dual polynomials using the dual solution p̂:

P (τ) =

2M∑
n=−2M

pne
j2πnτ , Q (τ) =

2M∑
n=−2M

pnḡne
j2πnτ ,

then the point source locations Υ1 and Υ2 can be recovered
without model order estimation, by identifying the parameter
τ such at |P (τ)| = 1, and |Q(τ)| = 1, respectively.

III. PROOF SKETCH OF MAIN RESULT

In this section, we proceed to sketch the proof of Theorem
1. We first provide the optimality conditions using dual poly-
nomials to certify the optimality of the solution of (6). Illumi-
nated by [9], [15], where the dual polynomial is constructed
by the squared Fejér’s kernel, we propose a construction of
dual polynomials which are composed of a deterministic term
and a random perturbation termed introduced by interference
between channels. Finally, the remainder is to show that the
constructed dual polynomials satisfy the optimality conditions
with high probability when the number of measurements M
is large enough.

A. Optimality Conditions using Dual Polynomials

We can certify the optimality of the primal problem (6)
using the following proposition.

Proposition 1. The solution of (6) x̂1 = x?1 and x̂2 = x?2 is
the the unique optimizer if there exists a vector p such that
the dual polynomials P (τ) and Q(τ) constructed from it

P (τ) =

2M∑
n=−2M

pne
j2πnτ , Q (τ) =

2M∑
n=−2M

pnḡne
j2πnτ (9)



satisfy 
P (τ1k) = sign (a1k) , ∀τ1k ∈ Υ1

|P (τ)| < 1, ∀τ /∈ Υ1

Q (τ2k) = sign (a2k) , ∀τ2k ∈ Υ2

|Q (τ)| < 1, ∀τ /∈ Υ2

, (10)

where the sign should be understood as the complex sign.

Proposition 1 suggests that P (τ) and Q (τ) are dual
certificates to show {x?1,x?2} is the unique primal optimizer.
Therefore if we can find a vector p to construct two dual poly-
nomials P (τ) and Q(τ) in (9) satisfying (10), the proposed
algorithm is guaranteed to recover the ground truth.

B. Dual Certificate Construction

Our construction of dual polynomials is inspired by [9],
[15], based on use of the squared Fejér’s kernel. However,
since the two dual polynomials are coupled together, the
construction is more involved. Define the squared Fejér’s
kernel [9] as

K (τ) =
1

M

2M∑
n=−2M

sne
j2πnτ , (11)

where sn = 1
M

∑min(n+M,M)
i=max(n−M,−M)

(
1−

∣∣ i
M

∣∣) (1− ∣∣ nM − i
M

∣∣).
The value of K (τ) is nonnegative, attaining the peak at
τ = 0 and decaying to zero rapidly with the increase of the
absolute value of τ .

We define Kg (τ) and Kḡ (τ) respectively as

Kg (τ) =
1

M

2M∑
n=−2M

sngne
j2πnτ ,

Kḡ (τ) =
1

M

2M∑
n=−2M

snḡne
j2πnτ .

(12)

We then construct the dual polynomials P (τ) and Q (τ)
as

P (τ) =

K1∑
k=1

α1kK (τ − τ1k) +

K1∑
k=1

β1kK
′ (τ − τ1k)

+

K2∑
k=1

α2kKg (τ − τ2k) +

K2∑
k=1

β2kK
′
g (τ − τ2k) ,

(13)

and

Q (τ) =

K1∑
k=1

α1kKḡ (τ − τ1k) +

K1∑
k=1

β1kK
′
ḡ (τ − τ1k)

+

K2∑
k=1

α2kK (τ − τ2k) +

K2∑
k=1

β2kK
′ (τ − τ2k) ,

(14)

where τ1k ∈ Υ1 and τ2k ∈ Υ2. It is straightforward to
validate that there exists some corresponding vector p such
that (13) and (14) can be equivalently written as (9). Set the
coefficients α1 = [α11, . . . , α1K1 ]

T , β1 = [β11, . . . , β1K1 ]
T ,

α2 = [α21, . . . , α2K2
]
T and β2 = [β21, . . . , β2K2

]
T by solving

the following equations
P (τ1k) = sign (a1k) , τ1k ∈ Υ1,

P ′ (τ1k) = 0, τ1k ∈ Υ1,

Q (τ2k) = sign (a2k) , τ2k ∈ Υ2,

Q′ (τ2k) = 0, τ2k ∈ Υ2.

(15)

The above setting, if exists, immediately satisfies the first and
third conditions in (10). The rest of the proof is then to, under
the condition of Theorem 1, guarantee that a solution of (15)
exists with high probability, and that when existing, they satisfy
the second and forth conditions in (10) with high probability,
therefore completing the proof.

C. Validation of Constructed Dual Polynomials

First we want to show that the solution of (15) exists with
high probability. Since the deterministic terms in constructed
dual polynomials are well-conditioned if the point source
separation ∆ satisfies appropriate condition [15], by showing
the random perturbations are small, we can have the following
proposition to guarantee the invertibility of (15) with high
probability when the number of measurements is large enough.

Proposition 2. Assume M ≥ 4. Let δ ∈ (0, 0.6376) and η ∈
(0, 1), then (15) is invertible with probability at least 1 − η
provided that

M ≥ 46

δ2
max{K1,K2} log

(
2 (K1 +K2)

η

)
. (16)

Once the constructed dual polynomials are fixed with
coefficients {α1,β1,α2,β2} from the solution of (15), the
rest is to verify that |P (τ)| < 1, ∀τ /∈ Υ1 and similarly,
|Q (τ)| < 1,∀τ /∈ Υ2. Since the expressions for P (τ) and
Q(τ) are very similar, it is sufficient to only establish the above
for P (τ).

Denote

1√
|K ′′ (0)|

l
P̄ (l) (τ) = E

[
1√

|K ′′ (0)|
l
P (l) (τ)

]
,

which is well-bounded [15], [9], where the expectation is with
respect to g and P (l) (τ) is the lth derivative of P (τ).

While the random perturbation in constructed P (l) (τ)
introduced by interference effect can be verified small enough
with high probability, we have the following proposition to
uniformly bound the distance between P (l) (τ) and P̄ (l) (τ).

Proposition 3. Suppose ∆ ≥ 1
M . If there exists a numerical

constant C such that

M ≥ C 1

ε2
max

{
log2

(
M (K1 +K2)

εη

)
,

max {K1,K2} log

(
K1 +K2

η

)
log

(
M (K1 +K2)

εη

)}
,

then ∣∣∣∣∣ 1√
|K ′′ (0)|

l
P (l) (τ)− 1√

|K ′′ (0)|
l
P̄ (l) (τ)

∣∣∣∣∣ ≤ ε,



∀τ ∈ [0, 1), l = 0, 1, 2, 3, holds with high probability at least
1− η.

Then applying Bernstein’s polynomial inequality [16] and
similar techniques in [15, Lemma 4.13 and 4.14], we have the
following proposition.

Proposition 4. Suppose ∆ ≥ 1
M . If there exists a numerical

constant C such that

M ≥ C max

{
log2

(
M (K1 +K2)

η

)
,

max {K1,K2} log

(
K1 +K2

η

)
log

(
M (K1 +K2)

η

)}
,

then
|P (τ)| < 1, for τ ∈ [0, 1]\Υ1,

with probability at least 1− η.

The proof of Theorem 1 is then complete since we have
established that P (τ) and Q(τ) constructed in (13) and (14) are
indeed valid dual certificates under the condition of Theorem 1.

IV. NUMERICAL EXPERIMENTS

We carry out numerical experiments to validate the per-
formance of the proposed convex demixing algorithm. For
a fixed M , we vary the spectral sparsity level of the two
channels as K1 and K2. For each pair of (K1,K2), we first
randomly generate a pair of point sources Υ1 and Υ2 that
satisfy a separation condition ∆ ≥ 1/ (2M), which is in
fact a little smaller than the theoretical constraint, with the
coefficients of the point sources i.i.d. drawn from the complex
standard Gaussian distribution. For each Monte Carlo trial,
we then randomly generate the point spread functions gn’s in
the frequency domain with i.i.d. entries drawn uniformly from
the complex unit circle, and perform the algorithm by solving
(7) using CVX [17]. The algorithm is considered successful
when the Normalized Mean Squared Error (NMSE) satisfies∑2
i=1 ‖x̂i − x?i ‖2 / ‖x?i ‖2 ≤ 10−4. Fig. 1 shows the success

rate of the proposed algorithm over 20 Monte Carlo trials for
each cell, when M = 8 in (a) and M = 16 in (b), respectively.
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Fig. 1: Successful rates of the convex demixing algorithm when
(a) M = 8 and (b) M = 16.

V. CONCLUSIONS

We propose a convex optimization method based on atomic
norm minimization to super-resolve two point source mod-

els from the measurements of their superposition, with each
convolved with a different low-pass point spread function. It
is demonstrated, with high probability, that the point source
locations of each channel can be simultaneously determined
perfectly, from an order-wise near-optimal number of measure-
ments, under mild conditions. The proposed framework can be
extended to handle more than two channels, whose details will
be discussed elsewhere.

ACKNOWLEDGMENT

This work is supported in part by the Ralph E. Powe Junior
Faculty Enhancement Award from the Oak Ridge Associated
Universities.

REFERENCES

[1] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by
stochastic optical reconstruction microscopy (storm),” Nature methods,
vol. 3, no. 10, pp. 793–796, 2006.

[2] B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional
super-resolution imaging by stochastic optical reconstruction mi-
croscopy,” Science, vol. 319, no. 5864, pp. 810–813, 2008.

[3] M. S. Lewicki, “A review of methods for spike sorting: the detection
and classification of neural action potentials,” Network: Computation in
Neural Systems, vol. 9, no. 4, pp. R53–R78, 1998.

[4] G. Gerstein and W. Clark, “Simultaneous studies of firing patterns in
several neurons,” Science, vol. 143, no. 3612, pp. 1325–1327, 1964.

[5] L. Li and T. P. Speed, “Parametric deconvolution of positive spike
trains,” Annals of Statistics, pp. 1279–1301, 2000.

[6] L. Applebaum, W. U. Bajwa, M. F. Duarte, and R. Calderbank, “Asyn-
chronous code-division random access using convex optimization,”
Physical Communication, vol. 5, no. 2, pp. 129–147, 2012.

[7] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp.
276–280, 1986.

[8] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating pa-
rameters of exponentially damped/undamped sinusoids in noise,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 38, no. 5,
pp. 814 –824, may 1990.

[9] E. J. Candès and C. Fernandez-Granda, “Towards a mathematical
theory of super-resolution,” Communications on Pure and Applied
Mathematics, vol. 67, no. 6, pp. 906–956, 2014.

[10] J. Romberg and R. Neelamani, “Sparse channel separation using random
probes,” Inverse Problems, vol. 26, no. 11, p. 115015, 2010.

[11] Y. Chi, Y. Xie, and R. Calderbank, “Compressive demodulation of mutu-
ally interfering signals,” submitted to IEEE Transactions on Information
Theory, 2013. [Online]. Available: http://arxiv.org/abs/1303.3904

[12] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity
to basis mismatch in compressed sensing,” Signal Processing, IEEE
Transactions on, vol. 59, no. 5, pp. 2182–2195, 2011.

[13] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, “Recovery of sparse
translation-invariant signals with continuous basis pursuit,” Signal Pro-
cessing, IEEE Transactions on, vol. 59, no. 10, pp. 4735–4744, 2011.

[14] V. Chandrasekaran, B. Recht, P. Parrilo, and A. Willsky, “The convex
algebraic geometry of linear inverse problems,” 48th Annual Allerton
Conference on Communication, Control, and Computing, pp. 699–703,
2010.

[15] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing
off the grid,” Information Theory, IEEE Transactions on, vol. 59, no. 11,
pp. 7465–7490, 2013.

[16] A. Schaeffer, “Inequalities of a. markoff and s. bernstein for polynomi-
als and related functions,” Bull. Amer. Math. Soc, vol. 47, pp. 565–579,
1941.

[17] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disci-
plined convex programming,” Online accessiable: http://stanford. edu/˜
boyd/cvx, 2008.


