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Motivations – New Imaging/Sensing Modalities

New imaging/sensing modalities allow us to probe the nature in
unprecedented manners.

Radio&astronomy

healthcare

hyperspectral

Internet&traffic

seismic&imaging

microscopy

The resulting large amount of data brings exciting opportunities that call
for new signal processing tools.
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Single-Molecule Fluorescence Microscopy

The Nobel Prize in Chemistry 2014 “for the development of
super-resolved fluorescence microscopy”.

E. Betzig S. W. Hell W. E. Moerner

Photo credit: https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/.

2

How do we break the
diffraction limit of optical
microscopy?

https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/


Single-Molecule Fluorescence Microscopy
Single-molecule based superresolution techniques achieve nanometer
spatial resolution by integrating the temporal information of the
switching dynamics of fluorophores (emitters).

High density implies better time resolution.

Figure credit: ”The Nobel Prize in Chemistry 2014 - Popular Information”.
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Three-dimensional Single-Molecule Imaging

This imaging principle is extended to reconstruct 3-D objects from 2-D
images, by modulating the shape of the PSFs along the depth.

Reconstruction is challenging due to the mutually interfering PSF profile.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional superresolution imaging by stochastic optical reconstruction
microscopy,” Science 2008.

J. Huang, M. Sun, K. Gumpper, Y. Chi and J. Ma, ”3D Multifocus Astigmatism and Compressed Sensing (3D MACS) Based
Superresolution Reconstruction”, Biomedical Optics Express, 2015.
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Neural Signal Processing

Spike sorting: to identify and separate the firing times of each neuron
from the observed voltage trace at the electrode.

Simultaneous excitation of multiple neurons makes it challenging.

Figure taken from: C. Ekanadham, D. Tranchina, and E. P. Simoncelli. “A unified framework and method for automatic neural
spike identification.” Journal of neuroscience methods 222 (2014): 47-55.

5

The human brain is the most
complicated biological structure in the
known universe.

— Francis S. Collins



Multi-user detection and IoT

Channel estimation in a multi-user, multi-path environment is the
“elephant in the room”.

Blind channel estimation is desirable for reducing overheads.
6

Internet of things and 5G: By
2020, industry analysts predict 50
billion devices will be connected to
mobile networks worldwide.



High-Resolution Source Localization

• Observations: Superposition of returns from sources:

y(t) =

K∑
k=1

αkg(t− νk) + n(t),

where g(t) is the point spread function, {αk}Kk=1 and {νk}Kk=1 are
the source parameters, and n(t) is additive noise.

• Inversion: Estimate {αk, νk}Kk=1, given a set of samples of y(t).
• DOA estimation in sensor array processing
• Frequency and amplitude estimation in spectrum analysis
• Range, Doppler, and azimuth estimation in radar/sonar
• Source location estimation in MRI, EEG, NMR spectroscopy
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Something Old: Parameter Estimation

Exploring Physically-meaningful Constraints: shift-invariance in the
frequency domain:

y = g � x = g �


K∑
k=1

αk



ej2π2Mτk

...
1
...

e−j2π2Mτk




.

where 2M is the cut-off frequency of the PSF.

• Prony’s method [1795]: root-finding.

• SVD based approaches: ESPRIT [RoyKailath’1989], MUSIC
[Schmidt’1986], matrix pencil [HuaSarkar’1990, Hua’1992].

• Finite rate of innovation [Vetterli’ 2001].

Performance: Perfect recovery from (equi-spaced) O(K) samples.
Performance is well understood via estimation-theoretic bounds under
Gaussian noise.
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Challenges

However, traditional methods no longer apply under more complicated
sensing modalities discussed earlier, due to sensitivity to noise, missing
data, interference and outliers.

• Subsampling or missing data:
ultra-wideband signals, channel estimation
using fewer pilots.

• Noise and corruptions:
sensor failures, attacks, outliers, etc.

• Calibration: the PSF functions may be
unknown and needs to be calibrated.

• Multi-modality or interference: the
received signal exhibits superpositions
of multiple PSF functions.
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Something New: Compressed Sensing

Exploring Sparsity: Compressed Sensing [Candès and Tao’2006,
Donoho’2006] capture the attributes (sparsity) of signals from a small
number of samples.

• Discretize the parameters and assume a sparse representation over
the discretized basis: τk ∈ Tn =

{
0
n , . . . ,

n−1
n

}
;

• Run `1 minimization in the discretized parameter space.

Performance: recovery from O(K log n) samples, and robust against
irregular sampling, noise and outliers enabled by convex optimization.
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Sensitivity to Basis Mismatch

ALERT: Nature does not place the source on the grid!

Y. Chi, L. L. Scharf, A. Pezeshki, and R. Calderbank, “Sensitivity of Basis Mismatch to

Compressed Sensing,” IEEE Signal Processing Society Young Author Best Paper Award.
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Our Approach

• Traditional approaches enforce physically-meaningful constraints, but
not as much sparsity;

• Compressed sensing enforces sparsity, but not as much
physically-meaningful constraints;

Geometric Representations: embed both sparsity and
physically-meaningful constraints.

Convex Relaxations: enable
provable and robust source localization
in the presence of non-idealities.

Applications: single-molecule
fluorescence microscopy.
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Geometric Representations
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Two-Dimensional Spectral Sparsity Model

• Sampling the two-dimensional complex harmonic on a uniform
grid, which gives a data matrix X ∈ Cn1×n2 :

X`1,`2 =

K∑
k=1

akz
`1
1,kz

`2
2,k, 0 ≤ `1 < n1, 0 ≤ `2 < n2

where zk = (z1,k, z2,k) corresponds to the kth source location.
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• single-molecule imaging:

z = e−j2πτ , τ ∈ [0, 1];

• NMR spectroscopy:

z = ρe−j2πτ , ρ > 0, τ ∈ [0, 1];



Parsimonious Representation via Matrix Enhancement

An enhanced form H(X) is an k1× (n1 − k1 + 1) block Hankel matrix:

H(X) =


X0 X1 · · · Xn1−k1
X1 X2 · · · Xn1−k1+1

...
...

...
...

Xk1−1 Xk1 · · · Xn1−1

 ,
where each block is a k2 × (n2 − k2 + 1) Hankel matrix as follows

X l = H(X[l, :]) =


xl,0 xl,1 · · · xl,n2−k2
xl,1 xl,2 · · · xl,n2−k2+1

...
...

...
...

xl,k2−1 xl,k2 · · · xl,n2−1

 .
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Given a data matrix X, consider the following
matrix enhancement H(X) [Cadzow, Hua].
Choose two pencil parameters k1 = Θ(n1) and
k2 = Θ(n2).
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Structured Low-Rank Matrix

• The dimensionality of H(X) is proportional to n1n2 × n1n2.

• The enhanced matrix can be decomposed as follows [Hua 1992]:

H(X) =

K∑
k=1

ak




1
z1,k

...

zk1−11,k

⊗


1
z2,k

...

zk2−12,k




︸ ︷︷ ︸
u(zk)




1
z1,k

...

zn1−k1
1,k

⊗


1
z2,k

...

zn2−k2
2,k



T

︸ ︷︷ ︸
v(zk)T

,

• The enhanced form H(X) is decomposed
into a sum of rank-one parametric atoms.
• rank (H(X)) ≤ K
• Spectral Sparsity ⇒ Structured Low-Rank
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The Task

C = A* B*+

Low-rank Matrix

Unknown rank, eigenvectors

Sparse “Errors” Matrix

Unknown support, values

Given
Composite

matrix



Promoting Parsimony via Convex Relaxations

x =

K∑
k=1

ckak, ak ∈ A

• The atomic set A can be finite, countably infinite, or continuous.

• Decompose the signal x into the fewest number of atoms in an
atomic set A: combinatorial!

‖x‖A,0 = min{K : x =

K∑
k=1

ckak, ak ∈ A}

• Relax by the convex surrogate, yielding the atomic norm:

‖x‖A = inf {t > 0 : x ∈ tconv(A)}

= inf

{∑
i

|ci|
∣∣∣x =

∑
i

ciai, ai ∈ A

}

Chandrasekaran, V., B. Recht, P. A. Parrilo, and A. S. Willsky. ”The convex geometry of linear inverse problems.” Foundations
of Computational Mathematics 12, no. 6 (2012): 805-849.
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Consequence for Localization

Identify activated atoms (source localization) via the dual solution q:

max 〈x, q〉 subject to ‖q‖∗A ≤ 1

• Relaxation is tight (recover the decomposition), when:

strict boundeness: |〈a, q〉| < 1, q ∈ A\{ak}
interpolation: 〈ak, q〉 = sign(ck),

8
0 0.2 0.4 0.6 0.8 1

-1

0

1

2

Example if A is parameterized over [0, 1]
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Choosing atoms as rank-1 matrices: Nuclear Norm

H(X) =
K∑
k=1

ak




1
z1,k

...

zk1−1
1,k

⊗


1
z2,k

...

zk2−1
2,k




︸ ︷︷ ︸
u(zk)




1
z1,k

...

zn1−k1
1,k

⊗


1
z2,k

...

zn2−k2
2,k



T

︸ ︷︷ ︸
v(zk)

T

,

• Set A = {rank-one matrices} = {uvT , ‖u‖ = ‖v‖ = 1} leads to the
nuclear norm:

‖H(X)‖∗ = inf

{∑
i

|ci|
∣∣∣H(X) =

∑
i

ciuv
T , ‖u‖ = ‖v‖ = 1

}

which is a semidefinite program that promotes structured low-rank.

• The large atomic set handles not only damping modes, but more
general LTI systems identification.
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Choosing atoms as sinusoids: Atomic Norm

H(X) =
K∑
k=1

ak




1
z1,k

...

zk1−1
1,k

⊗


1
z2,k

...

zk2−1
2,k




︸ ︷︷ ︸
u(zk)




1
z1,k

...

zn1−k1
1,k

⊗


1
z2,k

...

zn2−k2
2,k



T

︸ ︷︷ ︸
v(zk)

T

,

• Set A = {complex sinusoids} = {u(e−j2πτ )v(e−j2πτ )T } leads to
the atomic norm:

‖X‖A = inf

{∑
i

|ci|
∣∣∣H(X) =

∑
i

ciu(e
−j2πτ )v(e−j2πτ )T , τ ∈ [0, 1)

}
which is a semidefinite program that promotes structured low-rank.

• The smaller atomic set allows a tighter convex relaxation for
complex sinusoids.

E. J. Candès and C. Fernandez-Granda, “Towards a mathematical theory of super-resolution,” Communications on Pure and
Applied Mathematics, vol. 67, no. 6, pp. 906-956, 2014.

Y. Chi, and Y. Chen, “Compressive Two-DimensionalHarmonic Retrieval via Atomic Norm Minimization,” IEEE Trans. on Signal
Processing, vol. 63, pp. 1030-1042, 2015.
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Case Studies

21



Robustness to Missing Data
Missing data: a subset of entries is observed in an index set Ω, where
m = |Ω| � n = n1n2.

Y i,j = Xi,j , (i, j) ∈ Ω.

EMaC (Enhanced Matrix Completion)

min
M∈Cn1×n2

‖H(M)‖∗ subject to M i,j = Y i,j , ∀(i, j) ∈ Ω
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Success Conditions
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• Gram matrix of the source via Dirichlet kernel:

Gi,j = D(zi − zj)

• Incoherence is defined as smallest µ that

σmin (G) ≥ 1

µ
.

• µ = Θ(1) for many scenarios.
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Performance Guarantee of EMaC

Theorem (Chen and Chi, TIT 2014)

If Ω is sampled uniform at random, EMaC recovers X perfectly with high
probability if

m & µK log4 n.

• Near-optimal sample complexity as long
as µ = Θ(1) up to logarithmic factors.

• RHS: Phase transition when n1 = n2 = 15.

• Reconstruction is robust to additional
bounded noise and sparse outliers, by
adding additional regularizations.

Y. Chen and Y. Chi, “Robust Spectral Compressed Sensing via Structured Matrix Completion,” IEEE Trans. on Information
Theory, vol. 60, pp. 6576-6601, 2014.
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Robustness to Multi-Modalities

Multi-Modalities (two PSFs):

y(t) =

K1∑
k=1

α1,kg1(t− τ1,k) +

K2∑
k=1

α2,kg2(t− τ2,k)

or equivalently in the frequency domain:

y = g1 � x1 + g2 � x2,

where x1 and x2 are spectrally-sparse.

AtomicDemix

min
x1,x2

‖x1‖A + ‖x2‖A subject to y = g1 � x1 + g2 � x2.

Y. Li and Y. Chi, “Stable Separation and Super-Resolution ofMixtureModels,” accepted to Applied and Computational Harmonic
Analysis, in press.
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Success Conditions

• Separation condition (source): for each component, define the
minimum separation between point sources as

∆i = min
k 6=j
|τik − τij | ≥

1

M
;

• Random signs (source): The signs of the coefficients αik’s are i.i.d.
generated from a symmetric distribution on the complex unit circle.

• Incoherence condition (PSF): Each entry of the PSF sequence
gi’s is generated i.i.d. from a uniform distribution on the complex
unit circle.

• The PSF functions should be incoherent across components
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Performance Guarantees of AtomicDemix

Theorem (Li and Chi, ACHA 2017+)

Let M ≥ 4. With probability at least 1− δ, AtomicDemix recovers
{x1,x2} perfectly as long as

M & (K1 +K2) log

(
K1 +K2

δ

)
log

(
M

δ

)
.

• Near-optimal sample complexity up to logarithmic factors.

• The reconstruction is also stable in the presence of noise.
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Robustness to Unknown PSF
Blind deconvolution: estimating the source when g(t) is unknown:

y(t) =

K∑
k=1

αkg(t− τk).
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• In the frequency domain: bilinear form

y = g � x = diag(g)x

No. of unknowns > No. of equations!
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Bilinear Inverse Problem and Lifting

• Subspace assumption: We assume the sequence g lies in some
known low-dimensional subspace:

g = Bh ∈ C4M+1,

where B = [b−2M , · · · , b2M ]T ∈ C(4M+1)×L, and h ∈ CL.

• The lifting trick:

y = X (Z) ∈ C4M+1, where Z = xhT .

Translates a bilinear problem to an underdetermined linear one!
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AtomicLift

• Z can be regarded as a spectrally-sparse ensemble with the same
set of frequencies:

Z = xhT = [h1x, h2x, . . . , hLx].

whose structure can be motivated by the atomic norm using the
multiple measurement vector (MMV) model [Li and Chi, TSP 2016]:

‖Z‖A = min
s,W

{
1

2
Tr(Toep(s)) +

1

2
Tr(W )

∣∣∣ [Toep(s) Z
ZH W

]
� 0

}

AtomicLift

Ẑ = argmin
Z

‖Z‖A subject to y = X (Z).

Y. Li and Y. Chi, “Off-the-Grid Line Spectrum Estimation and Denoising with Multiple Measurement Vectors,” IEEE Trans. on
Signal Processing, vol. 64, pp. 1257-1269, 2016.

30



Success Conditions of AtomicLift
• Separation condition (source): define the minimum separation

between point sources

∆ = min
k 6=j
|τk − τj | ≥

1

M
;

• Random signs (source): The signs of the coefficients αik’s are i.i.d.
generated from a symmetric distribution on the complex unit circle.

• Incoherence condition (PSF): Each row of the subspace B is i.i.d.
from a population F , i.e. bn ∼ F :
• Isometry property:

EbbH = IL, b ∼ F.
• Spreadness property: for b = [b1, . . . , bL]

T ∼ F ,
µ is the smallest number that

max
1≤i≤L

|bi|2 ≤ µ

31
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Performance Guarantee of AtomicLift

Theorem (Chi, JSTSP 2016)

Let M ≥ 4. With probability at least 1− δ, AtomicLift recovers Z
perfectly, as long as

M & µKL log2

(
M

δ

)
.

• When the coherence parameter µ = Θ(1),
O(KL) samples suffice.
• O(K) samples suffice when PSF is known.

• This requirement is larger than O(K + L).

• The reconstruction is robust to noise.

Y. Chi, “Guaranteed Blind Sparse SpikesDeconvolution via Lifting and Convex Optimization,” IEEE Journal of Selected Topics in
Signal Processing, vol. 10, no. 4, pp. 782-794, 2016.
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Applications
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Super-Resolution Microscopy Imaging

With my student Jiaqing Huang (PhD 2016), in collaboration with OSU
Davis Heart and Lung Research Institute, we have developed several
algorithms for super-resolution imaging.
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Super-Resolution Microscopy Imaging

3DMACS (BOE 2015): a multi-camera approach that leverages
diversity to improve resolution in CSSTORM.

J. Huang, M. Sun, K. Gumpper, Y. Chi, and J.Ma, “3D Multifocus Astigmatism and Compressed Sensing (3DMACS) Based
Supper-resolution Reconstruction,” Biomedical Optics Express, vol. 6, pp. 902-917, 2015.

35

camera setup PSF profile localization



Super-Resolution Microscopy Imaging

MempSTORM (OL 2015): a fast and cheap method for 2D
super-resolution imaging using truncated SVD-based spectral estimation
that is much faster than state-of-the-art CSSTORM.

J. Huang, K. Gumpper, Y. Chi, M. Sun, and J. Ma, “Fast Two-dimensional Super-resolution Image Reconstruction Algorithm for
Ultra-high Emitter Density,” Optics Letters, vol. 40, pp. 2989-2992, 2015. 36
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Super-Resolution Microscopy Imaging

TVSTORM (TCI 2017, in press): measure optimization for 3-D image
reconstruction under Poisson noise that achieves better performance than
state-of-the-art CSSTORM.

J. Huang, M. Sun, J.Ma and Y. Chi, “Super-Resolution Image Reconstruction for High-Density 3D Single-Molecule Microscopy,”
IEEE Transactions on Computational Imaging, in press.
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Summary

Geometric Representations: embed both sparsity and
physically-meaningful constraints for source localization.

Convex Relaxations: enable provable and robust source localization
in the presence of missing data, outliers, multiple modalities, and
mis-calibrations.

Imaging Applications: fast
algorithms are developed for
super-resolution image reconstruction
in single-molecule fluorescence
microscopy.
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