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Abstract—We propose an algorithm for blind calibration of
multi-channel samplers in the presence of unknown gains and
offsets, which is useful in many applications such as multi-channel
analog-to-digital converters, image super-resolution, and sensor
networks. Using a subspace-based rank condition developed by
Vandewalle et al., we obtain a set of linear equations with respect
to complex harmonics whose frequencies are determined by the
offsets, and the coefficients of each harmonic are determined
by the discrete-time Fourier transforms of outputs of each of the
channels. By discretizing the offsets over a fine grid, this becomes
a sparse recovery problem where the signal of interest is sparse
with an additional structure, that in each block there is only
one nonzero entry. We propose a modified CoSaMP algorithm
that takes this structure into account to estimate the offsets. Our
algorithm is scalable to large numbers of channels and can also
be extended to multi-dimensional signals. Numerical experiments
demonstrate the effectiveness of the proposed algorithm.

Index Terms—multi-channel sampling, blind calibration,
sparse recovery, CoSaMP

I. INTRODUCTION

The time-interleaved multi-channel sampler, demonstrated
in Fig. 1, is an attractive architecture for sampling wideband
signals at sub-Nyquist rates without additional assumptions
such as sparse spectral occupancy. It is also an important
model for image super-resolution, where a high-resolution
image can be reconstructed from a set of lower-resolution
images that are slightly misaligned from each other. The multi-
channel sampler is composed of K channels, where an input of
continuous-time band-limited signal x(t) is sampled in parallel
using the same sampling period T , with a different offset
τk ∈ [0, T ) and gain αk ∈ C in each channel. When the offsets
and gains of all channels are known perfectly, this coincides
with the well-known Papoulis generalized sampling scheme
[1], and it is possible to recover x(t) by sampling each channel
at 1/K the Nyquist rate of the input signal.

However, in practice, the gains {αk}Kk=1 and offsets
{τk}Kk=1 are typically unknown and must be calibrated before
use. Without loss of generality, we assume α1 = 1 and
τ1 = 0 for identifiability considerations. While it is possible to
calibrate using a known input x(t), it is much more desirable to
calibrate the multi-channel sampler in a blind fashion without
knowledge of the input signal. Many existing blind calibration
approaches only included calibration of unknown offsets [2],
[3] and were limited to very small number of channels (e.g.
K = 2, 4, 8). These drawbacks have severely limited the

adoption of the multi-channel sampler especially when the
number of channels is large. More recently, Vandewalle, Lu
and Vetterli [4], [5] have developed blind calibration methods
including both unknown gains and offsets, based upon a
subspace-based rank condition which shows that with a modest
amount of oversampling, the output of the first channel in the
frequency domain can be written as a linear superposition
of the outputs of the other (K − 1) channels. However, their
algorithms are either computationally complex by performing
a matrix rank test using exhaustive search [4], or noise-
sensitive due to algebraic root-finding [5]. It is also not clear
how to extend the method in [5] to the two-dimensional (2D)
case which becomes relevant in image super-resolution.

Fig. 1: The architecture of a multi-channel sampler.

In this paper, we develop an efficient algorithm for blind
calibration of multi-channel samplers in the presence of both
unknown gains and offsets, in the same setting studied in
[4], [5]. Since the gains can be obtained by using a least-
squares step once the offsets are estimated, we focus on offset
estimation. We first recognize that the subspace-based rank
condition can be formulated into a set of linear equations with
respect to (K − 1) complex harmonics whose frequencies are
determined by the offsets, and the coefficients of each har-
monic are determined by the discrete-time Fourier transforms
(DTFT) of outputs of each of the channels. By discretizing the
offsets over a fine grid, this becomes a sparse recovery problem
where the signal of interest is sparse with an additional
structure: in each block there is only one nonzero entry. We
modify the CoSaMP algorithm [6], a popular algorithm in the
sparse recovery literature, to directly take this structure into
account in estimating the unknown offsets. Our algorithm is
scalable to multiple channels and can be extended to multi-



dimensional signals. Numerical experiments are provided to
demonstrate the effectiveness of the proposed algorithm.

The rest of this paper is organized as follows. We provide
background on the problem formulation in Section II, and
describe the proposed algorithm in Section III. In Section IV,
we provide numerical experiments to validate the perfor-
mance of the proposed algorithm. We conclude in Section V.
Throughout the paper, (·)T denotes matrix transpose, (·)H

denotes the conjugate transpose, (·)† denotes the pseudo-
inverse, and � denotes the Hadamard product.

II. BACKGROUND ON MULTI-CHANNEL SAMPLERS

Denote the continuous-time Fourier transform (CTFT) of
x (t) as X (ω) =

∫
x(t)e−jωtdt. We consider band-limited

x (t), in which case X (ω) is supported within the band
[−B,B], for some B > 0. As in Fig. 1, in each channel
we sample x (t) uniformly at a rate 1

T < B
π . The subsampling

ratio per channel is S = BT
π . Then the samples from the kth

channel can be represented as

yk [n] = αkx (nT − τk) , (1)

for k = 1, 2, . . . ,K. The DTFT of yk [n]’s is given as

Yk (ω) =
∑
n∈Z

yk [n] e−jnTω

=
∑
n∈Z

αkx (nT − τk) e−jnTω

=
αk
T

∑
r∈Z

X

(
ω +

2πr

T

)
e−j(ω+ 2π

T r)τk , (2)

where the last equation follows from the Poisson summation
formula [7]. Clearly, Yk (ω) is a periodic function, with a
period of 2π/T .

Since X (ω) has a finite support, the sum in (2) only
contains a finite number of terms. Specifically, consider one
period of Yk (ω) from [−B,−B + 2π

T ), then Yk (ω) can be
written as

Yk (ω) =
αk
T

R−1∑
r=0

X

(
ω +

2πr

T

)
e−j(ω+ 2π

T r)τk , (3)

where R = d 2BT
2π e = dBTπ e. In other words, there are only

R different shifted versions of X (ω) in Yk (ω). Multiplying
both sides of (3) by ejωτk , we have

ejωτkYk (ω) =
αk
T

R−1∑
r=0

X

(
ω +

2πr

T

)
e−j

2πrτk
T . (4)

Now, we sample Yk (ω) at ωn = −B + 2πn
TN , where n =

0, . . . , N − 1, and N is the total number of samples. Denote

yk = [Yk(ω0), Yk(ω1), . . . , Yk(ωN−1)]
T ∈ CN ,

gk =
[
1, e−j

2πτk
TN , . . . , e−j

2π(N−1)τk
TN

]T
∈ CN , (5)

for k = 1, . . . ,K, and

xr =

[
X

(
ω0 +

2πr

T

)
, . . . , X

(
ωN−1 +

2πr

T

)]T
∈ CN ,

for r = 0, . . . , R− 1, then vectorizing the samples of (4), we
have

gk � yk = ejBτk
αk
T

R−1∑
r=0

e−j
2πrτk
T xr, k = 1, . . . ,K. (6)

Note that, xr does not depend on the unknown offsets or gains.
The above equation (6) suggests that for all 1 ≤ k ≤ K,
gk�yk lies in the column spans of {xr}R−1

r=0 . Define the matrix
Y = [g1 � y1, g2 � y2, . . . , gK � yK ] ∈ CN×K , then the
subspace-based rank condition [4] states that if R = dBTπ e <
K and R = dBTπ e ≤ N , the matrix Y is rank deficient and has
rank (Y ) ≤ R. The first condition requires that the sampling
rate 1/T should be slightly higher than 1/K the Nyquist rate,
thus the subsampling ratio per channel is S ≤ R < K. The
second condition requires the sampling of the DTFT of Yk(ω)
to be dense enough.

Based on this rank deficiency of Y , Vandewalle et al.
[4] proposed an exhaustive search algorithm by testing the
rank of Y over all possible combinations of the offsets on
a fine grid. The computational complexity of their algorithm
grows exponentially with respect to K and the grid size. In
[5], Lu and Vetterli took a different approach by writing the
first column of Y as a linear combination of the rest of the
columns, given as

y1 =

K∑
k=2

ckyk � gk, (7)

where we used the fact g1 is an all-one vector since we
have assumed τ1 = 0, and ck’s are unknown coefficients.
Note that each gk in (5) is a complex exponential with the
frequency determined by the corresponding offset, so the
problem resembles the classical harmonic retrieval problem.
Nonetheless, none of the existing methods (e.g. Prony, MUSIC
and ESPRIT) can be applied due to the special structure
introduced. Lu and Vetterli [5] proposed a very clever alge-
braic root-finding procedure to estimate the offsets, however,
their method requires N ≥ K! samples, which is potentially
prohibitive when K is large. Moreover, it is well-known that
root-finding procedures are sensitive to noise.

III. PROPOSED ALGORITHM

In this section, we propose a new algorithm to recover the
offsets assuming the subspace-based rank condition holds. To
proceed, we first define

a (τ) =
[
1, e−j

2πτ
N , . . . , e−j

2πτ(N−1)
N

]T
∈ CN ,

as a complex sinusoid with frequency τ ∈ [0, 1). Define a
DFT frame with oversampling factor c as

D =

[
a(0),a

(
1

cN

)
, . . . ,a

(
cN − 1

cN

)]
∈ CN×cN .



When the oversampling factor is large enough, we approxi-
mate the normalized offset τk/T ≈ nk/(cN) ∈ [0, 1) to lie on
the DFT frame. Therefore, gk becomes a 1-sparse vector over
the DFT frame, gk = Dck, where ck is 1-sparse with the nkth
entry equal to ck. Consequently, this allows discretization to
have minimal effects in our sparse recovery problem, unlike
[8]. With this, we can rewrite (7) as

y1 =

K∑
k=2

diag (yk)D︸ ︷︷ ︸
Dk

ck = Gc, (8)

where diag (yk) denotes the diagonal matrix with yk
as its diagonal, G = [diag (y2)D, . . . ,diag (yK)D] ∈
CN×cN(K−1), and c = [c2, . . . , cK ] ∈ CcN(K−1).

Therefore, it is possible to recover the offsets by applying
sparse recovery algorithms to (8). Note that, the sparse signal
c in (8) is structurally sparse, where we know in each
block of ck, there is only one nonzero entry. We incorporate
this prior information and modify the well-known CoSaMP
algorithm [6] to estimate the set of offsets. The algorithm
is summarized in Algorithm 1, referred to as the Modified
CoSaMP (MCoSaMP) algorithm. Let Υk be the index set
of the selected columns from Dk, then DΥk denotes the
submatrix constructed by the columns of Dk indexed by Υk.

Algorithm 1 Blind Calibration via MCoSaMP
Input: yk, for k = 1, 2, . . . ,K, and the DFT frame D.
Output: Υk, for k = 2, . . . ,K.
Initialize: Set Dk = diag (yk)D, Υk = ∅, for k = 2, . . . ,K.
Set the residual r = y1.
while stopping criterion is not met do

1) For k = 2, . . . ,K:
a) pk = DH

k r;
b) Set Tk as the indices of the two largest entries of |pk|;
c) Tk = Υk ∪ Tk.

2) Set DT = [DT2 ,DT3 , . . . ,DTK ].
3) q = D†Ty1.
4) Set Υk as the index of the largest entry of |qTk |, for

k = 2, . . . ,K;
5) Du = [DΥ2 , . . . ,DΥK ], qu =

[
qΥ2 , . . . , qΥK−1

]T
.

6) Update r = y1 −Duqu.
end

Compared with the original CoSaMP algorithm, we have
constrained that in each iteration, we evenly select two more
candidates from each block, and then after the least-squares
fitting in step 3), we only keep one nonzero entry from
each block. The stopping criterion can be set as when the
number of maximal iterations is met, or the norm of the
residual is small enough. The MCoSaMP algorithm has a
computational complexity that is linear with respect to the
number of channels K and the grid size, therefore it is very
efficient.

When the signal is multi-dimensional, the rank-deficiency
condition (7) still holds under appropriate sampling conditions.

By discretizing the offsets over the 2-D plane, we can similarly
formulate a sparse recovery problem with structured sparsity
constraints, for which the MCoSaMP algorithm can be simi-
larly applied. We omit these details due to space constraints,
but will provide a numerical experiment in Section IV.

IV. NUMERICAL EXPERIMENTS

In this section, we carry out a series of numerical exper-
iments to validate the proposed MCoSaMP algorithm and
compare its performance with several existing algorithms.

We first compare the performance of the proposed
MCoSaMP method with the matrix rank method in [4] and
the algebraic root-finding method in [5] when K = 3. We set
the input signal as x (t) =

∑M
m=−M ame

j2πmt, where am =
aH−m, and am’s are i.i.d. generated from a complex Gaussian
distribution for m = 1, . . . ,M . For ease of presentation we
pick N = 1/T as an integer, so that in each period we obtain
N samples from each channel of the multi-channel sampler.
We set M = N − 1 which represents the largest bandwidth to
maintain R = d 2M+1

N e = 2. Therefore each channel operates
at approximately half the Nyquist rate, and we increase the
input bandwidth M accordingly in the simulations when
we increase the number of samples N . Therefore, the input
bandwidth M is increased accordingly when we increase the
number of samples N . Furthermore, the samples yk [n]’s are
corrupted by additive white Gaussian noise N (0, σ2), where
the SNR is defined as log10

(∑K
k=1

∑N−1
n=0 yk [n]

2
/(KNσ2)

)
dB. The offsets τk’s are chosen i.i.d. from a uniform distribu-
tion over [0, 1], with all gains αk’s set to ones.
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(a) Average offset estimation error (b) Success rate

Fig. 2: The average offset estimation errors and the success
rates with respect to SNR for different algorithms when K =
3. First row: N = 128; second row: N = 256.

We examine the three algorithms at each SNR by repeating
500 Monte Carlo simulations. The oversampling factor of
the DFT frame is c = 6 in the MCoSaMP algorithm. Two



(a) Castle (b) Matrix rank (c) MCoSaMP (d) Cameraman (e) Matrix rank (f) MCoSaMP

Fig. 4: Performance comparisons on image super-resolution. (a) and (d): low-resolution image from one channel; (b) and (e):
reconstruction using the matrix rank algorithm [4]; (c) and (f): reconstruction using the proposed MCoSaMP algorithm.

performance metrics are used, the average offset estimation
error, defined as 1

K−1

∑K
k=2 |τk − τ̂k|, where τ̂k is the estimate

of τk, for k = 2, . . . ,K; and the success rate, defined as the
percentage of trials when the absolute estimation error for each
offset is less than 10−3. Fig. 2 shows the performance with
respect to SNR of all three algorithms, when N = 128 in
the first row, and N = 256 in the second row. It is clear that
the proposed algorithm achieves better performance especially
when the SNR is modest. It is also worth noticing that the
performance of the matrix rank method and the algebraic
method decreases when the bandwidth of the input increases.
Next, we examine the effect of input bandwidth on offset
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Fig. 3: The average offset estimation errors and the success
rates with respect to SNR for different values of N of the
proposed algorithm when K = 5.

estimation when K = 5. Under the same setup as Fig. 2, we
vary the input bandwidth while keeping R = d 2M+1

N e = 4 by
setting M = 2N−1. Fig. 3 shows the average offset estimation
errors and the success rates of the proposed algorithm when
N = 256, 512, 1024. It is clear that the performance of
the proposed algorithm improves with the increase of input
bandwidth.

Finally, we implement the proposed algorithm on image
super-resolution and compare it with the heuristic matrix rank
method in [4, Section VI, Algorithm 6.2] that is computation-
ally much more efficient. We attempt to reconstruct a 63× 63
image from five 32×32 low-resolution images without adding
noise. In implementing the proposed MCoSaMP algorithm, we
discretize the parameter space [0, 1] of each dimension into
200 uniform grid points. Fig. 4 shows the super-resolution
results of a segment of the castle and the cameraman images.
Fig. 4 (a) and (d) are one of the five 32 × 32 low-resolution

images, and Fig. 4 (b) and (e) are the super-resolution images
using the matrix rank method, and Fig. 4 (c) and (f) are
the super-resolution images using the proposed MCoSaMP
algorithm. Both algorithms perform comparably well on the
castle image, while the proposed algorithm performs much
better on the cameraman image. This may happen due to the
fact that the heuristic assumptions in [4, Section VI, Algorithm
6.2] may not always hold in practice, while our algorithm does
not make additional assumptions.

V. CONCLUSION

We proposed an efficient algorithm for blind calibration of
multi-channel samplers in the presence of unknown gains and
offsets, based on a modified CoSaMP algorithm for sparse
recovery with a structured sparsity constraint. Numerical ex-
amples demonstrate that the proposed algorithm is scalable
to more channels, robust to noise, and can handle multi-
dimensional signals, making it an appealing choice in practical
applications.
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