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Abstract— Phase retrieval finds many applications in signal
processing, and recently, there has been a growing interest in
directly solving it via nonconvex optimization. Under certain
generic statistical models, the loss function satisfies the so-
called Regularity Condition (RC) in a local neighborhood of
the true signal, which guarantees the linear convergence of
gradient descent if initialized properly. However, accelerated
first-order methods (e.g. Nesterov’s method and Heavy-ball
method), despite the empirical success, currently lack similar
performance guarantees as the unaccelerated counterpart. This
paper studies the convergence of accelerated first-order meth-
ods in phase retrieval using tools from robust control. We derive
a set of Linear Matrix Inequalities (LMIs) that can be used
to numerically certify linear convergence of accelerated first-
order methods under the Regularity Condition. For the Heavy-
ball method, analytical conditions of algorithmic parameters
for linear convergence are further obtained.

I. INTRODUCTION

This paper focuses on the convergence analysis of some
popular first-order methods in the phase retrieval problem,
where the goal is to recover some real-valued signal x ∈ Rn
from its measurements {gi}mi=1:

gi = |〈ai, x〉|, for i = 1, · · · ,m, (1)

where {ai}mi=1 are known sampling vectors. It is one of the
most classical problems in signal processing and has a wide
range of applications in various fields such as X-ray crys-
tallography [1], microscopy [2], and optics [3]. The phase
retrieval problem is typically solved through optimizing some
nonconvex loss function that penalizes the deviation of the
collected measurements from those of the estimated signal,

x̂ = arg min
z∈Rn

`(z).

For example, in [4], Candès et al. used the squared loss
function of the intensity measurements:

`(z) :=
1

4m

m∑
i=1

(|aTi z|2 − g2i )2. (2)

In [5], Zhang et al. adopted the squared loss function of the
amplitude measurements:
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`(z) :=
1

2m

m∑
i=1

(|aTi z| − gi)2. (3)

Compared with (2), the loss function in (3) is nonsmooth.
In general, optimizing these nonconvex functions is chal-
lenging. A popular two-step strategy is to first find a proper
initial estimate z0, and then update the estimate via local
refinement, for example via the Gradient method,

zk+1 = zk − α∇`(zk), α > 0, (4)

where α is a carefully chosen step size.
The spectral method [4] is often used to provide an initial

estimate. It is demonstrated in [4] that with m = O(n log n)
measurements, the output of the spectral method lands in
Nx(c) = {z ∈ Rn : ‖z − x‖ ≤ c‖x‖}, where c = 1/10 with
high probability1. A few variants of the spectral method are
also proposed in the literature, such as the truncated spectral
method in [6], which provide a provably good initial estimate
with m = O(n) measurements. In the remaining, we assume
the initialization satisfies z0 ∈ Nx(c) and focus on the local
refinement stage.

Firstly we define the so-called Regularity Condition.
Definition 1: A function `(·) is said to satisfy the Regu-

larity Condition RC(µ, λ, c) with positive constants µ, λ and
c, if

〈∇`(z), z − x〉 ≥ µ

2
‖∇`(z)‖2 + λ

2
‖z − x‖2 (5)

for all z ∈ Nx(c).
A nice consequence is that, if a loss function `(z) satisfies

RC(µ, λ, c), then as long as z0 ∈ Nx(c), the Gradient method
converges linearly provided 0 < α ≤ µ.

The goal of this paper is to further study the convergence
of accelerated first-order methods for phase retrieval under
the assumption that the loss function satisfies the Regularity
Condition. The simplified Nesterov’s method [7] is:

zk+1 = yk − α∇f(yk),
yk = (1 + β)zk − βzk−1, α > 0, 0 ≤ β < 1.

(6)

The Heavy-ball method [8] can be expressed as:

zk+1 = zk − α∇`(zk) + β(zk − zk−1), α > 0, 0 ≤ β < 1. (7)

Both Nesterov’s method and Heavy-ball method have been
used empirically for solving phase retrieval with encouraging
performance [9], [10], however there are currently no theo-
retical guarantees on the linear convergence of accelerated

1This means the probability approaches to 1 as the signal size goes to
infinity. For example, the probability is at least 1− 10e−γn − 8/n2 (γ is
a fixed positive number) [4].



gradient descent under the Regularity Condition. Compared
with other geometric properties [11], the Regularity Condi-
tion doesn’t require the loss function to be strongly convex
or smooth, and therefore is broadly applicable to analysis of
other nonconvex problems sharing similar properties.

This paper provides a unified approach to analyze the
convergence of first-order algorithms for phase retrieval
under the Regularity Condition. We construct a dynamical
system that can represent three first-order methods (Gradient,
Nesterov, and Heavy-ball) and the Regularity Condition.
Through stability analysis of the dynamical control system,
we can numerically certify the convergence conditions of
these algorithms. We also explore the analytical conver-
gence conditions regarding the parameters of the Heavy-ball
method. Although our results are stated in the context of the
phase retrieval problem, they can also be used to analyze
convergence of first-order methods in blind deconvolution
[12] and matrix completion [13] whose loss functions also
satisfy the Regularity Condition.

II. CONVERGENCE ANALYSIS

Motivated by the seminal work [14], we adopt the dynam-
ical system viewpoint of first-order optimization algorithms.
In particular, all the three first-order algorithms (4), (6), and
(7) can be written as:

z
(1)
k+1 = (1 + β1)z

(1)
k − β1z

(2)
k − αuk,

z
(2)
k+1 = z

(1)
k ,

yk = (1 + β2)z
(1)
k − β2z

(2)
k ,

uk = ∇`(yk)

(8)

where (β1, β2) = (0, 0) for the Gradient method, (β1, β2) =
(β, 0) for the Heavy-ball method and (β1, β2) = (β, β) for
the Nesterov’s method.

If we define φk =

[
z
(1)
k

z
(2)
k

]
as the state, uk as the input

and yk as the output, the algorithms can be represented as
a dynamical system shown in Figure 1, where the feedback
∇`(yk) is a static nonlinearity that depends on the gradient
of the loss function, and G denotes a linear system with the
following state space representation:[

A B
C D

]
=

 (1 + β1)In −β1In −αIn
In 0n 0n

(1 + β2)In −β2In 0n

 . (9)

G

∇`(yk)
ykuk

Fig. 1: Dynamical system representation of first-order optimization
algorithms.

Denote the equilibrium of the dynamical system as φ∗ =[
x
x

]
, then φk

k→∞−−−−→ φ∗ implies zk
k→∞−−−−→ x. In other

words, the asymptotic stability of the dynamical system can

indicate the convergence of the estimated signal to the ground
truth.

The main challenge for stability analysis of the dynamical
system (Figure 1) lies in the nonlinear feedback term ∇`(·).
Our key observation is that the Regularity Condition is
equivalent to a quadratic constraint imposed on the feedback
block.

Lemma 1: Suppose the loss function ` satisfies RC(µ, λ, c).
If the kth iterate of the Gradient method and the Heavy-
ball method satisfies zk ∈ Nx(c) and for the Nesterov’s
method zk−1, zk ∈ Nx(c/6), then the nonlinear feedback
uk = ∇`(yk) can be quadratically bounded by[

yk − y∗
uk − u∗

]T [ −λIn In
In −µIn

] [
yk − y∗
uk − u∗

]
≥ 0. (10)

Thus, we convert the convergence analysis of first-order
methods to the stability analysis of a dynamical system with
quadratically bounded feedback. Consider a quadratic Lya-
punov function V (φ) = (φ−φ∗)TP (φ−φ∗), with P � 0. By
letting V (φk) decay exponentially and combing with (10),
we can use S-procedure [15] to derive sufficient conditions
for convergence as stated in the following theorem.

Theorem 1: Let x ∈ Rn be the true signal, and suppose
that the loss function satisfies RC(µ, λ, c) with some positive
constants µ, λ, c. For a given first-order method characterized
by G(A,B,C,D) and a fixed 0 < ρ < 1, if there exists a
matrix P � 0 such that the following LMI (11) holds,[

ATPA− ρ2P ATPB
BTPA BTPB

]
+[

C 0
01×2 1

]T [ −λ 1
1 −µ

] [
C 0

01×2 1

]
� 0,

(11)

then with an initial estimate z0 ∈ Nx(c/c′), where c′ =
cond(P ) for the Gradient method and the Heavy-ball method
and c′ = 6cond(P ) for the Nesterov’s method, the algorithm
characterized by G(A,B,C,D) guarantees

‖φk − φ∗‖ ≤
√

cond(P )ρk‖φ0 − φ∗‖ for all k,

and thus implies the estimated signals converge to the ground
truth linearly.

Remark 1: By homogeneity of (11), one can check that
we can remove all dimension-dependent identity In without
affecting the results of the LMI. Therefore, the LMI is
equivalent to a smaller-size one which is independent of
the dimension of signals, and thus can be efficiently solved.
For simplification purposes, in (11) and all equations in the
remaining, A,B,C, P do not contain In.

III. NUMERICAL EXPERIMENT AND INSIGHTS

Numerically, it is straightforward to certify the conver-
gence conditions by solving the LMI (11) for a given ρ. For
a given ρ ∈ (0, 1) and the Regularity Condition RC(µ, λ, c),
one can search over the pair (α, β) over a fine grid, and find
those that (11) have feasible solutions of P . Its application on
the Heavy-ball method and the Nesterov’s method are shown
in Figure 2. As shown in Figure 2, the stability regions of
the accelerated first-order algorithms can be obtained by the
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Fig. 2: Example of stability regions (all pairs of (α, β) beneath the curves)
of the Heavy-ball method (left) and the Nesterov’s method (right) when
fixing ρ = 0.997 and taking the Regularity Condition parameters as µ =
0.5, λ = 0.5.

grid search method. However, when the grid size is small, the
computational complexity can be substantial. This motivates
us to look for more insights to reduce complexity.

We extend the LMI (11) as[
A B

]T
P
[
A B

]
− ρ2

[
P 0
0 0

]
+M � 0, (12)

where M =

[
C 0

01×2 1

]T [
−λ 1
1 −µ

] [
C 0

01×2 1

]
. Ob-

serve that P is PSD and M is deterministic when considering
the Heavy-ball method. By the Shur complement, (12) can
be equivalently stated as:[

P−1 B′

B′T C′

]
� 0, (13)

where B′ = [ A B ] , C ′ = ρ2
[
P 0
0 0

]
−M . Now, (13)

is linear with respect to α and β. The following proposition
can help reduce the computational complexity for numerical
characterization of the stability region.

Proposition 1: If we fix P, ρ in (13), and S denotes the set
of feasible pairs of parameters for the Heavy-ball method,
that is, S =

{(
α(i), β(i)

)
: (13) is feasible

}
, then all the

points in the convex hull of S are also feasible solutions.
In the numerical search for the stability region of (α, β),

every single pair in the sampled grid needs to be used to solve
the LMI (11). The previous proposition, however, can help to
reduce the work. When we fix some P and get some feasible
solutions

{(
α(i), β(i)

)}
i

corresponding to the same P , then
all points in the convex hull determined by the existing points
are feasible. Unfortunately, this property does not help the
numerical convergence analysis of the Nesterov’s method.

IV. ANALYTICAL RESULT

A. Convergence condition of the Gradient method

In the remaining, some analytical results are explored. In
[4], the authors proved that by their Wirtinger flow algorithm,
the linear convergence of the Gradient method is guaranteed
when taking the step size as α ≤ µ (µ is determined by
RC(µ, λ, c)). In our method, without changing their initial-
ization step, we can get a less conservative stability region
than that in [4].

Theorem 2: Let x ∈ Rn be the true signal and let
z0 be located in the basin where RC(µ, λ, c) holds with
spectral initialization. If the step size α < 2−2

√
1−µλ
λ , then

the Gradient method can guarantee the estimate zk linearly
converges to x as k →∞.

By simple calculation, we can find that 2−2
√
1−µλ
λ ≥ µ

for all µ, λ satisfying µλ ∈ (0, 1), which means this bound
can cover the existing one.

B. Convergence condition of the Heavy-ball method

The stability region of the Heavy-ball method is more
complicated to derive. (11) corresponding to the Heavy-ball
method is a 3 × 3 matrix instead of a 2 × 2 one for the
Gradient method. This is mainly due to that the Lyapunov
function parameter P for the Heavy-ball method is of higher
dimension and thus introduces more uncertain parameters.
To reduce unknown parameters, we transfer the time domain
matrix inequality into a frequency domain inequality (FDI)
through the KYP lemma [16].

Lemma 2: (Theorem 2 in [16]) Given A,B,M, with
det(ejωI − A) 6= 0 for ω ∈ R, A is Schur stable and the
left upper corner of M is positive semidefinite (PSD), the
following two statements are equivalent:

1) ∀ω ∈ R,[
(ejωI −A)−1B

I

]∗
M

[
(ejωI −A)−1B

I

]
≺ 0.

(14)
2) There exists a matrix P ∈ Rn×n such that P � 0 and

M +

[
ATPA− P ATPB
BTPA BTPB

]
≺ 0. (15)

One can easily check, however, that A and M in (11) do
not satisfy these conditions. Therefore, we need to rewrite the
dynamical system (9) representing the Heavy-ball method.
A way to generalize the representation without changing the
equilibrium is to introduce all possible uncertain parameters,
such as a11, a12, b in the dynamics and s, t in the feedback.

z
(1)
k+1 = a11z

(1)
k + a12z

(2)
k + buk,

z
(2)
k+1 = z

(1)
k ,

yk = z
(1)
k ,

uk = s∇`(yk) + tyk

⇔
[
A′ B′

C′ D′

]
=

 a11 a12 b
1 0 0
1 0 0

 ,
(16)

By letting z
(1)
k = zk and z

(2)
k = zk−1, the new system

characterized by G(A′, B′, C ′, D′) can be simplified as

zk+1 = (a11 + bt)zk + a12zk−1 + bs∇`(zk). (17)

To make sure (16) corresponds to the Heavy-ball method,
we compare (17) and (7), then we have

a11 + bt = 1 + β, a12 = −β, bs = −α. (18)

Correspondingly, the original Regularity Condition (10) is
now shifted as:[

yk − y∗
uk − u∗

]T
M ′
[
yk − y∗
uk − u∗

]
≥ 0. (19)



where M ′ =
[
−
(
2st+ s2λ+ t2µ

)
s+ tµ

s+ tµ −µ

]
.

By Theorem 1, we can solve the stability of the new
system (16) by finding some P � 0 to make the following
time domain matrix inequality feasible.[

A′TPA′ − P A′TPB′

B′TPA′ B′TPB′

]
+[

C′ 0
01×2 1

]T
M ′
[

C′ 0
01×2 1

]
≺ 0.

(20)

To apply the KYP lemma to solve (20), we first figure out
the region of the algorithm parameters (α, β) such that the
system (16) satisfy the conditions in Lemma 2.

Lemma 3: Let ` be a loss function satisfying RC(µ, λ, c).
To ensure that the dynamical system (16) representing the
Heavy-ball method can satisfy the following conditions:
det(ejωI − A′) 6= 0 for ω ∈ R; A′ is Schur stable; the
left upper corner of M ′ is PSD, the step size α and the mo-
mentum parameter β should obey the following restriction:

0 < α <
2(1 + β)(1 +

√
1− µλ)

λ
. (21)

Then we can solve (20) by the KYP lemma, which leads
to the following analytical convergence condition for the
Heavy-ball method.

Theorem 3: Let x ∈ Rn be the true signal. If there
exists a neighborhood Nx(c) of the ground truth x such that
RC(µ, λ, c) holds in the basin, then by proper initialization
and taking the step size α and the momentum parameter β
in the region as

{(α, β) : SR1(β) ≤ α ≤ SR2(β) or 0 ≤ α ≤ SR3(β)} ,

where

SR1(β) =
µβ2 + 6µβ + µ

β + 1
, SR2(β) =

2(β + 1)(1−
√
1− µλ)

λ
,

SR3(β) = min

SR1(β),
P2 −

√
P 2
2 − 4P1P3

2P1


(22)

and P1 = 4µλβ−β2− 1− 2β, P2 = 2µβ+2µβ2− 2µβ3−
2µ, P3 = 4µ2β3+4µ2β−6µ2β2−µ2β4−µ2, the Heavy-ball
method can guarantee the estimate zk linearly converges to
x as k →∞.

The KYP lemma successfully simplifies the stability re-
gion analysis of the Heavy-ball method. Similar analysis of
the Nesterov’s method is much more complicated due to
its complex output in the dynamical system. This part of
analysis will appear in our future work.

V. CONCLUSIONS
In this paper, we have developed a systematic approach to

analyze the convergence of three popular first-order methods
in the phase retrieval problem. A set of LMIs have been
derived to numerically certify the stability regions of three
first-order methods. Based on that, we also establish an
efficient way to reduce the computational complexity in
numerical analysis of the Heavy-ball method. Analytical
conditions have been derived for the Gradient method and
the Heavy-ball method.

REFERENCES

[1] R. P. Millane, “Phase retrieval in crystallography and optics,” JOSA
A, vol. 7, no. 3, pp. 394–411, 1990.

[2] J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the
methodology of x-ray crystallography to allow imaging of micrometre-
sized non-crystalline specimens,” Nature, vol. 400, no. 6742, p. 342,
1999.

[3] A. Walther, “The question of phase retrieval in optics,” Journal of
Modern Optics, vol. 10, no. 1, pp. 41–49, 1963.

[4] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via
wirtinger flow: Theory and algorithms,” IEEE Transactions on Infor-
mation Theory, vol. 61, no. 4, pp. 1985–2007, 2015.

[5] H. Zhang, Y. Liang, and Y. Chi, “A nonconvex approach for phase re-
trieval: Reshaped wirtinger flow and incremental algorithms,” Journal
of Machine Learning Research, vol. 18, no. 141, pp. 1–35, 2017.

[6] Y. Chen and E. Candes, “Solving random quadratic systems of
equations is nearly as easy as solving linear systems,” in Advances
in Neural Information Processing Systems, 2015, pp. 739–747.

[7] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Springer Science & Business Media, 2003, vol. 87.

[8] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[9] E. Pauwels, A. Beck, Y. C. Eldar, and S. Sabach, “On fienup methods
for sparse phase retrieval,” IEEE Transactions on Signal Processing,
2017.

[10] Y. Zhou, H. Zhang, and Y. Liang, “Geometrical properties and
accelerated gradient solvers of non-convex phase retrieval,” in Com-
munication, Control, and Computing (Allerton), 2016 54th Annual
Allerton Conference on. IEEE, 2016, pp. 331–335.

[11] C. Ma, K. Wang, Y. Chi, and Y. Chen, “Implicit regularization in
nonconvex statistical estimation: Gradient descent converges linearly
for phase retrieval, matrix completion and blind deconvolution,” arXiv
preprint arXiv:1711.10467, 2017.

[12] X. Li, S. Ling, T. Strohmer, and K. Wei, “Rapid, robust, and reli-
able blind deconvolution via nonconvex optimization,” arXiv preprint
arXiv:1606.04933, 2016.

[13] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and B. Recht,
“Low-rank solutions of linear matrix equations via procrustes flow,” in
International Conference on Machine Learning, 2016, pp. 964–973.

[14] L. Lessard, B. Recht, and A. Packard, “Analysis and design of opti-
mization algorithms via integral quadratic constraints,” SIAM Journal
on Optimization, vol. 26, no. 1, pp. 57–95, 2016.
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