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Sensing and imaging advances

New imaging/sensing modalities allow us to probe the nature in
unprecedented manners.

Radio&astronomy

healthcare

hyperspectral

Internet&traffic

seismic&imaging

microscopy

The large amount of data brings exciting opportunities that call for
new tools that are scalable in computation and memory.
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Low-rank matrices in data science

? ? ? ?
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?
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radar imaging recommendation systems

localization community detection bioinformatics

hyperspectral imaging 

Low-rank matrices are redundant representations of latent information

2



Low-rank matrix sensing
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rank(M) = r linear map

y = A(M) + noise

Recover M in the sample-starved regime:

(n1 + n2)r︸ ︷︷ ︸
degree of freedom

. m︸︷︷︸
sensing budget

� n1n2︸︷︷︸
ambient dimension
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Convex relaxation via nuclear norm minimization

min
Z∈Rn1×n2

rank(Z) s.t. y ≈ A(Z)

cvx surrogate

min
Z∈Rn1×n2

‖Z‖∗
s.t. y ≈ A(Z)

where ‖ · ‖∗ is the nuclear norm.

Significant developments in the last decade:

Fazel ’02, Recht, Parrilo, Fazel ’10, Candès, Recht ’09, Candès, Tao ’10, Cai et al. ’10, Gross ’10,

Negahban, Wainwright ’11, Sanghavi et al. ’13, Chen, Chi ’14, ...

Poor scalability: operate in the ambient matrix space
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Low-rank matrix factorization

min
Z∈Rn1×n2

rank(Z) s.t. y ≈ A(Z)

min
rank(Z)=r

1

2
‖y −A(Z)‖22

more scalable,
but nonconvex!

A detour: nonconvex optimization
Use low-rank representation Z = XY € with X,Y œ Rn◊r

¸ ˚˙ ˝
low-rank factors

minimize
X,Y œRn◊r

f(X,Y ) = 1
2

ÿ

(i,j)œ�

Ë!
XY €"

i,j
≠ Mi,j

È2
+ reg(X,Y )

• warm start: X0

• gradient descent:

Xt+1 = Xt ≠ ÷t Òf(Xt), t = 0, 1, · · ·
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X∈Rn1×r,Y ∈Rn2×r

f(X,Y ) =
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2

∥∥∥y −A(XY >)
∥∥∥
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Nonconvex problems are hard (in theory)!

“...in fact, the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity.

R. T. Rockafellar, in SIAM Review, 1993

6



Nonconvex problems are hard (in theory)!

“...in fact, the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity.

R. T. Rockafellar, in SIAM Review, 1993

6



Statistics meets optimization

Statistical model

worst case average case

Simple algorithms can be efficient for nonconvex learning!

Vanilla gradient descent (GD):

xt+1 = xt − η∇f(xt)

for t = 0, 1, . . .
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Recent developments: provable nonconvex optimization

9

Nonconvex	op;miza;on	with	performance	guarantees

See	h%p://sunju.org/research/nonconvex/	for	a	detailed	list	of	references.

Phase	retrieval:	[Gerchberg-Saxton,	’72],	[Netrapalli	et	al.	’13],	
[Candes,	Li,	Soltanolkotabi,	’15],	[Wei,	’15],	[Chen	&	Candes,	
’16],	[Waldspurger,	’16],	[Wang	et	al.	’18],	and	many	others	…

Matrix	comple5on:	[Keshavan	et	al.,	’09],	[Jain	et	al.	’12],	
[Hardt,	’13],	[Jin	et	al.,	’16],	[Wei,	’16],	[Zheng	&	Lafferty,	’16],	
[Sun	&	Luo,	’16],	[Ding	&	Chen,	’18],	and	many	others	…

Landscape	analysis:	[Sun	et	al.	’15],	[Ge	et	al.,	’16],	[Mei,	Bai	
&	Montanari,	’16],	[Li	et	al.	’18],	[Soltanolkotabi	et	al.,	’17],	
[Davis	et	al.,	’17],	[Ge	&	Ma,	’17],	[Ge	et	al.,	’17],	[Ballard	et	
al.,	’17]

Blind	deconvolu5on:	[Li	et	al.	’16],	[Lee	et	al.,	’16],	[Ling	&	
Strohmer,	’16],	[Huang	&	Hand,	’17],	…

Blind	calibra5on:	[Cambareri	&	Jacques,	’16],	[Ling	&	
Strohmer,	’16],	[Li,	Lee	&	Bresler,	’17]

Dic5onary	learning:	[Arora	et	al.,	’14],	[Sun	et	al.,	’15],	
[Chauerji	&	Bartleu,	’17]

Spectral	ini5aliza5on:	[Keshavan	et	al.,	’09],	[Netrapalli	et	al.	
’13],	[Sun	et	al.,	’15],	[Lu	&	Li,	’17]

Stochas5c	gradient	methods:	[Ghadimi	&	Lan,	’13],	[De	Sa	et	
al.,	’14],	[Rong,	’15],	[Jin	et	al.,	’16],	[Wang,	MaJngly	&	Lu,	
’17],	[Tripuraneri	et	al.,	’18]

“Nonconvex Optimization Meets
Low-Rank Matrix Factorization: An

Overview,” Chi, Lu, Chen, TSP 2019

Phase retrieval: Netrapalli et al. ’13, Candès, Li,
Soltanolkotabi ’14, Chen, Candès ’15, Cai, Li, Ma ’15,
Zhang et al. ’16, Wang et al. ’16, Sun, Qu, Wright ’16,
Ma et al. ’17, Chen et al. ’18, Soltani, Hegde ’18, Ruan
and Duchi, ’18, ...

Matrix sensing/completion: Keshavan et
al. ’09, Jain et al. ’09, Hardt ’13, Jain et al. ’13, Sun,
Luo ’15, Chen, Wainwright ’15, Tu et al. ’15, Zheng,
Lafferty ’15, Bhojanapalli et al. 16, Ge, Lee, Ma ’16, Jin et
al. ’16, Ma et al. ’17, Chen and Li ’17, Cai et al. ’18, Li,
Zhu, Tang, Wakin ’18, Charisopoulos et al. ’19, ...

Blind deconvolution/demixing: Li et al. ’16,
Lee et al. ’16, Cambareri, Jacques ’16, Ling, Strohmer ’16,
Huang, Hand ’16, Ma et al. ’17, Zhang et al. ’18, Li,
Bresler ’18, Dong, Shi ’18, Shi, Chi ’19, Qu et al. ’19...

Dictionary learning: Arora et al. ’14, Sun et
al. ’15, Chatterji, Bartlett ’17, Bai et al. ’18, Gilboa et
al. ’18, Rambhatla et al. ’19, Qu et al. ’19,...

Robust principal component analysis:
Netrapalli et al. ’14, Yi et al. ’16, Gu et al. ’16, Ge et
al. ’17, Cherapanamjeri et al. ’17, Vaswani et al. ’18,
Maunu et al. ’19, ...

Deep learning: Zhong et al. ’17, Bai, Mei,
Montanari ’17, Du et al. ’17, Ge, Lee, Ma ’17, Du et
al. ’18, Soltanolkotabi and Oymak, ’18...
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Acceleration via preconditioning

Vanilla GD:

xt+1 = xt − η∇f(xt)

/ Slows down with ill-conditioning.

Preconditioning

Preconditioned GD:

xt+1 = xt − η Ht︸︷︷︸
preconditioner

∇f(xt)

, Preconditioning helps!
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Robustness via nonsmooth optimization

Least squares:

f(X,Y ) =
1

2

∥∥∥y −A(XY >)
∥∥∥

2

2

/ Sensitive to outliers.

Nonsmooth

Least absolute deviation:

f(X,Y ) =
∥∥∥y −A(XY >)

∥∥∥
1

, Nonsmoothness helps!
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This talk

Optimization geometry:

When and why does simple gradient descent work well for low-rank

matrix estimation?

Acceleration for ill-conditioned matrix estimation:

Can we design provably fast gradient algorithms that are insensitive

to the condition number of low-rank matrices?

Robustness to adversarial outliers:

Can we design provably robust gradient algorithms that are

oblivious to the presence of outliers?

Generalization to tensors:

Can we generalize to higher-dimensional objects?
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A bit preliminaries of optimization



Unconstrained optimization

Consider an unconstrained optimization problem

minimizex f(x)

Definition (first-order critical points)

A first-order critical point of f satisfies

∇f(x) = 0

Definition (second-order critical points)

A second-order critical point x satisfies

∇f(x) = 0 and ∇2f(x) � 0

13
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Several types of critical points

For any first-order critical point x:

• ∇2f(x) ≺ 0 → local maximum

• ∇2f(x) � 0 → local minimum

• λmin(∇2f(x)) < 0 → strict saddle point

figure credit: Li et al. ’16
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Gradient descent theory

0.2 0.4 0.6 0.8 1

0.9

1

t

f(t)/
p
1 + t2

1

Two standard conditions that enable geometric convergence of GD

• (local) restricted strong convexity (or regularity condition)

• (local) smoothness

∇2f(x) � 0 and is well-conditioned

15



Gradient descent theory

0.2 0.4 0.6 0.8 1

0.9

1

t

f(t)/
p
1 + t2

1

Two standard conditions that enable geometric convergence of GD

• (local) restricted strong convexity (or regularity condition)

• (local) smoothness

∇2f(x) � 0 and is well-conditioned

15



Gradient descent theory

0.2 0.4 0.6 0.8 1

0.9

1

t

f(t)/
p
1 + t2

1

Two standard conditions that enable geometric convergence of GD

• (local) restricted strong convexity (or regularity condition)

• (local) smoothness

∇2f(x) � 0 and is well-conditioned

15



Gradient descent theory revisited

f is said to be α-strongly convex and β-smooth if

0 � αI � ∇2f(x) � βI, ∀x

`2 error contraction: GD (xt+1 = xt − η∇f(xt)) with η = 1/β
obeys

‖xt+1 − xopt‖2 ≤
(

1− α

β

)
‖xt − xopt‖2

• Condition number β/α determines rate of convergence

• Attains ε-accuracy within O
(β
α log 1

ε

)
iterations

16
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Warm-up: understanding the geometry of PCA



Revisiting PCA

Given M � 0 ∈ Rn×n (not necessarily low-rank), find its best
rank-r approximation:

M̂ = argminZ ‖Z −M‖2F s.t. rank(Z) ≤ r︸ ︷︷ ︸
nonconvex optimization!

This problem admits a closed-form solution

• let M =
∑n

i=1 λiuiu
>
i be eigen-decomposition of M

(λ1 ≥ · · · ≥ λn), then

M̂ =
r∑

i=1

λiuiu
>
i

— nonconvex, but tractable

19
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An optimization viewpoint

Low-rank factorization: if we factorize Z = XX> with
X ∈ Rn×r, then it leads to a nonconvex problem:

minimizeX∈Rn×r f(X) = ‖XX> −M‖2F

Theorem (Baldi and Hornik, 1989)

Suppose M has a strict eigen-gap between λr and λr+1, the
critical points of f(X) can be categorized into

• global minima;

• strict saddle points, from which there exist directions to
strictly decrease f(X).

In other words, all local minima are global minima!

Baldi and Hornik. ”Neural networks and principal component analysis: Learning from examples without
local minima.” Neural networks 2.1 (1989): 53-58.

20
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Benign landscape of PCA

For example, for 2-dimensional case f(x) =

∥∥∥∥xx> −
[
1 1
1 1

]∥∥∥∥
2

F

global minima: x = ±
[
1
1

]
; strict saddles: x =

[
0
0

]
, and ±

[
1
−1

]

— No “spurious” local minima!

21



Local strong convexity and local linear convergence

• The global minimizers: xopt = ±
√
λ1u1

• For all x obeying ‖x− xopt‖2 ≤
λ1 − λ2

15
√
λ1︸ ︷︷ ︸

basin of attraction

, one has

0.25(λ1 − λ2)In � ∇2f(x) � 4.5λ1In

`2 error contraction: The GD iterates obey

∥∥xt −
√
λ1u1

∥∥
2
≤
(

1− λ1 − λ2

18λ1

)t ∥∥x0 −
√
λ1u1

∥∥
2
, t ≥ 0,

as long as ‖x0 −
√
λ1u1‖2 ≤ λ1−λ2

15
√
λ1

22



Local strong convexity and local linear convergence

• The global minimizers: xopt = ±
√
λ1u1

• For all x obeying ‖x− xopt‖2 ≤
λ1 − λ2

15
√
λ1︸ ︷︷ ︸

basin of attraction

, one has

0.25(λ1 − λ2)In � ∇2f(x) � 4.5λ1In

`2 error contraction: The GD iterates obey

∥∥xt −
√
λ1u1

∥∥
2
≤
(

1− λ1 − λ2

18λ1

)t ∥∥x0 −
√
λ1u1

∥∥
2
, t ≥ 0,

as long as ‖x0 −
√
λ1u1‖2 ≤ λ1−λ2

15
√
λ1
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Extension to the low-rank case

f(X) :=
1

4
‖XX> −M‖2F, X ∈ Rn×r

Cannot be uniquely determined X up to orthogonal transform.

• A modified distance metric:

dist2(X,X?) = min
H∈Or×r

‖XH −X?‖2F.

• Optimal alignment matrix (the Procruste problem):

HX := argmin
H∈Or×r

‖XH −X?‖2F.
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Restricted strong convexity

f(X) :=
1

4
‖XX> −M‖2F, X ∈ Rn×r

f satisfies α-restricted strong convexity and β-smoothness:

vec(V )>∇2f(X)vec(V ) ≥ α‖V ‖2F, V := XHX −X?

where β � λ1 and α � λr.

`2 error contraction: The GD iterates obey

dist2(Xt,X?) ≤
(

1− c

κ

)t
dist2(X0,X?), t ≥ 0,

as long as dist2(X0,X?) . λ1. Here, κ := λ1/λr.
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Two vignettes

Two-stage approach:

A

x

Ax

y = |Ax|2

| · |2

entrywise
squared magnitude

minimizeX ` (b)

s.t. bk = a⇤
kXak, k = 1, · · · , m

X ⌫ 0

yk =

(
hxk,�i+ ⌘k, with prob. 1

2

hxk,��i+ ⌘k, else

y ⇡ hx,�i
y ⇡ hx,��i

initial guess z0

x

x

basin of attraction

1

initial guess x0

x1

x2

x?

1

initial guess x0

x1

x2

x?

1

initial guess x0

x1

x2

x?

1

initial guess x0

x1

x2

x?

1

smart initialization
+

local refinement

Global landscape:

benign landscape
+

saddle-point escaping

This tutorial will mostly focus on the two-stage approach.
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Geometry and implicit regularization
in nonconvex low-rank matrix estimation

Yuxin Chen Cong Ma Kaizheng Wang

Princeton Chicago Columbia



Low-rank matrix completion: dealing with missing data




X ? ? ? X ?
? ? X X ? ?
X ? ? X ? ?
? ? X ? ? X
X ? ? ? ? ?
? X ? ? X ?
? ? X X ? ?




? ? ? ?

?

?

??

??

???

?

?

Given partial samples of a low-rank matrix M = X?X
>
? ∈ Rn×n

in an index set Ω, fill in missing entries.

27



A natural least-squares formulation

given: PΩ(M)

⇓

minimizeX∈Rn×r f(X) =
∥∥∥PΩ(XX> −M)

∥∥∥
2

F

• Bernoulli sampling: Assume every entry is observed i.i.d.
with 0 < p ≤ 1:

E[f(X)] = p
∥∥∥XX> −M

∥∥∥
2

F
.
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Two-stage approach

“Basin of attraction”

• Spectral initialization: find an initial
point in the “basin of attraction”.

X0 = SVDr(PΩ(M))

• Gradient iterations:

Xt+1 = Xt − η∇f(Xt)

for t = 0, 1, . . .

Question: Does vanilla GD still work with partial observations?

“Spectral methods for data science: A statistical perspective”, Y. Chen, Y. Chi, J. Fan, C. Ma, FnT ML, 2021.
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Incoherence

Which is easier to complete?




1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

0 0 0 · · · 0




︸ ︷︷ ︸

hard µ=n

vs.




1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

1 1 1 · · · 1




︸ ︷︷ ︸

easy µ=1

Definition (Incoherence for matrix completion)

A rank-r positive-semidefinite matrix M with eigendecomposition
M = UΣU> is said to be µ-incoherent if

‖U‖2,∞ ≤
√
µ

n
‖U‖F =

√
µr

n
.
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Which region has benign geometry?

Finite-sample level (p � polylogn
n ) :

f (X) restricted strongly convex and smooth

along descent direction V only when X is incoherent:

‖XHX −X?‖2,∞ � ‖X?‖2,∞

· ·

X?

region of local strong convexity + smoothness

31



Vanilla gradient descent is at risk

region of local strong convexity + smoothness

GD on the pop. loss

• Generic optimization theory only ensures that iterates remain in `2
ball but not incoherence region

• Existing algorithms enforce regularization, or apply sample splitting
to promote incoherence
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness

··

GD implicitly forces iterates to remain incoherent
even without regularization
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Matrix completion via vanilla GD

minimizeX∈Rn×r f(X) =
∥∥∥PΩ(XX> −M)

∥∥∥
2

F

50 100 150 200 250 300 350 400 450 500
10-15

10-10

10-5

100

Vanilla GD converges fast without regularization!
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Theoretical guarantees - noise-free case

Theorem (Ma, Wang, Chi, Chen, FoCM 2020)

Suppose M = X?X
>
? is rank-r, µ-incoherent and has a condition

number κ = σmax(M)/σmin(M). Vanilla GD (with spectral
initialization) achieves

‖XtX
>
t −M‖F ≤ ε · σmin(M)

• Computational: within O
(
κ log 1

ε

)
iterations;

• Statistical: as long as the sample complexity satisfies

n2p & nr3poly(µ, κ, log n).

First convergence guarantee of vanilla GD for matrix completion
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Noisy matrix completion via vanilla GD

10 20 30 40 50 60 70 80
-90

-80

-70

-60

-50

-40

-30

-20

-10

Near-optimal entrywise error control:

∥∥∥XtX
>
t −M

∥∥∥
∞

.

(
ρtµr

√
log n

np
+

σ

σmin

√
n log n

p

)
‖M‖∞
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The phenomenon is quite general

Prior theory Our theory

sample iteration sample iteration
complexity complexity complexity complexity

Phase
n logn n log

(
1
ε

)
n logn logn log

(
1
ε

)
retrieval

Quadratic
nr6 log2 n n4r2 log

(
1
ε

)
nr4 logn r2 log

(
1
ε

)
sensing

Matrix
n/a n/a nr3poly logn log

(
1
ε

)
completion

Blind
n/a n/a Kpoly logm log

(
1
ε

)
deconvolution
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An aside: minimax stability of nuclear norm minimization

convex nonconvex

Theorem (Chen, Chi, Fan, Ma, Yan ’19)

With high prob., any minimizer M̂cvx of convex program is nearly
rank-r and is minimax near-optimal:

∥∥M̂cvx −M
∥∥

F
. σ

√
n
p ,

∥∥M̂cvx −M
∥∥
∞ . σ

√
n logn
p · 1

n

Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation

via Nonconvex Optimization, SIAM Journal on Optimization.
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Accelerating ill-conditioned matrix estimation

Tian Tong Cong Ma

CMU Chicago



The asymmetric case: GD with balancing regularization

min
X,Y

freg(X,Y ) =
1

2

∥∥∥y −A(XY >)
∥∥∥

2

2
+

1

8

∥∥∥X>X − Y >Y
∥∥∥

2

F

“Basin of attraction”

• Spectral initialization: find an initial
point in the “basin of attraction”.

(X0,Y0)← SVDr(A∗(y))

• Gradient iterations:

Xt+1 = Xt − η∇Xfreg(Xt,Yt)

Yt+1 = Yt − η∇Y freg(Xt,Yt)

for t = 0, 1, . . .
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GD for asymmetric low-rank matrix sensing

Theorem (Tu et al., ICML 2016)

Suppose M = X?Y
>
? is rank-r and has a condition number

κ = σmax(M)/σmin(M). For low-rank matrix sensing with
i.i.d. Gaussian design, vanilla GD (with spectral initialization)
achieves

‖XtY
>
t −M‖F ≤ ε · σmin(M)

• Computational: within O
(
κ log 1

ε

)
iterations;

• Statistical: as long as the sample complexity satisfies

m & (n1 + n2)r2κ2.

Similar results hold for many low-rank problems.

(Netrapalli et al. ’13, Candès, Li, Soltanolkotabi ’14, Sun and Luo ’15, Chen and

Wainwright ’15, Zheng and Lafferty ’15, Ma et al. ’17, ....)
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Convergence slows down for ill-conditioned matrices

min
X,Y

f(X,Y ) =
1

2

∥∥∥PΩ(XY > −M)
∥∥∥

2

F

0 200 400 600 800 1000
Iteration count

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
er

ro
r

 %

Vanilla GD converges in O
(
κ log 1

ε

)
iterations.
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Condition number can be large

chlorine concentration levels
120 junctions, 180 time slots

0 5 10 15 20
Index

0

10

20

30

40

S
in

gu
la

r 
va

lu
es

power-law spectrum

Can we accelerate the convergence rate of GD to O(log 1
ε )?

Data source: www.epa.gov/water-research/epanet
43
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A new algorithm: scaled gradient descent (ScaledGD)

f(X,Y ) =
1

2

∥∥∥y −A(XY >)
∥∥∥2
2

• Spectral initialization: find an initial
point in the “basin of attraction”.

• Scaled gradient iterations:

Xt+1 = Xt − η∇Xf(Xt,Yt) (Y >t Yt)
−1

︸ ︷︷ ︸
preconditioner

Yt+1 = Yt − η∇Y f(Xt,Yt) (X>t Xt)
−1

︸ ︷︷ ︸
preconditioner

for t = 0, 1, . . .

ScaledGD is a preconditioned gradient method
without balancing regularization!
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ScaledGD for low-rank matrix completion

0 200 400 600 800 1000
Iteration count

10-14

10-12

10-10

10-8

10-6
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100

R
el

at
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e 
er

ro
r

Huge computational saving: ScaledGD converges in an
κ-independent manner with a minimal overhead!
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A closer look at ScaledGD

Invariance to invertible transforms: (Tanner and Wei, ’16; Mishra ’16)

(Xt, Y t)

(Xt+1, Y t+1)
(Xt+1Q, Y t+1Q

�>)

(XtQ, Y tQ
�>)

M t = XtY
>
t

M t+1 = Xt+1Y
>
t+1

New distance metric as Lyapunov function:

dist2
([

X
Y

]
,

[
X?

Y?

])
= inf

Q∈GL(r)

∥∥∥(XQ−X?)Σ
1/2
?

∥∥∥2

F

+
∥∥∥(Y Q−> − Y?)Σ

1/2
?

∥∥∥2

F

+ a careful trajectory-based analysis
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Theoretical guarantees of ScaledGD

Theorem (Tong, Ma and Chi, 2020)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

‖XtY
>
t −M‖F . ε · σmin(M)

• Computational: within O
(

log 1
ε

)
iterations;

• Statistical: the sample complexity satisfies

m & (n1 + n2)r2κ2.

Strict improvement over Tu et al.: ScaledGD provably
accelerates vanilla GD at the same sample complexity!

47



Theoretical guarantees of ScaledGD

Theorem (Tong, Ma and Chi, 2020)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

‖XtY
>
t −M‖F . ε · σmin(M)

• Computational: within O
(

log 1
ε

)
iterations;

• Statistical: the sample complexity satisfies

m & (n1 + n2)r2κ2.

Strict improvement over Tu et al.: ScaledGD provably
accelerates vanilla GD at the same sample complexity!
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ScaledGD works more broadly



X ? ? ? X
? ? X X ?
X ? ? X ?
? ? X ? ?
X ? ? ? ?
? X ? ? X




Robust PCA Matrix completion

Algorithms
corruption iteration sample iteration

fraction complexity complexity complexity

GD 1
µr3/2κ3/2∨µrκ2 κ log 1

ε (µ ∨ log n)µnr2κ2 κ log 1
ε

ScaledGD 1
µr3/2κ log 1

ε (µκ2 ∨ log n)µnr2κ2 log 1
ε

Huge computation savings at comparable sample complexities!

Code available at https://github.com/Titan-Tong/ScaledGD
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What about the run time?

The run time of ScaledGD is rather competitive, with additional
suitability for parallel implementation.
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Figure: Run time for matrix completion with n = 1000, p = 0.2, r = 50.
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Numerical stability

ScaledGD converges faster than vanilla GD in a small number of
iterations (they eventually reach the same accuracy).
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Generalization to tensors



Low-rank tensor under Tucker decomposition

=
S

V

U

W

T

Low-rank Tucker decomposition of a tensor:

T = (U , V , W ) · S,

where U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈ Rn3×r3 and S ∈ Rr1×r2×r3 .

Applications in fMRI imaging, recommendation systems, etc...
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ScaledGD for ill-conditioned low-rank tensor estimation

min
F=(U ,V ,W ,S)

f(F ) =
1

2
‖A((U ,V ,W ) · S)− y‖22

Scaled gradient iterations:

Ut+1 = Ut − η∇Uf(Ft)
(
Ŭ>t Ŭt

)−1
,

Vt+1 = Vt − η∇V f(Ft)
(
V̆ >t V̆t

)−1
,

Wt+1 = Wt − η∇W f(Ft)
(
W̆>

t W̆t

)−1
,

St+1 = St − η
(
(U>t Ut)

−1, (V >t Vt)
−1, (W>

t Wt)
−1) · ∇Sf(Ft),

where Ŭt := (Vt ⊗Wt)M1(St)
>, V̆t := (Ut ⊗Wt)M2(St)

>, and
W̆t := (Ut ⊗ Vt)M3(St)

>. Here, Mk(S) is the matricization of
S along the k-th mode.

Key property: invariance to parameterization.
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ScaledGD for low-rank tensor completion

Theorem (Tong et. al., 2021)

For low-rank tensor completion under Bernoulli sampling, assume
n = n1 = n2 = n3, ScaledGD with spectral initialization and
projection achieves

‖(Ut, Vt, Wt) · St − T ‖F . ε · σmin(T )

• Computational: within O
(

log 1
ε

)
iterations;

• Statistical: as long as the sample complexity satisfies

n3p & µ3/2r5/2n3/2κ3 log n.

First provable linear convergence at a near-optimal sample
complexity for low-Tucker-rank tensor completion!
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Numerical evidence
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The benefit of ScaledGD is even more evident for tensors!
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Numerical evidence
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The benefit of ScaledGD is even more evident for tensors!
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Robustness to outliers and corruptions?



Outlier-corrupted low-rank matrix sensing

A(·)
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M 2 Rn1⇥n2

rank(M) = r linear map

Sensor failures
Malicious attacks

y 2 Rm

y = A(M) + s︸︷︷︸
outliers

, A(M) = {〈Ai,M〉}mi=1

Arbitrary but sparse outliers: ‖s‖0 ≤ α ·m, where 0 ≤ α < 1 is
fraction of outliers.

57



Existing approaches fail

• Spectral initialization would fail:
X0 ← top-r SVD of

Y =
1

m

m∑

i=1

yiAi

• Gradient iterations would fail:

Xt+1 = Xt −
η

m

m∑

i=1

∇`i(yi;Xt)

for t = 0, 1, . . .

Even a single outlier can fail the algorithm!
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Median-truncated gradient descent

Key idea: “median-truncation” —
discard samples adaptively based on
how large sample gradients / values

deviate from median

• Robustify spectral initialization: X0 ← top-r SVD of

Y =
1

m

∑

i:|yi|.median(|yi|)

yiAi

• Robustify gradient descent:

Xt+1 = Xt −
η

m

∑

i:|rit|.median(|rit|)

∇`i(yi;Xt), t = 0, 1, . . .

where rit :=
∣∣yi − 〈Ai,XtX

>
t 〉
∣∣ is the size of the gradient.
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Theoretical guarantees

Theorem (Li, Chi, Zhang, and Liang, IMIAI 2020)

For low-rank matrix sensing with i.i.d. Gaussian design,
median-truncated GD (with robust spectral initialization) achieves

‖XtX
>
t −M‖F ≤ ε · σmin(M),

• Computational: within O
(
κ log 1

ε

)
iterations;

• Statistical: the sample complexity satisfies

m & nr2poly(κ, log n);

• Robustness: and the fraction of outliers

α . 1/
√
r.

Median-truncated GD adds robustness to GD obliviously.
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Numerical example

Low-rank matrix sensing:

yi = 〈Ai,M〉+ si, i = 1, . . . ,m

Ground truth
GD GD median-TGD

no outliers 1% outliers 1% outliers

Median-truncated GD achieves similar performance as if
performing GD on the clean data.

Li, Chi, Zhang and Liang, “Non-convex low-rank matrix recovery with arbitrary outliers via
median-truncated gradient descent”, Information and Inference: A Journal of the IMA, 2020.
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Dealing with outliers: subgradient methods

Least absolute deviation (LAD): (Charisopoulos et.al.’19; Li et al’18)

min
X,Y

f(X,Y ) =
∥∥∥y −A(XY >)

∥∥∥
1

Subgradient iterations:

Xt+1 = Xt − ηt ∂Xf(Xt,Yt)

Yt+1 = Yt − ηt ∂Y f(Xt,Yt)

where ηt is set as Polyak’s or geometric

decaying stepsize.
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Dealing with outliers: scaled subgradient methods

Least absolute deviation (LAD):

min
X,Y

f(X,Y ) =
∥∥∥y −A(XY >)

∥∥∥
1

Scaled subgradient iterations:

Xt+1 = Xt − ηt ∂Xf(Xt,Yt) (Y >t Yt)
−1

︸ ︷︷ ︸
preconditioner

Yt+1 = Yt − ηt ∂Y f(Xt,Yt) (X>t Xt)
−1

︸ ︷︷ ︸
preconditioner

where ηt is set as Polyak’s or geometric

decaying stepsize.
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Stepsize schedule

Polyak’s stepsize:

ηt =
f(XtY

>
t )− f(M)

‖∂Xf(Xt,Yt)(Y >t Yt)−1/2‖2F + ‖∂Y f(Xt,Yt)(X>t Xt)−1/2‖2F
.

• Use the distance concerted with preconditioners.

• Require the knowledge of the optimal value f(X?).

Geometrically decaying stepsize:

ηt =
λqt√

‖∂Xf(Xt,Yt)(Y >t Yt)−1/2‖2F + ‖∂Y f(Xt,Yt)(X>t Xt)−1/2‖2F

• Parameters λ, q need to be tuned.

• Perform similarly as Polyak’s stepsize under well-tuned λ, q.
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Performance guarantees

matrix sensing quadratic sensing

Subgradient Method κ
(1−2α)2 log 1

ε
rκ

(1−2α)2 log 1
ε(Charisopoulos et al, ’19)

ScaledSM 1
(1−2α)2 log 1

ε
r

(1−2α)2 log 1
ε(Tong, Ma, Chi, ’20)
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Robustness to both ill-conditioning and adversarial corruptions!
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Concluding remarks



Bridging the theory-practice gap

Nonconvex low-rank matrix estimation:

• identification and exploitation of benign geometric properties;

• analyzing iterate trajectories beyond black-box optimization;

• simple variants of GD lead to robust and accelerated convergence.
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Computational:
near dimension-free
iteration complexity

Statistical:
near-optimal

sample complexity

Robustness:
adversarial outliers

ill-conditioning



Statistical thinking + Optimization efficiency

which is a consensus problem.
ADMM for the original general form is

xt+1 := arg min
x

(
f(x) +

⇢

2

����Ax + Bzt � b +
1

⇢
�t

����
2

2

)

zt+1 := arg min
z

(
h(x) +
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2

����Axt+1 + Bz � b +
1

⇢
�t

����
2

2

)
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ADMM for the reduced consensus form is

x̃t+1 := arg min
x̃

(
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1
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�̃t

����
2

2

)

z̃t+1 := arg min
z̃

(
h̃(x̃) +

⇢

2

����x̃t+1 � z +
1

⇢
�̃t

����
2

2

)

�̃t+1 := �̃t + ⇢
�
x̃t+1 � z̃t+1

�

They are the same, with x⇤ being recovered from x̃⇤ as the solution to the
optimization problem

minimize f(x)

subject to Ax = x̃⇤

with variable x 2 Rn. A similar expression allows for the recovery of z⇤ from
z̃⇤.

[(A>�)>, (B>�)>, (�Ax�Bz + b)>]>
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When data are generated by certain statistical models, problems
are often much nicer than worst-case instances
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A growing list of “benign” nonconvex problems

• phase retrieval

• matrix sensing

• matrix completion

• blind deconvolution / self-calibration

• dictionary learning

• tensor decomposition / completion

• robust PCA

• mixed linear regression

• learning one-layer neural networks

• ...
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Thanks!

https://users.ece.cmu.edu/~yuejiec/
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