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ABSTRACT

Single-molecule localization based super-resolution microscopy
achieves sub-diffraction-limit spatial resolution by localizing a
sparse subset of stochastically activated emitters in each frame.
Its temporal resolution, however, is constrained by the maximal
density of activated emitters that can be successfully reconstructed.
The state-of-the-art three-dimensional (3D) reconstruction algo-
rithm based on compressed sensing suffers from high computational
complexity and gridding error due to model mismatch. In this pa-
per, we propose a novel super-resolution algorithm for 3D image
reconstruction, dubbed TVSTORM, which promotes the sparsity
of activated emitters without discretizing their locations. Several
strategies are pursued to improve the reconstruction quality under
the Poisson noise model, and reduce the computational time by an
order-of-magnitude. Simulation results are provided to validate the
favorable performance of the proposed algorithm.

Index Terms— Super-resolution microscopy, 3D image recon-
struction, optimization

1. INTRODUCTION

The fluorescence microscopy has found numerous applications in
the biological field. However, due to the optical diffraction, the res-
olution of a conventional fluorescence microscopy is limited to the
Rayleigh limit, 0.61\/NA, where X is the wavelength of emission
light and NA is the numerical aperture of the objective lens.

In the past few decades, several novel imaging techniques have
been developed to break the diffraction limit by over an order
of magnitude both in the lateral and axial directions [1, 2, 3, 4].
Among these techniques, single-molecule based super-resolution
techniques, such as stochastic optical reconstruction microscopy
(STORM) [3] and photo-activated localization microscopy (PALM)
[4], improve the spatial resolution significantly by activating and
localizing a sparse subset of emitters within the nanometer scale in
each frame. Huang et. al. [5] extended STORM to three-dimensional
(3D) imaging based on optical astigmatism. By placing a weak
cylindrical lens into the optical path, the ellipticity of the emitter’s
point spread function (PSF) varies along the axial direction, making
it possible to differentiate emitters at different axial locations. The
final super-resolution image is then constructed by superimposing
the reconstructed emitter locations from all frames. Therefore, the
temporal resolution is limited by the number of frames needed to

This work is supported in part by NSF under the grant CCF-1527456
and by ONR under the grant NO0014-15-1-2387.

acquire a super-resolution image, making it desirable to develop im-
age reconstruction algorithms that can handle higher emitter density
per frame.

Compressed sensing based reconstruction (CSSTORM) [6, 7, 8]
has been proposed as a robust and high performance algorithm for
high-density super-resolution image reconstruction which can be ap-
plied for both 2D and 3D imaging. For each frame, CSSTORM
first imposes a fine-grained grid to model the locations of activated
emitters as a sparse signal in a discrete dictionary, of which the
image on the camera becomes linear measurements, then solves a
sparse recovery problem based on /1 minimization to invert the emit-
ters’ locations. However, this introduces an inevitable mismatch
between the true continuous-valued location of the emitter, and its
estimated location on the discrete grid [9]. To reduce the artifact
by the mismatch error, the grid needs to be fine enough which re-
sults in an extremely large dictionary, making the computation very
expensive. Moreover, heuristic post-processing steps are typically
added to CSSTORM to enhance performance. Another algorithm
called MempSTORM has been recently proposed to solve 2D super-
resolution image reconstruction [10] based on 2D spectrum estima-
tion techniques in the signal processing literature. MempSTORM
directly estimates the continuous-valued location of the activated
emitters without any discretization by transforming the image to
the spectral domain. It is demonstrated to handle the same level
of emitter density as CSSTORM with much faster computational
speed. However, MempSTORM cannot be readily extended to 3D
super-resolution image reconstruction. In these works, the noise is
modeled as an additive bounded or Gaussian noise.

In this paper, we propose a novel super-resolution algorithm,
dubbed TVSTORM, for 3D image reconstruction under the Poisson
noise model, which is more appropriate for photon count data. The
camera image is treated as an observation drawn from a Poisson dis-
tribution whose parameters are determined by the 3D PSF profile
and the locations of activated emitters. The reconstruction is per-
formed by minimizing a negative Poisson log-likelihood penalized
by the total-variation norm [11] of the point source signal composed
of the activated emitters. The total-variation norm can be viewed as
a continuous analog of ¢1 norm for finite-dimensional vectors to pro-
mote emitter sparsity without discretizing their locations. We solve
this optimization efficiently following a variant of the alternating de-
scent conditional gradient method in [12]. Specifically, in each it-
eration, TVSTORM first selects a new point source and adds it to
the current estimate, whose location is determined by a first-order
linearization of the Poisson log-likelihood function over a coarse
grid, and then refines the estimate of all included point sources by
gradient descent using backtracking line search. Through numer-



ical experiments, TVSTORM demonstrates an order-of-magnitude
improvement on the computational cost over CSSTORM due to the
elimination of optimizing over a fine-grained grid. It also shows sig-
nificant improvement on the localization accuracy over CSSTORM
in terms of detection rate, false discovery rate and precision, without
adding post-processing steps.

The rest of the paper is organized as follows. Section 2 describes
the problem formulation of super-resolution image reconstruction.
We present our proposed algorithm in Section 3 and numerical ex-
periments are provided in Section 4. Finally, we conclude in Section
5.

2. PROBLEM STATEMENT

We begin by introducing the imaging system of single-molecule lo-
calization microscopy. In each frame, a sparse subset of emitters are
activated. Let G(i) 0,65, 6% G(i)] [9%),9(“} be the pa-
rameters for the i™ emitter, where 6( D= [6'( ‘) 9?(, NS )} € Sare
the coordinates in x, y and z dlmensmns respectively,

S = {QL = [ezyeyyoz} 0. € (l‘min,mmax)y gy S (ymin,ymax)y

ez S (Zmim Zmax)}y

and Gy) > 0 denotes its intensity. Let © = {1, 0® ... 0} be
the set of parameters, where P is the total number of emitters. We
can write the set of activated emitters x = x(z,y, z|©) as a sparse
superposition of point sources, given as

X = x(z,y,2/0) = Ze”a 00,y -6 2 —07), (1)

where §(z — xo,y — Yo,z — zo) is a Dirac measure located at
(z0, Y0, 20). For notational convenience, we also use x(0) to de-
note x(z,y, z|©). We denote the admissible set of x as G = {x =
x(©)0 = {80, Peczt 0 €56 >=0,1 <=i<=
P}. Due to diffraction, the point source signal x is low-pass fil-
tered by the PSF of the microscopy before forming the image, whose
shape is given as a 2D Gaussian function with the ellipticity deter-
mined by the location along the z direction:
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where 0 (z0) and o (20) are the standard deviations in the x and y
directions, given as [5]:
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where 04,0, Az,i, @ = 2,3, 4, ¢ and d; are known parameters of the
defocusing function [7]. The expression for oy (z0) can be defined
similarly.

The expected photon rate received at the (u, v)‘h camera pixel,
denoted as p(u, v), can be written as a convolution between the PSF
in (2) and the point source signal in (1), integrated over the area of a
pixel:

u+% v+%
u(u,le):/ . / . (K xx)(z,y) dzdy, )
u—3 v—3

where * denotes convolution, and

P
=S 00K (100,00, 09).  (5)
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(K *x)(z,9)

Therefore, (4) can be rewritten as
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where Q(z) = % Iy et dt.

The number of photons hitting the camera at the (u,v)™ pixel,
denoted as y(u, v), follows an independent Poisson distribution with
the parameter p(u, v|x), given as

M(U U‘X)Z —p(u,v|x)
z!

Pr(y(u,v) = z|x) = , z€ZT. (D)

Denote the camera image as y = {y(u,v)}. The objective of
super-resolution is to estimate the point source signal x(©), given
the observed image y.

3. PROPOSED APPROACH

In this section, we describe the proposed TVSTORM algorithm for
high-density 3D super-resolution imaging under the Poisson noise
model explained in Section 2.

3.1. Theoretical framework

We first define the loss function, £(y|x), as the negative Poisson log-
likelihood of observing y given x. According to (7),

£(ylx) = —log <H [Py, v)x))
=22

where C' is a constant that does not depend on x. As suggested
in [13], for Poisson log-likelihood, it is advantageous to introduce
a small offset 0 < S < 1 to improve stability, where we modify

£(ylx) as
(ylx) ZZ(M u,v[x) —

On the other hand, we wish to motivate the underlying sparsity
of the activated emitters. To this end, we define the total-variation
norm of the point source signal x;, ||x|lTv, whose measure-theoretic
definition can be found in [11]. The total-variation norm can be seen
as a generalization of the ¢; norm for finite-dimensional vectors to
the continuous space without imposing a discrete grid for the loca-
tion of the emitters. For the point source signal in (1), ||x|ltv =

P ()
> i1 01

We propose to seek the point source signal x that minimizes the

loss function £(y|x) penalized by its total-variation norm, given as

(u, v]x) — y(u, v)log(u(u,v]x))) + C,

y(u, U)log(u(uv U|X) + ﬂ)) :

X = argmin £(y|x) + €[ x/lv, ®
xX€gG



where € is a regularization parameter that controls the trade-off be-
tween the fidelity to the observation and the sparsity of the emitters.
We denote this approach as TVSTORM.

3.2. Implementation

Unfortunately, the algorithm (9) is in general non-convex for 3D
imaging due to the likelihood term, and challenging to solve.
Nonetheless, we develop an iterative algorithm that can be regarded
as a variant of the alternating descent conditional gradient method
in [12]. The description is given in Algorithm 1. TVSTORM is an
iterative algorithm, where in each iteration, a new point source is
first selected and added to the current estimate of , and then the
estimate of x is refined by gradient descent using backtracking line
search. The algorithm stops when the intensity of the most recently
added point source falls below a given threshold.

Algorithm 1 TVSTORM
1: Input Parameter: threshold ~y

2: 640

3: 00 o .

4 R x(z,y,2/60©)

5: repeat

6: > SELECT o

7: 0g+1) +— sr%min <%,M(X(m, Y, Z|9))> .
€ Scoarse

T I AR (S

9: > REFINE

10 6%+  REFINE(y, ©¢+1)
1 R = x(@,y, 2100)
122 tet+1

13: until 61 <

Let 39 = x(z,y, z2|©®) be the estimate of the emitter object
at the ¢" iteration, where ©(*) represents the parameters of the point
sources in {*). At the (£ 4 1)" iteration, the SELECT step aims to
add one point source (with parameter é(t“)) to the emitter object
of the previous iteration, W, by minimizing the first-order Taylor
series approximation of £(y|%) around ¥(*), which is

¢ (yRY + x (2,0, 216) )
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Let u(x) = {u(u,v|x)} denote the noise-free image generated
from . It can be shown that [12]
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which does not depend on the intensity. Therefore, the location of
the new point source is selected as

<5f(y|f<<”)

H(t+1)
g Wvl‘(X(w,y, Z|0))> ; (12)

= argmin
0 Scoarse

where Scoarse 1S a coarse grid over S. We only require a coarse grid
since the locations will be refined afterwards.

The REFINE step aims to find the maximum likelihood estimate
of x'“*Y) with the number of point sources fixed by minimizing the

loss function using iterative gradient descent over OV For each
parameter @ € ©*Y) | we first find the direction that decreases the
loss function by calculating the partial derivative of the loss function
with respect to 6, whose expressions can be derived using (6) and
(8). The step size is then determined using backtracking line search
to speed up convergence. Described fully in Algorithm 2, this step
constitutes mainly the computational cost of TVSTORM.

Algorithm 2 REFINE(y, ©)

1: Input Parameters: ao, 7 € (0,1),c € (0,1)
2: repeat
3. forevery 0 in © do
for every 05-1) in 6 do
a < Qo
0+ 0

repeat
() (2) 9(yx(©))
9]- < 0]- — OCW
J

a— « Xl’ o0 o
until £(y|x(8)) < £(y[x(©)) — ac|| 2x(EN |3

J

@Y % >Nk

11: O« 6
12: end for

13: end for

14: until convergence

4. NUMERICAL EXPERIMENTS

We first examine the reconstruction quality using CSSTORM and
TVSTORM on a single frame. We generate an image with four emit-
ters that are randomly distributed in a 3D space of size 0.8 pm X
0.8 um x 0.8 pwm, with intensity of 300 photons each, as shown
in Fig. 1 (a). For CSSTORM, an up-sampling factor of 8 in lateral
direction and 9 in axial direction is used in the discretization. The
output from CSSTORM typically requires post-processing such as
de-biasing [7] in order to mitigate the gridding error, while TVS-
TORM does not include post-processing steps. Fig. 1 (b) and (c)
show the image reconstruction from CSSTORM before and after de-
biasing, where we use an ellipsoid to represent the spatial locations
of an emitter with the center representing its lateral position and the
shape representing its axial position. The reconstruction is shown in
red, while the ground truth is shown in white. As seen from Fig. 1
(b), the reconstruction from CSSTORM before de-biasing contains
many false positives. After de-biasing, nearby output emitters are
clustered together but one emitter is missing, as shown in Fig. 1 (c).
Contrarily, the reconstruction from TVSTORM, as shown in Fig. 1
(d), identifies all emitters correctly with high precision.

Next, to evaluate the average performance of TVSTORM, we
generate a series of STORM images under different densities (0.75
emitter/um? to 11.25 emitters/pum®). The emitters are randomly
distributed in a volume of 0.8 um x 0.8 ym x 0.8 um with the in-
tensity set as 500. The images are then corrupted with Poisson noise.
Fig. 2 compares the performance of TVSTORM with CSSTORM in
terms of identified density, false discovery rate, precision and exe-
cution time with respect to the emitter density. Indeed, TVSTORM
is able to detect more emitters with an improved precision while
maintaining a lower false discovery rate than CSSTORM. Addition-
ally, the execution time of TVSTORM is much faster than that of
CSSTORM due to the elimination of a fine-grained grid during op-
timization.



(a) Original image (b) CSSTORM before de-biasing

(c) CSSTORM after de-biasing (d) TVSTORM

Fig. 1. Emitter localization using CSSTORM and TVSTORM. (a)
Original image; (b) CSSTORM before debiasing; (¢) CSSTORM
after debiasing; and (d) TVSTORM.

5. CONCLUSION

In this paper, TVSTORM is proposed for 3D super-resolution image
reconstruction, which is a penalized maximum likelihood estimator
under the Poisson noise by the total variation norm of the activated
emitters. TVSTORM avoids the intrinsic bias of CSSTORM due to
gridding, and is computationally more efficient, with better detection
rate, false discovery rate, and precision. Furthermore, TVSTORM
can be easily adapted to 2D super-resolution image reconstruction
or other single-molecule microscopy with different PSF configura-
tions.
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