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Abstract—In this paper, we design MMSE-optimal training
sequences for multi-user MIMO-OFDM systems with an arbi-
trary number of transmit antennas and an arbitrary number of
training symbols. It addresses spectrally-efficient uplink trans-
mission scenarios where the users overlap in time and frequency
and are separated using spatial processing at the base station.
The robustness of the proposed training sequences to residual
carrier frequency offset and phase noise is evaluated. This
analysis reveals an interesting design tradeoff between the peak-
to-average power ratio of a training sequence and the increase
in channel estimation mean squared error over the ideal case
when these two impairments are not present.

Index Terms—Training sequences design, pilot design, MIMO-
OFDM, multi-user systems, carrier frequency offset, phase noise,
RF impairments.

I. INTRODUCTION

INFORMATION-theoretic analysis by Foschini [1] and
by Telatar [2] has shown that multiple antennas at the

transmitter and receiver enable high-rate wireless communi-
cation. Space-time codes, introduced by Tarokh et al. [3],
improve the reliability of communication over fading chan-
nels by correlating signals across different transmit antennas.
Orthogonal Frequency Division Multiplexing (OFDM) [4]
is widely adopted in broadband communications standards
for its efficient implementation, high spectral efficiency, and
robustness to Inter-Symbol Interference (ISI). OFDM offers
great flexibility in that multiple streams with diverse rates
and Quality-of-Service (QoS) requirements can be transmitted
over the parallel frequency subchannels. However, there are
two main drawbacks in OFDM; the first is high Peak-to-
Average Power Ratio (PAPR) which results in larger backoff
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with nonlinear amplifiers, and the second is high sensitivity to
frequency errors and phase noise. We will address both issues
in this paper. Our focus is on training sequence design for the
combination of Multiple-Input-Multiple-Output (MIMO) sys-
tems and OFDM technology (see [5] and references therein),
and we aim to make this combination more attractive by
reducing the overhead that is necessary for channel estimation.

Current multi-user MIMO-OFDM systems [6] support mul-
tiple users by assigning each time/frequency slot to only
one user. For example, in OFDMA systems (adopted in
the WiMAX [7] and LTE standards [8]), different users
are assigned different subcarriers within the same OFDMA
symbol. A different method of separating users is through
the random-access CSMA/CA medium access control (MAC)
protocol used in WLAN standards, e.g. IEEE 802.11n [9].
Both methods require that users not overlap in either time
or frequency and this restriction results in a significant loss
in spectral efficiency. The introduction of multiple receive
antennas at the base station means that it is possible to
improve spectral efficiency by allowing users to overlap while
maintaining decodability, as in the recently-proposed Coordi-
nated MultiPoint transmission (CoMP) techniques in the LTE-
Advanced standard [10].

Accurate Channel State Information (CSI) is required at
the receiver for coherent detection and is typically acquired
by sending known training sequences from the transmit an-
tennas and inferring channel parameters from the received
signals. Various OFDM channel estimation schemes [11]-[13]
have been proposed for Single-Input Single-Output (SISO)
systems. However channel estimation is more challenging in a
multi-user MIMO-OFDM system because there are more link
parameters to calculate, and their estimation is complicated
by interference between different transmissions. The direct
approach is to invert a large matrix that describes cross-
antenna interference at each OFDM tone [14]. Complexity
can be reduced by exploiting the correlation between adjacent
subchannels [15]. It is also possible to develop solutions in the
time domain [16] where the challenge is to estimate time of
arrivals. Here it is possible to reduce complexity by exploiting
the power-delay profiles of the typical urban and hilly terrain
propagation models. MIMO Channel estimation schemes were
investigated in [17] for single-carrier single-user systems in the
context of GSM-EDGE.

Linear Least-Squares (LLS) channel estimation is of great
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practical importance since it does not require prior knowl-
edge of the channel statistics and enjoys low implementa-
tion complexity. We consider frequency-selective block-fading
channels where the Time Domain (TD) representation requires
fewer parameters than the Frequency Domain (FD) representa-
tion. Our focus is on the design of (optimal) training sequences
for Multi-User MIMO OFDM systems that minimize the mean
squared error of time-domain LLS channel estimation. The
design of optimal training sequences for single-user MIMO-
OFDM systems is investigated in [18] and [19]. The Fourier
methods used in [18] provide some control over PAPR and
some resilience to frequency offsets. The construction of opti-
mal training sequences for multi-user MIMO-OFDM systems
has been investigated in both the time domain [20] and the
frequency domain [21], but these designs do not easily extend
to multiple OFDM training symbols. It is also possible to
take advantage of the similarities between communications
and radar signal processing, where the path gains and delays
are the range / Doppler coordinates of a scattering source
and the problem is to estimate them. The unitary filter bank
developed for Instantaneous Radar Polarimetry [22] supports
frequency domain LLS channel estimation in a 2x2 MIMO
OFDM system [23] and is able to suppress interference over
two OFDM symbols with linear complexity. This example
is a special case of a more general construction of filter
banks for the analysis of acoustic surface waves [24], [25].
A limitation of these methods is that the number of OFDM
training symbols is at least the number of transmit antennas.

In contrast, our framework supports the design of optimal
training sequences for an arbitrary number of transmit anten-
nas and an arbitrary number of training symbols. It provides
the first general solution to the channel estimation problem
for Multi-User MIMO-OFDM systems where Spatial Division
Multiple Access (SDMA) is employed to increase the spectral
efficiency. The optimality of our designs holds irrespective
of the number of transmit antennas per user, the number
of OFDM sub-carriers, the channel delay spread, and the
number of users provided that the number of tones dedicated
to estimation exceeds the product of the number of transmit
antennas and the worst case delay spread. Not only does our
design algorithm generate training sequences that minimize
mean squared channel estimation error, but the designs have
additional properties that make them very attractive from
several implementation perspectives: 1) Individual training
sequences can be drawn from standard signal constellations,
2) Low PAPR, and 3) Low channel estimation complexity
without sacrificing optimality.

We start by considering the optimal training sequence
design for uplink Multi-User MIMO-OFDM systems where
all users are assumed to be synchronized. Then, we analyze
the average performance degradation when the users are
asynchronous, i.e. with residual Carrier Frequency Offsets
(CFO). Next, we investigate the impact of Phase Noise (PN)
perturbing transmit and receive oscillators on the channel
estimation accuracy. This analysis leads to an interesting
design tradeoff between the PAPR of a training sequence and
its robustness to CFO and PN. The main contributions of this
paper are

∙ Optimal training sequences design for Multi-User

MIMO-OFDM systems with an arbitrary number of
transmit antennas per user and an arbitrary number of
training OFDM symbols as long as the rank condition
(20) holds.

∙ Allowing users to overlap in time and frequency to
increase the spectral efficiency.

∙ Analytical study of CFO and PN effects on the channel
estimation performance for any training sequence taking
into account PN at both the transmit and receive oscilla-
tors.

∙ Investigating the trade-off between the PAPR of the
training sequence and its immunity against CFO and PN.

The rest of this paper is organized as follows. The uplink
Multi-User MIMO-OFDM communication system model is
described in Section II. The design of optimal training se-
quences is given for one and multiple training symbol senarios
separately in Section III. Practical issues such as CFO and PN
are discussed in Section IV. Design trade-offs are discussed
in Section V. Simulation results are presented in Section VI.
Finally, conclusions are drawn in Section VII.

A note on notation: We use boldface to denote matrices
and vectors. For a matrix A, A𝑇 denotes its transpose,
A𝐻 denotes its complex-conjugate transpose, A† denotes its
Penrose-Moore pseudo-inverse, A−1 denotes its inverse if it
exists, and Tr(A) denotes its trace. I𝑛 denotes an identity
matrix of dimension 𝑛 and 0𝑚×𝑛 denotes an all-zero matrix
of size 𝑚 × 𝑛. The notation diag (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) denotes
an 𝑁 × 𝑁 diagonal matrix whose diagonal elements are
{𝑥1, 𝑥2, . . . , 𝑥𝑁}. The operator ⊗ denotes the Kronecker
product, and the operator ∘ denotes the entry-wise Hadamard
product. We also summarize the key variables used throughout
the paper in Table I.

II. SYSTEM MODEL

We consider the uplink of a Multi-User MIMO-OFDM
system, as shown in Fig. 1. We denote the Discrete Fourier
Transform (DFT) size by 𝑁 and the number of users by 𝐿
(𝐿 ≥ 1) where the 𝑖th user is equipped with 𝑀𝑖 transmit
antennas, 0 ≤ 𝑖 ≤ 𝐿 − 1. Therefore, the total number of
transmit antennas among all users is given by 𝑀 =

∑𝐿−1
𝑖=0 𝑀𝑖.

We assume that the channel is quasi-static and remains
constant over 𝐾 successive OFDM training symbols. The
channel from the 𝑗th transmit antenna of the 𝑖th user to
the Base Station (BST) can be represented either in TD or
FD. Let the Channel Frequency Response (CFR) be H𝑖,𝑗 =
[𝐻𝑖,𝑗(0), ⋅ ⋅ ⋅ , 𝐻𝑖,𝑗(𝑁 − 1)]𝑇 where 𝐻𝑖,𝑗(𝑘), 0 ≤ 𝑘 ≤ 𝑁 − 1,
is the frequency response at the 𝑘th subcarrier. However, the
Channel Impulse Response (CIR) in TD is represented by
a much smaller number of parameters. We assume that the
maximal memory over all CIRs is 𝜈max, and write the CIR as
h𝑖,𝑗 = [ℎ𝑖,𝑗(0), ⋅ ⋅ ⋅ , ℎ𝑖,𝑗(𝜈max)]

𝑇 . Estimating the CIR instead
of the CFR leads to the reduction of the number of unknowns
from 𝑀𝑁 to 𝑀(𝜈max + 1). Hence, a more accurate channel
estimate is attainable using the same amount of training.
Furthermore, the CFR can be reconstructed from the CIR as
follows

𝐻𝑖,𝑗(𝑘) =
1√
𝑁

𝜈max∑
𝑡=0

ℎ𝑖,𝑗(𝑡)𝑒
−𝑗 2𝜋

𝑁
𝑡𝑘. (1)



2236 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 10, NO. 7, JULY 2011

TABLE I
KEY VARIABLES USED THROUGHOUT THE PAPER.

Variable Meaning Domain
𝐿 number of users ℤ+

𝑀𝑖 number of transmit antennas for the 𝑖th user ℤ+

𝑀 total number of transmit antennas ℤ+

𝑁 DFT size of the OFDM system ℤ+

𝐿𝑝 cyclic prefix length ℤ+

𝜈max the maximal memory of all CIRs ℤ+

X𝑖,𝑗 OFDM symbol from the 𝑗th antenna of the 𝑖th user ℂ𝑁

h𝑖,𝑗 CIR from the 𝑗th antenna of the 𝑖th user ℂ𝜈max+1

H𝑖,𝑗 CFR from the 𝑗th antenna of the 𝑖th user ℂ𝑁

F DFT matrix of size 𝑁 ℂ𝑁×𝑁

F0 the first (𝜈max + 1) columns of F ℂ𝑁×(𝜈max+1)

Λ𝑚 the transform operator between training sequences ℂ𝑁×𝑁

h𝑚 CIR from the 𝑚th antenna ℂ𝜈max+1

X𝑡𝑚 training sequence from the 𝑚th antenna in the 𝑡th OFDM symbol ℂ𝑁

S𝑡𝑚 circulant training matrix from the 𝑚th antenna in the 𝑡th OFDM symbol ℂ𝑁×(𝜈max+1)

S𝑡 training matrix in the 𝑡th OFDM symbol ℂ𝑁×𝑀(𝜈max+1)

y𝑡 received signal in the 𝑡th OFDM symbol ℂ𝑁

𝛼 normalized carrier frequency offset ℝ

𝑓sub subcarrier frequency spacing (Hz) ℝ+

𝛽 two-sided 3-dB linewidth of the oscillator power spectrum density (Hz) ℝ+

𝜙𝑛 𝑛th phase noise sample ℝ

At the 𝑗th (0 ≤ 𝑗 ≤ 𝑀𝑖 − 1) transmit antenna of the
𝑖th (0 ≤ 𝑖 ≤ 𝐿 − 1) user, an OFDM symbol X𝑖,𝑗 of
size 𝑁 is given by X𝑖,𝑗 = [𝑋𝑖,𝑗(0), ⋅ ⋅ ⋅ , 𝑋𝑖,𝑗(𝑁 − 1)]𝑇 .
Let x𝑖,𝑗 = [𝑥𝑖,𝑗(0), 𝑥𝑖,𝑗(1), ⋅ ⋅ ⋅ , 𝑥𝑖,𝑗(𝑁 − 1)]

𝑇 be the Inverse
Discrete Fourier Transform (IDFT) of X𝑖,𝑗 . We use a Cyclic-
Prefix (CP) of length 𝐿𝑝 for the guard interval in the OFDM
system so that

x̃𝑖,𝑗 = [𝑥(𝑁 − 𝐿𝑝 + 1), ⋅ ⋅ ⋅ , 𝑥(𝑁 − 1), 𝑥(0), ⋅ ⋅ ⋅ , 𝑥(𝑁 − 1)]
𝑇

(2)
where 𝐿𝑝 is chosen to be greater than the channel memory, i.e.
𝐿𝑝 ≥ (𝜈max +1). Finally, x̃𝑖,𝑗 goes through Parallel-to-Serial
(P/S) conversion and is modulated to the carrier frequency for
transmission.

At the base station, all users are assumed to be in frequency
synchronization with the BST. In Section IV, we examine the
robustness of our proposed optimal training sequence design
when this condition is not satisfied. In addition, we assume
that all users are synchronized in time with the BST, where
the received signal is down-converted to baseband and passed
through a Serial-to-Parallel (S/P) converter. Then, the CP is
removed and the Fast Fourier Transform (FFT) is applied. The
received OFDM symbol Y = [𝑌 (0), ⋅ ⋅ ⋅ , 𝑌 (𝑁 − 1)]𝑇 in one
symbol time can be written as

Y =

𝐿−1∑
𝑖=0

𝑀𝑖−1∑
𝑗=0

diag(H𝑖,𝑗)X𝑖,𝑗 +N, (3)

where N ∼ 𝒩 (0𝑁×1, 𝜎
2I𝑁 ) is Additive White Gaussian

Noise (AWGN). We consider the mapping (𝑖, 𝑗) �→ 𝑚 : 𝑚 =∑𝑖
𝑠=0 𝑀𝑠 + 𝑗 −𝑀𝑖, 0 ≤ 𝑚 ≤ 𝑀 − 1, and re-label H𝑖,𝑗 and

X𝑖,𝑗 as H𝑚 and X𝑚, respectively. The label can be inverted
easily as

𝑖 = argmin
0≤𝑖∗≤𝐿−1

𝑖∗ s.t. 𝑚 ≤
𝑖∗∑
𝑠=0

𝑀𝑠, 𝑗 = 𝑚+𝑀𝑖 −
𝑖∑
𝑠=0

𝑀𝑠.

(4)

Then, equation (3) can be written as

Y =
𝑀−1∑
𝑚=0

diag(H𝑚)X𝑚 +N. (5)

Remark: The development of the algorithm requires labeling
of transmit antennas among all users, and that both the BST
and all the users are aware of that labeling.

In Section III, we first consider TD LLS channel estimation
when only one training symbol is allowed by leveraging
the channel representation in TD. A general approach when
𝐾 ≥ 2 training symbol is given by further incorporating
space-time code structure into the design. Then, a special
construction utilizing Quaternions is given when 𝐾 = 2.
Finally, an alternative scheme using equally-spaced pilots
instead of the whole symbol for training is given under some
mild conditions. In the following sections, we assume one
receive antenna, since the same channel estimation scheme can
be applied at all receive antennas without loss of generality.

III. MAIN RESULTS

A. One OFDM Training Symbol

Since there are fewer parameters to be estimated in the TD,
we apply the IDFT of size 𝑁 to Eq. (5), and get

y =

𝑀−1∑
𝑚=0

S𝑚h𝑚 + n

=
[
S0 S1 ⋅ ⋅ ⋅ S𝑀−1

] [
h𝐻0 h𝐻1 . . . h𝐻𝑀−1

]𝐻
+ n

≜ Sh+ n (6)

where y ∈ ℂ𝑁 , h𝑚 ∈ ℂ𝜈max+1, 0 ≤ 𝑚 ≤ 𝑀 − 1, and S𝑚 ∈
ℂ𝑁×(𝜈max+1) is the circulant training matrix constructed from
the corresponding training sequence transmitted over the 𝑚th
antenna.

Let F = [f0, ⋅ ⋅ ⋅ , f𝑁−1] be the DFT matrix of size 𝑁 with
f𝑖 denoting its 𝑖th column, and let F0 = [f0, ⋅ ⋅ ⋅ , f𝜈max ] be
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Fig. 1. The uplink of a Multi-User MIMO-OFDM communication system.

composed of the first (𝜈max + 1) columns of F. Then, S𝑚
can be written as

S𝑚 = F𝐻D𝑚F0, (7)

where D𝑚 = diag (𝑋𝑚(0), ⋅ ⋅ ⋅ , 𝑋𝑚(𝑁 − 1)). The matrix
S ∈ ℂ𝑁×𝑀(𝜈max+1) defined in Eq. (6) is formed by hori-
zontally concatenating the matrices S𝑚, 0 ≤ 𝑚 ≤ 𝑀 − 1.
To enable LLS channel estimation, the following condition on
dimensionality has to be satisfied [26]

𝑁 ≥ 𝑀(𝜈max + 1) or, 𝑀 ≤ 𝑁

(𝜈max + 1)
. (8)

To minimize the variance of the channel estimation error, the
matrix S is required to satisfy [26]

S𝐻S = 𝑐I𝑀(𝜈max+1) (9)

and this requires that

S𝐻𝑚S𝑛 = 𝑐𝛿𝑚𝑛I(𝜈max+1), 0 ≤ 𝑚,𝑛 ≤ 𝑀 − 1. (10)

Given (7), the optimality condition becomes

F𝐻0 D
𝐻
𝑚D𝑛F0 = 𝑐𝛿𝑚𝑛I(𝜈max+1), 0 ≤ 𝑚,𝑛 ≤ 𝑀 − 1. (11)

Next, let F𝑚 be composed of (𝜈𝑚𝑎𝑥 + 1) consecutive
columns of F starting at index 𝑚(𝜈max + 1), i.e.

F𝑚 =
[
f𝑚(𝜈max+1), ⋅ ⋅ ⋅ , f(𝑚+1)(𝜈max+1)−1

]
= Λ𝑚F0, 0 ≤ 𝑚 ≤ 𝑀 − 1, (12)

where

Λ𝑚 = diag
(
1, 𝑒𝑗

2𝜋(𝜈max+1)
𝑁 𝑚, ⋅ ⋅ ⋅ , 𝑒𝑗 2𝜋(𝜈max+1)(𝑁−1)

𝑁 𝑚
)
.

(13)
It can be easily shown that F𝐻𝑚F𝑛 = 𝛿𝑚𝑛I(𝜈max+1). Now we

present a general approach which gives a family of optimal
training sequences. As a starting point, we choose the FD

training sequence as an arbitrary constant-amplitude sequence
X. Let D = diag (𝑋(0), ⋅ ⋅ ⋅ , 𝑋(𝑁 − 1)), then D𝐻D = 𝑐I𝑁
where 𝑐 is determined by the signal constellation and/or
transmit power constraints. The FD training sequence at the
𝑚th transmit antenna is given by

X𝑚 = Λ𝑚X, 0 ≤ 𝑚 ≤ 𝑀 − 1. (14)

Equivalently, D𝑚 = Λ𝑚D = DΛ𝑚, 0 ≤ 𝑚 ≤ 𝑀 − 1.
Furthermore, we have the following theorem.

Theorem 1: The choice of FD training sequences in Eq. (14)
is optimal for a single training OFDM symbol.

Proof: It is enough to show that Eq. (10) holds. Since

S𝑚 = F𝐻D𝑚F0 = F𝐻DΛ𝑚F0 = F𝐻DF𝑚, (15)

it follows that

S𝐻𝑚S𝑛 = (F𝐻DF𝑚)
𝐻F𝐻DF𝑛

= F𝐻𝑚D
𝐻DF𝑛 = 𝑐𝛿𝑚𝑛I(𝜈max+1). (16)

Therefore, the LLS estimate (LLSE) of h is given as ĥ =
1
𝑐S
𝐻y, where each CIR can be estimated as ĥ𝑚 = 1

𝑐S
𝐻
𝑚y.

Then, the CFR is given by

Ĥ𝑚 =
1

𝑐
FS𝐻𝑚y =

1

𝑐
(FF𝐻0 )D𝐻𝑚Fy, 0 ≤ 𝑚 ≤ 𝑀 − 1. (17)

The resulting channel estimation error variance is given by

𝜎2
𝑒 = 𝜎2Tr

(
(S𝐻S)−1

)
=

𝑀(𝜈max + 1)

𝑐
𝜎2. (18)

B. 𝐾 OFDM Training Symbols with 𝐾 ≥ 2

The major limitation of using only one training OFDM
symbol is that the total number of transmit antennas is limited
by 𝑁

(𝜈max+1) . When the channel is quasi-static over 𝐾 ≥ 2
OFDM training symbols it is possible to increase the number
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y =

⎡⎢⎢⎢⎣
y0
y1
...

y𝐾−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
S00 S01 ⋅ ⋅ ⋅ S0,𝑀−1

S10 S11 ⋅ ⋅ ⋅ S1,𝑀−1

...
...

. . .
...

S𝐾−1,0 S𝐾−1,1 ⋅ ⋅ ⋅ S𝐾−1,𝑀−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
h0
h1
...

h𝑀−1

⎤⎥⎥⎥⎦+ n ≜

⎡⎢⎢⎢⎣
S0
S1
...

S𝐾−1

⎤⎥⎥⎥⎦h+ n = Sh+ n (19)

of admissable transmit antennas and reduce MMSE by a factor
of 𝐾 .

Denoting the received TD OFDM symbol in the 𝑡th symbol
time by y𝑡, 0 ≤ 𝑡 ≤ 𝐾 − 1, we express the received symbol
block y in Eq. 19 where S𝑡𝑚 = F𝐻D𝑡𝑚F0, and the matrices
D𝑡𝑚’s are diagonal with the FD training sequences appearing
on their main diagonals. Least-square estimation is possible
when the following dimensionality condition for the matrix
S ∈ ℂ𝐾𝑁×𝑀(𝜈max+1) holds

𝐾𝑁 ≥ 𝑀(𝜈max+1), or,
𝐿−1∑
𝑖=0

𝑀𝑖 = 𝑀 ≤ 𝐾𝑁

(𝜈max + 1)
. (20)

For S to be optimal, it has to satisfy S𝐻S = 𝑐I𝑀(𝜈max+1)

for some 𝑐. We extend our previous approach by constructing
a unitary matrix of higher dimension with the space-time code
structure. Let the matrix Σ ∈ ℂ𝐾𝑁×𝐾𝑁 be constructed as a
Kronecker product Σ = U ⊗V where U = [𝑈𝑡𝑞] ∈ ℂ𝐾×𝐾

is a unitary matrix and V ∈ ℂ𝑁×𝑁 is a diagonal matrix
satisfying V𝐻V = 𝑐I𝑁 . Therefore the matrix Σ satisfies

Σ𝐻Σ = U𝐻U⊗V𝐻V = 𝑐I𝐾𝑁 . (21)

We give the following general design of optimal training
sequences. For 0 ≤ 𝑚 ≤ 𝑀 − 1, let 𝑝 =

⌊
𝑚
𝐾

⌋
, 0 ≤ 𝑝 ≤⌊

𝑀−1
𝐾

⌋
and 𝑞 = 𝑚 − 𝐾𝑝 ∈ {0, ⋅ ⋅ ⋅ ,𝐾 − 1}. For the 𝑚th

transmit antenna, its FD training sequence matrix at the 𝑡th
OFDM training symbol is given by

D𝑡𝑚 = Σ𝑡𝑞Λ𝑝, if 𝑚 = 𝐾𝑝+ 𝑞, 0 ≤ 𝑚 ≤ 𝑀 − 1, (22)

where Σ𝑡𝑞 = 𝑈𝑡𝑞V is the 𝑁 ×𝑁 diagonal matrix located at
the (𝑡, 𝑞) block of Σ.

The bijection 𝜋 : 𝑚 �→ {𝑝, 𝑞} groups the antennas into 𝐾
classes depending on the equivalence of the residue 𝑞. For two
antennas not in the same class, their training sequences can
be proved orthogonal over any OFDM training symbol. For
two antennas in the same class, their training sequences can
be proved orthogonal over all 𝐾 OFDM training symbols. We
give the detailed proof below.

Theorem 2: The training sequences in (22) are optimal for
𝐾 training OFDM symbols.

Proof: It is enough to show that

𝐾−1∑
𝑡=0

S𝐻𝑡𝑚S𝑡𝑛 = F𝐻0

(
𝐾−1∑
𝑡=0

D𝐻𝑡𝑚D𝑡𝑛

)
F0 = 𝑐𝛿𝑚𝑛I(𝜈max+1)

(23)
It is obvious that when 𝑚 = 𝑛, the above equation holds.

When 𝑚 ∕= 𝑛, we write 𝑚 = 𝐾𝑝1 + 𝑞1 and 𝑛 = 𝐾𝑝2 + 𝑞2
and split the proof into two cases:

∙ 𝑞1 = 𝑞2 = 𝑞 ∈ {0, ⋅ ⋅ ⋅ ,𝐾 − 1} but 𝑝1 ∕= 𝑝2. Then,

D𝑡𝑚 = Σ𝑡𝑞Λ𝑝1 and D𝑡𝑛 = Σ𝑡𝑞Λ𝑝2 , (24)

for 0 ≤ 𝑡 ≤ 𝐾 − 1, therefore,

𝐾−1∑
𝑡=0

S𝐻𝑡𝑚S𝑡𝑛 = F𝐻𝑝1

(
𝐾−1∑
𝑡=0

Σ𝐻𝑡𝑞Σ𝑡𝑞

)
F𝑝2

= 𝑐F𝐻𝑝1F𝑝2 = 0(𝜈max+1).

∙ 𝑞1 ∕= 𝑞2. Then from Eq. (24), we have

𝐾−1∑
𝑡=0

D𝐻𝑡𝑚D𝑡𝑛 = Λ𝐻𝑝1

(
𝐾−1∑
𝑡=0

Σ𝐻𝑡,𝑞1Σ𝑡,𝑞2

)
Λ𝑝2 = 0𝑁 .

(25)

Now, Eq. (23) follows trivially.
Finally, the LLSE of h is given by ĥ = 1

𝑐

∑𝐾−1
𝑡=0 S

𝐻
𝑡 y𝑡

where each CIR can be estimated as ĥ𝑚 = 1
𝑐

∑𝐾−1
𝑡=0 S

𝐻
𝑡𝑚y𝑡.

Then, the CFR at the 𝑚th transmit antenna is given by

Ĥ𝑚 =
1

𝑐
Fĥ𝑚 =

1

𝑐
(FF𝐻0 )

𝐾−1∑
𝑡=0

D𝐻𝑡𝑚Fy𝑡. (26)

Let 𝑐 = 𝐾𝑐, the resulting channel estimation error variance
is given by

𝜎2
𝑒 = 𝜎2Tr

(
𝐾−1∑
𝑡=0

S𝐻𝑡 S𝑡)
−1

)
=

𝑀(𝜈max + 1)

𝐾𝑐
𝜎2.

C. Special case when 𝐾 = 2

When 𝐾 = 2, like the Alamouti Space-Time Block Code
(STBC), our construction of training sequences makes use of
Hamilton’s Biquaternions. We will choose two FD training
sequencesX and Z where the sum of their squared amplitudes
is constant, i.e.

D𝐻𝑋D𝑋 +D𝐻𝑍D𝑍 = 𝑐I𝑁 . (27)

where D𝑋 = diag (𝑋(0), ⋅ ⋅ ⋅ , 𝑋(𝑁 − 1)), and D𝑍 =
diag (𝑍(0), ⋅ ⋅ ⋅ , 𝑍(𝑁 − 1)).

For 0 ≤ 𝑚 ≤ 𝑀 − 1, let 𝑝 =
⌊
𝑚
2

⌋
, 0 ≤ 𝑝 ≤ ⌊

𝑀−1
2

⌋
and 𝑞 = 𝑚 − 2𝑝 ∈ {0, 1}. Let X𝑝 = Λ𝑝X and Z𝑝 = Λ𝑝Z,
0 ≤ 𝑝 ≤ ⌊

𝑀−1
2

⌋
, where Λ𝑝 is defined in Eq. (13).

The diagonal FD training matrices of the 𝑚th antenna in
the 0th and 1st training symbols are given by D0𝑚 and D1𝑚

respectively:

D0𝑚 =

{
Λ𝑝D𝑋 , if 𝑞 = 0,𝑚 = 2𝑝
Λ𝐻𝑝 D

𝐻
𝑍 , if 𝑞 = 1,𝑚 = 2𝑝+ 1

, (28)

and D1𝑚 =

{
Λ𝑝D𝑍 , if 𝑞 = 0,𝑚 = 2𝑝
−Λ𝐻𝑝 D𝐻𝑋 , if 𝑞 = 1,𝑚 = 2𝑝+ 1

. (29)

We summarize the FD training sequences design in Table II.
Theorem 3: The FD training sequences in Table II are

optimal for two training OFDM symbols.
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TABLE II
FD TRAINING SEQUENCES AT THE 𝑚TH TRANSMIT ANTENNA WHEN TWO

TRAINING OFDM SYMBOLS ARE AVAILABLE.

𝑚 = 2𝑝 + 𝑞 𝑞 = 0 𝑞 = 1
0th symbol X𝑝 −Z𝐻

𝑝

1st symbol Z𝑝 X𝐻
𝑝

Proof: It is enough to show that

S𝐻0𝑚S0𝑛 + S
𝐻
1𝑚S1𝑛 = F𝐻0 (D𝐻0𝑚D0𝑛 +D

𝐻
1𝑚D1𝑛)F0

= 𝑐𝛿𝑚𝑛I(𝜈max+1). (30)

It is obvious that the above equation holds when 𝑚 = 𝑛.
When 𝑚 ∕= 𝑛, we write 𝑚 = 2𝑝1 + 𝑞1 and 𝑛 = 2𝑝2 + 𝑞2 and
consider two cases

∙ 𝑞1 = 𝑞2 but 𝑝1 ∕= 𝑝2. Without loss of generality, we
assume 𝑞1 = 𝑞2 = 0 and get

S𝐻0𝑚S0𝑛 = F𝐻0 D
𝐻
0𝑚D0𝑛F0 = F𝐻𝑝1D

𝐻
𝑋D𝑋F𝑝2 ,

and S𝐻1𝑚S1𝑛 = F𝐻0 D
𝐻
1𝑚D1𝑛F0 = F𝐻𝑝1D

𝐻
𝑍D𝑍F𝑝2

Hence,

S𝐻0𝑚S0𝑛 + S
𝐻
1𝑚S1𝑛 = F𝐻𝑝1

(
D𝐻𝑋D𝑋 +D𝐻𝑍D𝑍

)
F𝑝2

= 𝑐F𝐻𝑝1F𝑝2 = 0(𝜈max+1).

∙ 𝑞1 ∕= 𝑞2. Without loss of generality, we assume 𝑞1 = 0
and 𝑞2 = 1 and write

D𝐻0𝑚D0𝑛 +D
𝐻
1𝑚D1𝑛

= (Λ𝑝1D𝑋)
𝐻(Λ𝐻𝑝2D

𝐻
𝑍 ) + (Λ𝑝1D𝑍)

𝐻(−Λ𝐻𝑝2D𝐻𝑋)
= Λ𝐻𝑝1(D

𝐻
𝑋D

𝐻
𝑍 −D𝐻𝑍D𝐻𝑋)Λ𝐻𝑝2 = 0(𝜈max+1).

Eq. (30) follows directly.
If all the users employ two transmit antennas and Alamouti

code, their training sequences in two symbol intervals are
assigned according to Eq. (28) and (29) , and can be generated
simply using the same Alamouti code generator which greatly
reduce the training assignment complexity.

D. Peak-to-Average Power Ratio (PAPR) Property

The PAPR of the training sequence 𝑆(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1,
is given by

PAPR =
max
𝑛

∣𝑆(𝑛)∣2
1
𝑁

∑𝑁−1
𝑛=0 ∣𝑆(𝑛)∣2 . (31)

The transform operator Λ𝑚 between different FD training
sequences can be viewed as a frequency modulation, which
is equivalent to circulant shift of the training sequence in the
TD. Hence, we have the following proposition.

Proposition 1: All TD training sequences of X𝑚’s in (14)
have the same PAPR.

This property is important when designing the training
sequences. As long as the PAPR of X is low, all training
symbols will have low PAPR. Another merit of our design
is that if 𝑁

(𝜈max+1) = 2𝑘, for some integer 𝑘, and if X is
chosen from a 2𝑘-phase shift keying (PSK) constellation, then
the transform Λ𝑚 guarantees that all FD training sequences
{X𝑚, 0 ≤ 𝑚 ≤ 𝑀 − 1} will belong to the same 2𝑘-PSK
constellation, which is very easy to generate.

TABLE III
PAPR COMPARISON OF THREE TRAINING SEQUENCE CANDIDATES

Chirp-based Golay-based TD Impulsive
PAPR 0 dB ≤ 3 dB 18 dB

One possible choice for X is a Constant-Amplitude-
Zero-Auto-Correlation (CAZAC) sequence [27], which is a
complex-valued sequence with constant amplitude and zero
autocorrelation at nonzero lags. One example of a CAZAC
sequence of length 𝑁 is the chirp sequence given by

𝑋(𝑘) =

{ √
𝑐 exp(𝑗 𝜋𝑢𝑘

2

𝑁 ), if 𝑁 is even√
𝑐 exp(𝑗 𝜋𝑢𝑘(𝑘+1)

𝑁 ), if 𝑁 is odd
, 0 ≤ 𝑘 ≤ 𝑁−1.

(32)
where 𝑢 is any integer relatively prime1 to 𝑁 . A disadvantage
of this and other CAZAC sequences is that the entries are
not restricted to a standard signal constellation. An alternative
is provided by Golay complementary sequences [28] which
only assume values from {−√

𝑐,
√
𝑐}. A third possibility is the

flat sequence (impulsive in TD) {X : 𝑋(𝑘) =
√
𝑐, for all 𝑘}.

These three choices have different PAPRs, as summarized
in Table III and perform differently under practical system
impairments as will be discussed in Sections IV and VI. Given
the above discussion, it is possible to generate a family of
optimal training sequences with low PAPR from a standard
signal constellation.

E. Reducing the number of pilots per training symbol

Assume the number of subcarriers 𝑁 can be decomposed as
𝑁 = 𝑁𝑝𝑇 where 𝑁𝑝 ≥ (𝜈max + 1), then it is possible to use
𝑁𝑝 equally-spaced pilots in each training symbol instead of
the whole symbol. At the 𝑚th antenna, the training sequence
is given by diagonal matrix D̂𝑚 ∈ ℂ𝑁𝑝×𝑁𝑝 and the pilot
locations are {𝑠𝑇 }𝑁𝑝−1

𝑠=0 . Consider the one training symbol
scenario without loss of generality. Instead of taking IDFT of
Eq. (5) of length 𝑁 , we now take IDFT of Eq. (5) only at
pilot tones of length 𝑁𝑝, and get

ŷ =

𝑀−1∑
𝑚=0

Ŝ𝑚h𝑚 + n, (33)

where ŷ ∈ ℂ
𝑁𝑝 , Ŝ𝑚 = F̂𝐻D̂𝑚F̂0 ∈ ℂ

𝑁𝑝×(𝜈max+1), F̂ is the
DFT matrix of size 𝑁𝑝, F̂0 = [𝑓𝑠𝑡 = 𝑒

𝑗 2𝜋𝑠𝑡
𝑁𝑝 ] ∈ ℂ𝑁𝑝×(𝜈max+1)

is the submatrix of F0 at rows corresponding to pilot frequen-
cies. It is obvious that F̂0 is also the first (𝜈max+1) columns
of the DFT matrix F̂, and F̂𝐻0 F̂0 = 1

𝑇 I𝜈max+1. Therefore, it
is clear that we can follow the same framework in both single
and multiple training symbol scenarios, by replacing 𝑁 by 𝑁𝑝
in both the dimensionality conditions and design parameters
at the cost of increasing the MMSE by a factor of 𝑇 .

IV. PRACTICAL ISSUES

In this section, we study the performance of channel esti-
mation using our proposed optimal training sequences under
two practical impairments, namely, Carrier Frequency Offset
(CFO) and oscillator Phase Noise (PN).

1Two integers are said to be relatively prime if their greatest common
divisor is 1.
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A. Residual CFO

In practical systems, CFO is first estimated and compen-
sated for prior to channel estimation; however, a residual CFO
remains uncompensated for due to the inaccuracy of the CFO
estimate. In the sequel, we derive the channel estimation MSE
in the presence of a residual CFO for the Multi-User MIMO-
OFDM system. Taking the residual CFOs into consideration,
the received signal over 𝐾 training OFDM symbols is

y =

𝐿−1∑
𝑖=0

Q𝑖𝒮𝑖h𝑖 + n

=
[
Q0𝒮0 Q1𝒮1 . . . Q𝐿−1𝒮𝐿−1

]
h+ n

≜ S̃h+ n (34)

where 𝒮𝑖 and h𝑖 concatenate the training matrices and the
CIRs, respectively, of all the antennas used by the 𝑖th user
and

Q𝑖 = diag
{
d, 𝑒

𝑗2𝜋(𝑁+𝜈+1)𝛼𝑖
𝑁 d, . . . , 𝑒

𝑗2𝜋(𝐾−1)(𝑁+𝜈+1)𝛼𝑖
𝑁 d

}
where d =

[
1, 𝑒

𝑗2𝜋𝛼𝑖
𝑁 , . . . , 𝑒

𝑗2𝜋(𝑁−1)𝛼𝑖
𝑁

]𝑇
. Furthermore, 𝛼𝑖

is a random variable representing the normalized frequency
offset between the 𝑖th user carrier frequency, 𝑓 𝑖T, and the
receiver carrier frequency, 𝑓R, defined as

𝛼𝑖 ≜
𝑓 𝑖T − 𝑓R

𝑓sub
, (35)

where 𝑓sub denotes the subcarrier frequency spacing. Assum-
ing the dimensionality condition in (20) is satisfied, the LLSE
of h is

ĥ =
1

𝑐

[𝒮0 𝒮1 . . . 𝒮𝐿−1

]𝐻︸ ︷︷ ︸
=S𝐻

y =
1

𝑐
S𝐻 S̃ h+

1

𝑐
S𝐻n︸ ︷︷ ︸
≜ñ

.

(36)
Writing Q𝑖 = I𝑁 + (Q𝑖 − I𝑁 ) ≜ I𝑁 + Q̃𝑖, we express ĥ as

ĥ = h+ SΔh+ ñ (37)

where

SΔ =
1

𝑐
S𝐻

[
Q̃0𝒮0 Q̃1𝒮1 . . . Q̃𝐿−1𝒮𝐿−1

]
. (38)

The trace of the error auto-correlation matrix is given by

𝑡𝑒 = Tr

(
𝔼

[(
h− ĥ

)(
h− ĥ

)𝐻])
= Tr

(
𝔼
[
SΔhh

𝐻S𝐻Δ
])

+ 2𝜎2
𝑒 ≜ 𝑡fo + 2𝜎2

𝑒 , (39)

where 𝔼 [⋅] denotes the statistical expectation. For any two
matrices A and B, we know that

Tr (𝔼 [A]) = 𝔼 [Tr (A)] and Tr (AB) = Tr (BA) . (40)

Using these properties and assuming that the CIR coefficients
and the normalized frequency offsets are statistically indepen-
dent, we write

𝑡fo = 𝔼
[
Tr

(
hh𝐻S𝐻ΔSΔ

)]
= Tr

(
𝔼
[
hh𝐻

]
𝔼
[
S𝐻ΔSΔ

])
= Tr (ChCSΔ) (41)

where Ch ≜ 𝔼
[
hh𝐻

]
and CSΔ ≜ 𝔼

[
S𝐻ΔSΔ

]
. The (𝑖, 𝑗)th

block matrix of CSΔ is given by

CSΔ(𝑖, 𝑗) =
1

𝑐2
𝔼

[
𝒮𝐻𝑖 Q̃𝐻𝑖

(
𝐿−1∑
𝑘=0

𝒮𝑘𝒮𝐻𝑘
)
Q̃𝑗𝒮𝑗

]

=
1

𝑐2
𝔼

[
𝒮𝐻𝑖 Q̃𝐻𝑖 SS𝐻Q̃𝑗𝒮𝑗

]
, (42)

where 0 ≤ 𝑖, 𝑗 ≤ 𝐿 − 1. Since Q̃𝑖 and Q̃𝑗 are diagonal, we
express CSΔ(𝑖, 𝑗) as follows

CSΔ(𝑖, 𝑗) =
1

𝑐2
𝒮𝐻𝑖

⎛⎜⎜⎝[
SS𝐻

] ∘ 𝔼 [
v∗𝑖 v

𝑇
𝑗

]︸ ︷︷ ︸
≜C𝑖,𝑗

v

⎞⎟⎟⎠𝒮𝑗 (43)

where v𝑖 and v𝑗 are columns vectors containing the diagonal
elements of Q̃𝑖 and Q̃𝑗 , respectively.

Given the second-order statistics of the residual CFOs and
the CIR coefficients, we can easily computeCSΔ andCh, and
hence 𝑡𝑒 for any training sequence. Given a training sequence,
we can then evaluate the impact of the residual CFO on the
corresponding channel estimate. We shall assume throughout
that the residual offsets 𝛼𝑖’s are independent and identically
distributed. One commonly-used distribution is the uniform
distribution over the interval [−𝛼max, 𝛼max] where 0 ≤ 𝛼max ≤
0.5. Using these assumptions and the fact that 𝔼 [𝑔(𝑥)] =∫
𝑥
𝑔(𝑥)𝑓(𝑥)𝑑𝑥, for any random variable 𝑥, where 𝑓(𝑥) is the

probability density function of 𝑥, we find that, for all 𝑖, 𝑗 =
0, 1, ..., 𝐿 − 1, the (𝑚,𝑛) element of the matrix C𝑖,𝑗v , where
𝑚,𝑛 = 0, 1, ...,𝐾𝑁−1, is given in Eq. (44) where sinc (𝑥) ≜
sin(𝜋𝑥)
𝜋𝑥 for any real number 𝑥, and 𝑓(𝑚) = 𝑚+ 𝑙(𝑁 + 𝜈+1)

where 𝑙 = 0, 1, ...,𝐾 − 1 and 𝑙𝑁 ≤ 𝑚 ≤ (𝑙 + 1)𝑁 − 1.

B. Phase Noise

In the presence of PN affecting the free-running voltage-
controlled oscillators (VCOs) of the transmitters and the
receiver, the received signal over 𝐾 = 1 training OFDM
symbol is given by

y = Prx
𝑀−1∑
𝑖=0

H𝐶𝑖 P
tx
𝑖 s𝑖 + n (45)

where s𝑖 denotes the training sequence transmitted by the 𝑖th
transmit antenna and H𝐶𝑖 denotes the matrix of the channel
experienced by the 𝑖th transmit antenna. Although H𝐶𝑖 is not
exactly circulant due to the edge effect introduced by PN
at the transmitters, it can be considered circulant with this
effect lumped into the noise vector n. For large FFT sizes,
the edge effect can be ignored [29]. The PN perturbing the
VCO of the 𝑖th transmit antenna is modeled by the diagonal
matrix Ptx

𝑖 ≜ diag({𝑒𝑗𝜙𝑖
𝑛}𝑁−1
𝑛=0 ) with 𝜙𝑖𝑛 representing the PN

sample perturbing the transmitted signal by the 𝑖th transmit
antenna at the 𝑛th sample2. Similarly, the PN perturbing the
receiver VCO is modeled by the diagonal matrix Prx ≜
diag({𝑒𝑗𝜙rx

𝑛}𝑁−1
𝑛=0 ). The discrete-time PN model is given by

𝜙𝑖𝑛 = 𝜙𝑖𝑛−1 + 𝜖𝑖𝑛 and 𝜙rx
𝑛 = 𝜙rx

𝑛−1 + 𝜖rx
𝑛 , (46)

2Transmit antennas supporting the same user experience the same PN
matrix as they are fed by the same VCO.
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C𝑖,𝑗v (𝑚,𝑛) =

⎧⎨⎩ 1− sinc
(

2𝑓(𝑚) 𝛼max

𝑁

)
− sinc

(
2𝑓(𝑛) 𝛼max

𝑁

)
+ sinc

(
2𝑓(𝑛−𝑚) 𝛼max

𝑁

)
, 𝑖 = 𝑗(

sinc
(

2𝑓(𝑚) 𝛼max

𝑁

)
− 1

)(
sinc

(
2𝑓(𝑛) 𝛼max

𝑁

)
− 1

)
, 𝑖 ∕= 𝑗

(44)

where
{
𝜖𝑖𝑛
}

and {𝜖rx
𝑛} are independent Gaussian distributed

random variables with zero means and variances
{

2𝜋𝛽tx
𝑖

𝑁𝑓sub

}
and{

2𝜋𝛽rx

𝑁𝑓sub

}
for all 𝑛 respectively. Without loss of generality, we

assume for all 𝑖, 𝜙𝑖0 = 𝜙rx
0 = 0. The parameters 𝛽tx

𝑖 and
𝛽rx denote the two-sided 3-dB linewidths of the Lorentzian
power density spectrums of the VCOs feeding the 𝑖th transmit
antenna and the receive antenna, respectively [30]. We express
Ptx
𝑖 and Prx as

Ptx
𝑖 = I𝑁 +

(
Ptx
𝑖 − I𝑁

)
≜ I𝑁 + P̃tx

𝑖 ,

Prx = I𝑁 + (Prx − I𝑁 ) ≜ I𝑁 + P̃rx,

and expand the LLSE of h and the trace of its error auto-
correlation matrix, respectively, in Eq. (47) and (48), where
the edge effect is ignored. Defining Ψ ≜

∑𝑀−1
𝑖=0 H

𝐶
𝑖 P̃

tx
𝑖 s𝑖,

we expand 𝑡pn in Eq. (49).
Using the properties in (40) in addition to the diagonal

structure of P̃rx and assuming that the channel and the PN
parameters are statistically independent, we write

𝑡pn,1 = Tr
(
ChS

𝐻
([
SS𝐻

] ∘ 𝔼 [
p̃rxp̃rx,𝐻

])
S
)
, (52)

where p̃rx is a column vector containing the diagonal elements
of P̃rx. Furthermore, we can rewrite Ψ as

Ψ =

𝑀−1∑
𝑖=0

Ŝ𝑖h𝑖 =
[
Ŝ0 Ŝ1 . . . Ŝ𝑀−1

]
h ≜ Ŝh, (53)

where Ŝ𝑖 is a circulant matrix whose first column is P̃tx
𝑖 s𝑖.

Using the above formulation of Ψ and the properties in
(40), we rewrite 𝑡pn,2 in Eq. (50) where prx is a column
vector containing the diagonal elements of Prx. Inspecting the
structure of Ŝ, we find that it can be expressed as

Ŝ =
[
P̃𝐶0 ∘ S0 P̃𝐶1 ∘ S1 . . . P̃𝐶𝑀−1 ∘ S𝑀−1

]
,

where P̃𝐶𝑖 is a circulant matrix whose first column is p̃tx
𝑖 ,

the column vector containing the diagonal elements of P̃tx
𝑖 .

Hence,

𝔼

[
Ŝ
]
=

[
[𝔼

[
P̃𝐶

0

]
∘ S0 𝔼

[
P̃𝐶

1

]
∘ S1 . . . 𝔼

[
P̃𝐶

𝑀−1

]
∘ S𝑀−1

]

where 𝔼

[
P̃𝐶𝑖

]
is formed by a circulant matrix whose first

column is 𝔼 [p̃tx
𝑖 ]. Finally, we consider the last term 𝑡pn,4 and

express it in Eq. (51) where we used the fact that H𝐶𝑖 =
F𝐻H𝐷𝑖 F where H𝐷𝑖 is a diagonal matrix whose diagonal is
formed by the vector H𝑖 which is the 𝑁 -point DFT of h𝑖 as
defined in Section II. Furthermore,

𝔼h,Prx,{˜Ptx
𝑖 } [⋅] = 𝔼Prx𝔼h∣Prx𝔼{˜Ptx

𝑖 }∣h,Prx [⋅] = 𝔼Prx𝔼h𝔼{˜Ptx
𝑖 } [⋅]

where ∣ is the statistical conditioning operator and the second

equality follows from the fact that h, Prx, and
{
P̃tx
𝑖

}
are

statistically independent. Using the above observations and the

fact that Prx,
{
H𝐷𝑖

}
, and

{
P̃tx
𝑖

}
are all diagonal matrices, we

write
𝑡pn,4 = Tr

(
S𝐻

(
Ξ ∘ 𝔼 [

prxprx,𝐻
])
S
)

(54)

where Ξ =
∑𝑀−1
𝑖=0

∑𝑀−1
𝑗=0 F

𝐻
(
Υ𝑖,𝑗 ∘ 𝔼

[
H𝑖H

𝐻
𝑗

])
F and

Υ𝑖,𝑗 = F
([
s𝑖s
𝐻
𝑗

] ∘ 𝔼 [
p̃tx
𝑖 p̃

tx,𝐻
𝑗

])
F𝐻 . Finally, the vec-

tor 𝔼 [p̃tx
𝑖 ] and the correlation matrices 𝔼

[
p̃rxp̃rx,𝐻

]
,

𝔼
[
prxp̃rx,𝐻

]
, 𝔼

[
prxprx,𝐻

]
, and 𝔼

[
p̃tx
𝑖 p̃

tx,𝐻
𝑗

]
are determined

by using the relation 𝔼
[
𝑒𝑗𝑥

]
= 𝑒−𝜎

2
𝑥/2 for the random variable

𝑥 ∼ 𝑁(0, 𝜎2
𝑥). In fact, 𝔼

[
𝑒𝑗𝑥

]
is the characteristic function

[31] of 𝑥, 𝜓𝑥(𝑗𝑡), evaluated at 𝑡 = 1. Furthermore, the
extension of the above analysis to the general case of 𝐾 > 1
training OFDM symbols is straightforward.

V. DESIGN TRADE-OFFS

A closer inspection of the channel estimate MSE expres-
sions derived in Sections IV-A and IV-B reveals a tradeoff
between the PAPR of the training sequences and their ro-
bustness to CFO and PN. An intuitive explanation is that the
training sequence with low PAPR tends to distribute its energy
uniformly among all samples including late ones; however,
this makes it less immune to PN and CFO which severely
affect late samples. On the other hand, the training sequence
that is more robust to CFO and PN, should concentrate its
energy in the early samples as explained earlier; however,
this will result in increasing PAPR. Towards an analytical
explanation, we examine the expression of 𝑡fo in (41). To
simplify the expression, we fairly assume that the channel
responses seen by all transmit antennas are uncorrelated, so
the matrixCh is block-diagonal. Hence, 𝑡fo is affected only by
the diagonal blocks of CSΔ , i.e. {CSΔ(𝑖, 𝑖), 0 ≤ 𝑖 ≤ 𝐿− 1},
which are all partly constructed by the term

[
SS𝐻

] ∘ C𝑖,𝑖v .
Inspecting the structure of the matrix C𝑖,𝑖v in (44), we find that
the energies of the elements increase as the column and/or row
indices increase. Hence, if the training sequence has its energy
concentrated in the early samples, then the matrix SS𝐻 will
have the opposite structure of C𝑖,𝑖v and, hence, the Hadamard
product will yield small elements. This will eventually result
in a small value for 𝑡fo, i.e. more immunity to CFO. The same
rationale can be applied to the expression of 𝑡pn keeping in
mind that the variance of the PN sample increases as its index
increases according to the model adopted in (46).

VI. SIMULATION RESULTS

We have simulated the performance of an OFDM system
with 𝑁 = 64 and 𝜈max = 15 as in [9]. We consider uplink
transmission in a Multi-User MIMO system with 2 co-located
receive antennas at the BST and 2 users each equipped with
2 transmit antennas over which the Alamouti STBC [32] is
employed. Each user employs a non-systematic rate-1/2 con-
volutional code with octal generator (133,171) and constraint
length = 7 as in [9]. Coded bits are Quadrature Phase Shift
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ĥ =
1

𝑐
S𝐻y = h+

1

𝑐
S𝐻P̃rx Sh+

1

𝑐
S𝐻Prx

𝑀−1∑
𝑖=0

H𝐶𝑖 P̃
tx
𝑖 s𝑖︸ ︷︷ ︸

≜epn

+
1

𝑐
S𝐻n (47)

𝑡𝑒 = Tr

(
𝔼

[(
h− ĥ

)(
h− ĥ

)𝐻])
= Tr

(
𝔼
[
epne

𝐻
pn

])
+ 2𝜎2

𝑒 ≜ 𝑡pn + 2𝜎2
𝑒 (48)

𝑡pn =
1

𝑐2
Tr

(
𝔼

h,˜Prx

[
S𝐻P̃rx Shh𝐻S𝐻P̃rx,𝐻 S

])
︸ ︷︷ ︸

≜𝑡pn,1

+
1

𝑐2
Tr

(
𝔼

h,Prx,{˜Ptx
𝑖 }

[
S𝐻P̃rx ShΨ𝐻Prx,𝐻 S

])
︸ ︷︷ ︸

≜𝑡pn,2

+
1

𝑐2
Tr

(
𝔼

h,Prx,{˜Ptx
𝑖 }

[
S𝐻Prx Ψh𝐻S𝐻P̃rx,𝐻 S

])
︸ ︷︷ ︸

≜𝑡pn,3

+
1

𝑐2
Tr

(
𝔼

h,Prx,{˜Ptx
𝑖 }

[
S𝐻Prx ΨΨ𝐻Prx,𝐻 S

])
︸ ︷︷ ︸

≜𝑡pn,4

(49)

𝑡pn,2 = 𝑡∗pn,3 = Tr

(
𝔼

h,Prx,{˜Ptx
𝑖 }

[
S𝐻P̃rx Shh𝐻 Ŝ𝐻Prx,𝐻 S

])
= Tr

(
Ch𝔼

[
Ŝ
]𝐻([
SS𝐻

] ∘ 𝔼 [
prxp̃rx,𝐻

])
S

)
(50)

𝑡pn,4 = Tr

⎛⎝𝔼h,Prx,{˜Ptx
𝑖 }

⎡⎣S𝐻Prx

⎛⎝𝑀−1∑
𝑖=0

𝑀−1∑
𝑗=0

F𝐻H𝐷𝑖 F P̃
tx
𝑖 s𝑖s

𝐻
𝑗 P̃

tx,𝐻
𝑗 F𝐻H𝐷,𝐻𝑗 F

⎞⎠Prx,𝐻 S

⎤⎦⎞⎠ (51)

Keying (QPSK) modulated. All channel paths are assumed
to have uncorrelated and identically-distributed CIRs with 8
zero-mean complex Gaussian taps following an exponentially-
decaying power delay profile (PDP) with a 3 dB decay per tap.
𝐾 OFDM training symbols are transmitted over each transmit
antenna for the purpose of channel estimation as described
in Section III. The CIR estimates are used for detection of
the OFDM data symbols through the joint Linear Minimum-
Mean-Square-Error (LMMSE) technique which processes the
received signals from the 2 receive antennas jointly to detect
the two users [33]. The background noise is assumed to be
AWGN with a single-sided power spectral density of 𝑁𝑜
Watts/Hz. The bit energy is denoted by 𝐸𝑏 and the per-user
Signal-to-Noise Ratio (SNR) is defined as SNR = 𝐸𝑏

𝑁𝑜
.

Using these parameters, the dimensionality condition in (20)
is met with 𝐾 ≥ 1. In Fig. 2, the bit error rate (BER) perfor-
mances of three FD training sequences (namely: Chirp, Golay,
and flat (TD Impulsive)) with 𝐾 = 1 and 2 are compared with
the perfect channel state information (CSI) case. In Fig. 2, all
users are assumed to have perfect frequency synchronization
with the receiver. All training sequences achieve roughly the
same BER performance with SNR losses -compared to the
perfect CSI case- of 1.5 and 0.7 dB for 𝐾 = 1 and 2,
respectively. For comparison purpose, the performance of a
random BPSK sequence not satisfying the optimality condition
is also shown in Fig. 2 for 𝐾 = 1 and 2. The performance of
the random sequence is inferior to that of the other sequences
satisfying the optimality condition; especially with 𝐾 = 1
training symbol where the number of equations equals the
number of unknowns making the channel estimate unreliable
when the optimality condition is not satisfied. From another
perspective, our optimally-designed training sequences with
𝐾 = 1 training symbol achieve comparable performance to
that of the random sequence with 𝐾 = 2 training symbols,
i.e. with 50% less training overhead. This is in addition to the
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Fig. 2. BER versus SNR for 𝐾 = 1 (dashed) and 2 (solid) training OFDM
symbols without CFO.

additional complexity needed to invert the matrix S𝐻S which
is not a scaled identity in the case of non-optimal sequences.

For the channel PDP described above, we plot 𝑡fo derived in
(39) versus 𝛼max in Fig. 3 for the proposed training sequences
where we observe that the flat FD sequence is more robust to
the residual CFOs than the other two sequences thanks to the
impulsive nature of its corresponding training sequences where
most of power is concentrated in the early samples where the
CFO effect is small (CFO effect increases with time). The im-
pact of the residual CFOs on the BER performance is shown in
Fig. 4 for 𝐾 = 2 training symbol with 𝛼max = 0.01 and 0.05
where the superiority of the flat sequence is observed also
in the BER performance. While CFOs with 𝛼max = 0.01 do
not cause a significant performance degradation, CFOs with
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Fig. 3. Plot of 𝑡fo in (39) versus 𝛼max with 𝐾 = 1 training OFDM symbol
and 2 users each with 1 transmit antenna.
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𝛼max = 0.01 (dashed curves) and 𝛼max = 0.05 (dash-dotted curves). Two
training OFDM symbols are used.

𝛼max = 0.05 limit the system performance at high SNR.
Assuming the VCOs feeding all transmit and receive anten-

nas to have the same 3-dB linewidth 𝛽, i.e. 𝛽tx
𝑖 = 𝛽rx = 𝛽, ∀𝑖,

we plot 𝑡pn in (49) versus 𝜎2
pn ≜ 2𝜋𝛽

𝑁𝑓sub
in Fig. 5 for

𝐾 = 1 training symbols. Like the CFO case, the flat FD
training sequence is also more immune to PN than chirp
and Golay sequences for the same reason. Fig. 6 depicts
the PN impact on the BER performance for different values
of 𝜎2

pn without CFOs, i.e. 𝛼max = 0. With 𝜎2
pn = 10−4,

PN becomes performance-limiting at high SNR while no
significant deterioration is observed for smaller PN variances
such as 𝜎2

pn = 10−5.
In Fig. 7, we simulate the BER performance of the training

sequences in peak-limited channels under CFO and PN. In
peak-limited channels, the received signal power is limited
by 𝑃max above which the received signal power is saturated
(clipped). In Fig. 7, we show the BER versus Δ𝑃 ≜ 𝑃falt −
𝑃max (dB) where 𝑃flat is the received peak power of the FD
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Fig. 5. Plot of 𝑡pn in (49) versus 𝜎2
pn with 𝐾 = 1 training OFDM symbol

and 2 users each with 1 transmit antenna.
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Fig. 6. BER versus SNR for different values of 𝜎2
pn {0 (solid), 10−5 (dashed),

and 10−4 (dash-dotted)} with 𝐾 = 2 training OFDM symbols and without
CFO.

flat sequence which is the largest over the three sequences. For
small values of Δ𝑃 (i.e. high clipping power values), the FD
flat sequence outperforms the other two sequences due to its
immunity to CFO and PN as discussed before. However, the
situation changes at high values of Δ𝑃 where the distortion
of the FD flat sequence, caused by the peak-limited channel,
dominates its immunity to CFO and PN. Hence, we observe
that despite achieving the same performance in peak-unlimited
channels without CFO or PN, the proposed sequences exhibit
different behaviors under these practical impairments.

Fig. 8 shows the real parts of a single CIR realization along
with its estimates in the presence of CFO with 𝛼max = 0.01
and PN with 𝜎2

pn = 10−4. The real parts of CIR estimates
shown in Fig. 9 are with 𝛼max = 0.1 and 𝜎2

pn = 10−3 where
the increased maximum CFO and the PN variance degrade
the accuracy of the CIR estimates. The values of 𝛼max and
𝜎2

pn used in our simulations are small since CFO and PN
compensations usually precede channel estimation in practical
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Fig. 8. A realization of the CIR real part and its estimates with 𝛼max = 0.01,
𝜎2

pn = 10−4 , SNR = 15dB, and 2 training OFDM symbols.

systems. The image parts of CIR realizations are omitted due
to space. The trade-off between the PAPR of the training
sequences and their immunity to CFO and PN is observed
by inspecting Figs. 3 and 5 with Table III.

VII. CONCLUSIONS

We derived the MMSE optimality criteria for training
sequence designs in Multi-User MIMO-OFDM systems. In
spectrally-efficient uplink transmission scenarios where users
are separated using spatial processing at the base station,
our analysis holds for an arbitrary number of users, OFDM
training symbols, transmit antennas per user, and channel
delay spread. Within the family of training designs that
are MMSE-optimal under ideal conditions, we found that
robustness to residual CFO and PN can vary significantly.
We also derived analytical expressions for the increase in
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Fig. 9. A realization of the CIR real part and its estimates with 𝛼max = 0.1,
𝜎2

pn = 10−3, SNR = 15dB, and 2 training OFDM symbols.

channel estimation MSE in the presence of CFO and PN. Our
analysis includes three detailed case studies; Chirp, Golay,
and time-domain impulsive training sequence designs. In each
case, we quantified the underlying tradeoff between PAPR and
robustness to CFO and PN.
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