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Abstract

Stochastic dominance models risk-averse preferences for decision making with uncertain outcomes,
which naturally captures the intrinsic structure of the underlying uncertainty, in contrast to simply
resorting to the expectations. Despite theoretically appealing, the application of stochastic dominance in
machine learning has been scarce, due to the following challenges: i), the original concept of stochastic
dominance only provides a partial order, therefore, is not amenable to serve as an optimality criterion;
and ii), an efficient computational recipe remains lacking due to the continuum nature of evaluating
stochastic dominance.

In this work, we make the first attempt towards establishing a general framework of learning with
stochastic dominance. We first generalize the stochastic dominance concept to enable feasible compar-
isons between any arbitrary pair of random variables. We next develop a simple and computationally
efficient approach for finding the optimal solution in terms of stochastic dominance, which can be seam-
lessly plugged into many learning tasks. Numerical experiments demonstrate that the proposed method
achieves comparable performance as standard risk-neutral strategies and obtains better trade-offs against
risk across a variety of applications including supervised learning, reinforcement learning, and portfolio
optimization.

1 Introduction

In machine learning and operations research, the prevalent paradigm of decision making in the presence of
uncertain and stochastic outcomes is to maximize (resp. minimize) the expected utility (resp. loss) with
respect to the decision variables. However, the expectation of the decision-dependent utility function alone
often depicts an overly simplified snapshot of its distribution, ignoring the intrinsic structure of the underlying
uncertainty. As such, it fails to distinguish decisions with the same expected utilities but drastically different
outcomes or model behaviors, especially when taking risk into consideration.

There are no shortage of risk-sensitive applications where taming the risk is at least as important as max-
imizing the utility, examples including financial planning, medical examinations, robotics and autonomous
systems, to mention a few. In these high-stake applications, the principle of expectation may lead to inferior
decisions due to its uncertainty-agnostic nature. To motivate our discussions, we showcase three distinct
applications where risk-averse solutions are of particular interest, which will run throughout this paper.

• Risk-sensitive supervised learning. In standard supervised learning, one aims to find an optimally
parameterized model such that the expected loss, which measures the difference between the model
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output and the target output given an input feature, is minimized. However, excessive prediction
errors, even with extreme low probability, can pose significant risk to the system operation which may
be undesirable.

• Risk-sensitive reinforcement learning. Reinforcement learning (RL) formulates sequential decision mak-
ing problems as Markov decision processes (MDPs). The goal is to design an action selection rule, i.e.,
a policy, which maximizes the expected cumulative reward collected over the trajectories by executing
the policy. Nonetheless, risky actions, if not discouraged properly, might still be deployed when they
are compensated by high reward in the long horizon.

• Portfolio optimization. A leading example in finance planning is the selection between mutually exclu-
sive investment opportunities or portfolios with uncertain returns. The allocation of the assets yields
a random variable representing the total return. Maximizing the expected total return alone can lead
to large volatility and increases the probability of suffering significant loss.

1.1 Learning with Stochastic Dominance

It is clear that one needs to go beyond expectations to handle risk, a topic that has been extensively re-
searched in many disciplines. Two approaches are called out for modeling risk-averse preferences: mean-risk
[Markowitz and Todd, 2000] and stochastic dominance [Mann and Whitney, 1947]. Mean-risk models quan-
tify the problem with two metrics: a mean that measures the expected outcome, and a risk that measures
the variability of outcomes. Popular choices of risk measures include variance [Markowitz and Todd, 2000],
semideviation [Ogryczak and Ruszczyński, 1999], conditional value-at-risk [Rockafellar et al., 2000], entropic
risk [Rudloff et al., 2008], and so on. The mean-risk approach models risk-averse preferences by penalizing
the mean with the risk measure and allows simple trade-offs and efficient learning algorithms [Maurer and
Pontil, 2009, Duchi and Namkoong, 2019]. However, the design choices of the risk measure and corresponding
trade-offs are usually ad-hoc, lacking rigorous justifications.

Stochastic dominance. Stochastic dominance (SD) [Mann and Whitney, 1947, Lehmann, 2011], on the
other hand, provides a more principled scheme of comparing real-valued random variables by considering
the full spectrum of their kth-order cumulative distribution functions, instead of condensing into a single
scalar metric. In fact, efficient solutions found by the mean-risk approach can be stochastically dominated
by other feasible solutions [Ogryczak and Ruszczyński, 2002], suggesting SD offers stronger guidance and
finer granularity in modeling the risk-averse preference. In addition, the deployment of SD for comparing
random variables does not need additional assumptions on the distribution (e.g., the mean-variance approach
requires normality [Levy, 2015]).

Another nice justification of SD comes from expected utility theory [Boutilier et al., 2006, Armbruster
and Delage, 2015]. Specifically, if one solution stochastically dominants the other, it yields higher expected
utility for any utility in a wide class of functions (e.g., non-decreasing functions for first-order dominance).
Since SD implies higher expectation in the risk-neutral sense by setting the utility function as the identity
function, SD is more selective in model selection as a risk-averse criterion, without the need to specify utility
functions.

Challenges. Despite the appealing theoretical properties of SD, applications of SD in machine learning
remain scarce. In truth, practical algorithms for finding a desirable solution under the criterion of SD remain
lacking due to the following critical challenges.

• SD, in its existing form, only defines a partial order over all real-valued random variables, which
defies the standard optimization mindset of seeking optimality by optimizing a global scalar objective
function;

• Evaluating SD involves comparisons along a continuum of cumulative distribution functions and thus
necessitates computationally efficient algorithms.
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Existing literature on the computational aspects of stochastic dominance circumvents the first challenge by
studying stochastic dominance constraint optimization [Dai et al., 2023], with the goal of maximizing the
objective function — typically simply set to the expectation of the utility — over a feasible set that consists of
all dominating solutions versus a predefined reference solution. However, the fact that the reference solution
being fixed compromises the optimality guarantee in the first place, as the approach fails to distinguish
two feasible solutions with the same expected utility, even if one dominates the other. This motivates the
question:

Can we design a practical algorithm that finds an optimal solution in terms of stochastic dominance?

1.2 Our contribution

In this work, we aim to establish a general framework of learning with stochastic dominance, by tackling
the two challenges mentioned above. We handle the first challenge by quantifying the degree of stochastic
dominance as a functional and formulating SD optimality as a fixed point of the corresponding optimization
process. This motivates the design of an iterative optimization procedure with non-stationary objective
functions that can be solved efficiently. We summarize our contributions as follows.

• We first generalize the original stochastic dominance concept to enable feasible comparisons between
any arbitrary pair of random variables, paving the way to a general machine learning framework that
optimizes stochastic dominance.

• We propose Learning with Stochastic Dominance (LSD), a novel first-order method for finding ap-
proximate optimal solutions in terms of stochastic dominance in the hypothesis space.

• We establish convergence guarantees under mild technical assumptions despite the non-stationary
nature of the optimization process. It is shown that LSD finds an ϵ-approximate optimal solution
within O(ϵ−2) iterations, which introduces minimal computational overhead compared with standard
mini-batch stochastic gradient method.

• We draw connections between SD and distributionally robust optimization (DRO), allowing us to
interpret the proposed method as optimizing a surrogate distributionally robust loss.

To the best of our knowledge, this work presents the first attempt towards a computationally tractable
approach for learning stochastic dominance optimal solutions, both practically and theoretically. Numerical
experiments are demonstrated to illustrate the effectiveness of our framework for finding risk-averse yet
performant solutions in a variety of learning tasks such as supervised learning, reinforcement learning, and
portfolio optimization.

The rest of this paper is organized as follows. Section 2 develops a general learning framework using
stochastic dominance. Section 3 presents a computationally efficient algorithm and its theoretical compu-
tational complexity. Numerical results are presented in Section 4. Finally, we discuss connections to DRO
in Section 5 and conclude the paper in Section 6.

Notation. We denote real-valued random variables by upper case letters, e.g., X, and the corresponding
observed values by lower case letters, e.g., x. The set of probability distribution over set A is denoted by
∆(A). (x)+ is a shorthand notation of max(0, x). Two random variables X and Y are equal in distribution

if they have the same distribution, denoted as X
D
= Y .

1.3 Related works

Stochastic-dominance constrained optimization. In the literature, SD is often used to characterize
the feasible set of an optimization problem as a constraint w.r.t. a given competitor. In contrast, in our
SD learning framework, we seek the optimal solution in the stochastic dominance sense within the whole
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hypothesis space, instead of against a fixed competitor. Many previous related works tackle the SD con-
strained optimization by casting the comparison of kth-order cumulative distribution functions [Dentcheva
and Ruszczynski, 2003, Dentcheva and Ruszczyński, 2004, Noyan et al., 2006] or its equivalent reformula-
tions [Luedtke, 2008, Post, 2003, Armbruster and Delage, 2015] as linear programming and mixed-integer
programming problems, which typically incurs a quadratic iteration complexity/memory consumption and
is hence not applicable to large-scale practical problems. Dai et al. [2023] presents the latest effort towards
efficiently solving SD constrained optimization and achieves (near) linear computation and memory cost.
The key ingredient lies in the efficient solver for the inner optimization in the Lagrangian, which is integral
to our learning algorithm development as well.

Connections to other risk-sensitive approaches. Quantile statistics such as Value at Risk (VaRα)
[Markowitz, 1952, Roy, 1952] and Conditional Value at Risk (CVaRα) [Artzner et al., 1999] represent another
popular choice of risk measure beyond variance. For a risk level α ∈ (0, 1), VaRα is given by the (1 − α)-
quantile of the loss, whereas CVaRα takes a step further by focusing on the conditional expectation of loss
beyond VaRα. Remarkably, second-order stochastic dominance (SSD) can be interpreted as a continuum of
CVaRα comparison over the entire risk level set (0, 1) [Martin et al., 2020], which again justifies the superior
theoretical properties of SD.

Beyond the uncertainty that stems from a known data distribution, distributionally robust optimization
(DRO) seeks to optimize the model against the uncertainty in the knowledge of the distribution itself, by
focusing on the worst-case expectation under some distribution shift. Duchi et al. [2021] demonstrated that
for uncertainty set induced from f -divergence balls, the DRO formulation is asymptotically equivalent to a
mean-risk treatment, with the risk measure given by the square root of variance.

Distributional RL. Distributional RL [Bellemare et al., 2023] provides a systematic approach towards
learning the distribution of the cumulative rewards induced by executing a policy in RL. While this allows
the decision maker to resort to mean-risk approaches for risk-averse policies, a policy improvement scheme
that fully utilizes the learned distributions in terms of stochastic dominance remains lacking. Martin et al.
[2020] investigated the use of SD for action selection using a particle-based algorithm, which involved extra
computation and thus fell short of providing an explicit policy.

2 Stochastic Dominance Learning

In this section, we first introduce the concept of stochastic dominance, and reveal the difficulty in defining
optimality in terms of stochastic dominance. We then resolve this difficulty and establish the stochastic
dominance learning framework.

Stochastic dominance. Let X denote a real-valued random variable. The kth distribution function Fk

is defined recursively as

F1(X; η) = PX(X ⩽ η); (1)

Fk (X; η) =

∫ η

−∞
Fk−1 (X;α) dα =

1

(k − 1)!
EX

[
(η −X)

k−1
+

]
, (2)

where F1(X; η) is the simply the standard cumulative distribution function (CDF). Then, X dominates Y
in the kth-order if [Mann and Whitney, 1947, Dentcheva and Ruszczynski, 2003, Lehmann, 2011]

Fk (X; η) ⩽ Fk (Y ; η) , ∀η ∈ R, (3)

denoted as X ⪰k Y . By definition, the kth-order dominance implies the (k + 1)th-order dominance. In
practice, the popular choices is choosing k = 1 or k = 2. First-order stochastic dominance (FSD), by
definition, pursues consistently a lower probability of the random variable falling below a threshold, which
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equivalently asserts the existence of X
D
= X and Y

D
= Y such that X ⩾ Y . Second-order stochastic dominance

(SSD), due to aforementioned intrinsic relationship to CVaR, allows more fined-grained comparisons among
random outcomes with the same expectations. Figure 1 illustrates two normal distributions centered at 0
with different variance, and their corresponding F2 function. SSD favours the one with smaller variance as
it yields a consistently lower F2 function.
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Figure 1: Probability density and second-order CDF of N (0; 1) and N (0; 2).

Learning with SD. In many applications, we can model the quantity of interest by Xθ, associated with
some parameterized model θ ∈ Θ, which we would like to maximize in general. As examples, we can rethink
a few typical machine learning and decision making problems through the lens of random variable selection,
to which we hope to leverage SD to reason their preferences.

• Supervised learning. Let feature vector x and corresponding label y be sampled from data distri-
bution D. The performance of a parameterized model fθ is measured by the sample loss function
ℓ(fθ(x), y)). Typical choices of ℓ include mean squared error for regression tasks and cross entropy
loss for classification tasks. Empirical “risk” minimization seeks to optimize the expected sample loss
E(x,y)∼Dℓ(fθ(x), y)) by minimizing the empirical estimate 1

N

∑N
i=1 ℓ(fθ(xi), yi), where {xi, yi}Ni=1 is the

training dataset. We negate the sample loss in consistency with the definition of stochastic dominance,
i.e., Xθ = −ℓ(fθ(x), y), (x, y) ∼ D. One can compare different models via examining SD relations
among Xθ’s over the hypothesis space of θ.

• Reinforcement learning. Consider a discounted MDP with state space S, action space A, reward
function r : S × A → R and transition kernel P (·|s, a) that defines the distribution of the next
state upon choosing action a at state s. A policy S 7→ ∆(A) defines a random action selection rule
for each observed state, which induces random trajectory τ = (s0, a0, r0, s1, · · · ) where at ∼ π(·|st),
st+1 ∼ P (·|st, at), rt = r(st, at) from some initial state s0 ∈ S. The cumulative reward of a trajectory
τ is given by r(τ) =

∑∞
t=0 γ

trt, where γ ∈ (0, 1) is the discount factor. Standard learning paradigm
in RL is to maximize the expected cumulative return Eτ [r(τ)], i.e., value function, with respect to
a parameterized policy πθ. Stochastic dominance for comparison between policies can be therefore
deployed by setting Xθ = r(τ), τ ∼ P ◦ πθ.

• Portfolio optimization. Let random variable Ri denote the return of stock i which can be heavy-tailed
and correlated. Portfolio optimization seeks to get an ideal allocation wθ ∈ ∆K of assets among
K stocks to achieve trade-off between the expected return

∑K
i=1[wθ]iE[Ri] and some risk measure.

Stochastic dominance naturally applies by focusing on the total return Xθ =
∑K

i=1[wθ]iRi.
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Generalized stochastic dominance for optimality. One might be tempted to search for a model θ⋆

that dominates all θ ∈ Θ, i.e., the greatest element under stochastic dominance rule in the aforementioned
learning scenarios, which would imply (c.f. (3))

min
η

[
Fk(Xθ; η)− Fk(Xθ⋆ ; η)

]
⩾ 0, ∀θ ∈ Θ. (4)

However, such θ⋆ is not guaranteed to exist due to the fact that SD only defines partial order among random
variables. In other words, there exist two random variables such that their order cannot be distinguished in
the sense of SD. Therefore, it is impossible to define “optimality” in the sense of (4). This gap hinders the
development of a learning framework under SD from both theoretical justification and optimization-based
algorithm design, which motivates a more general definition of SD.

We propose the following Generalized Stochastic Dominance functional:

Ω(X,Y ) = max
η∈[a,b]

[
Fk(X; η)− Fk(Y ; η)

]
, (5)

which quantifies the degree of stochastic dominance between X and Y over the interval [a, b] in an unilateral
way.1 Here, we restrict the choice of η to [a, b] for numerical tractability as well as for circumventing the
issue of Fk(Xθ; η) − Fk(Xθ′ ; η) = 0 − 0 = 0 when η falls below the support of X for any two models θ and
θ′. The definition of Ω stems from the property of maximal elements under the partial order of stochastic
dominance:

max
η

[
Fk(Xθ; η)− Fk(Xθ⋆ ; η)

]
⩾ 0, (6)

where the equality is achieved only when Xθ
D
= Xθ⋆ . In other words, θ⋆ is not dominated by other feasible

solutions. The proposition states the existence of such non-dominated solutions under mild conditions, with
the proof deferred in Appendix B.

Proposition 1. It is guaranteed that the non-dominated solution θ⋆ exists as long as Θ is compact and that
Fk(Xθ; η) is continuous with regard to θ for every η ∈ R.

In view of the generalized SD in (6), it is now natural to define a general learning problem through an

optimization lens, by seeking an approximate optimal solution θ̂⋆ such that for any θ ∈ Θ, it holds that

Ω(Xθ, Xθ̂⋆) ⩾ −ϵ. (7)

In other words, θ̂⋆ is guaranteed to not be dominated by any other solution θ by a margin of ϵ over the
interval [a, b].

3 LSD: First-order Optimization for Learning with SD

In this section, we design efficient first-order algorithm to solve (7), resolving the computational difficulty
discussed in Section 1.

3.1 Stochastic Gradient for SD Learning

The optimality condition (6) can be written as

θ⋆ = arg min
θ

Ω(Xθ, Xθ⋆),

which motivates us to interpret θ⋆ as a fixed point of the following iterative process:

θt+1 ← arg min
θ

Ω(Xθ, Xθt). (8)

1With slight abuse of notation, we drop the dependency on [a, b] in the notation of Ω for conciseness.
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Here, θt denote the choice of parameter θ at the tth iteration. Rather than pursuing an exact optimal
solution to (8), we show that it suffices to find θt+1 such that

Ω(Xθt+1
, Xθt) < −ϵ, (9)

since failing to find such θt+1 implies the approximate optimality of θt by definition (7). Since Ω(Xθt , Xθt) =
0, this amounts to making progress of ϵ on the sub-problem

min
θ

Ω(Xθ, Xθt), (10)

which makes gradient-based methods an ideal candidate.

Subgradient calculation. It remains unclear the optimization properties of (10) as well as how to estimate
gradients. To proceed, we shall resort to the utility reformulation of Ω. Note that Ω(X,Y ) can be equivalently
written in a variational form:

Ω(X,Y ) = max
µ∈∆([a,b])

∫ b

a

[
Fk(X; η)− Fk(Y ; η)

]
dµ(η), (11)

where the maximum is taken over probability measures over [a, b]. For every choice of µ, changing the order
of integral (see Appendix C) yields∫ b

a

(Fk(X; η)− Fk(Y ; η))dµ(η) = EX [u(X)]− EY [u(Y )]︸ ︷︷ ︸
=:L(X,Y,u)

, (12)

where the utility function u is defined as

u(x) =
1

(k − 1)!

∫ b

a

(η − x)k−1
+ dµ(η). (13)

Therefore, we can write Ω(X,Y ) as

Ω(X,Y ) = max
u∈Uk

{
EX [u(X)]− EY [u(Y )]

}
.

Here, Uk = {u : u(x) = 1
(k−1)!

∫ b

a
(η − x)k−1

+ dµ(η), µ ∈ ∆([a, b])} collects all utility functions that can be

expressed in the form of (13).
Note that when k ⩾ 2, u ∈ Uk is non-increasing and convex, which guarantees u(xθ) to be convex with

regard to θ, as long as xθ is concave [Boyd and Vandenberghe, 2004]. When the sampling probability of Xθ

is independent of θ, such as in supervised learning and portforlio optimization, Ω(Xθ, Y ) takes maximum
over a set of convex functions and is therefore convex as well. The subgradients of Ω (Xθ, Y ) Bertsekas [1971]
is given by

∂θ[Ω (Xθ, Y )] = conv
{
∂θ
[
EXθ

[u(Xθ)]
]

: u ∈ U⋆
k

}
= conv

{
EXθ

[∂θu(Xθ)] : u ∈ U⋆
k

}
,

where U⋆
k = arg maxu∈Uk

L(X,Y, u), and conv is the convex hull. The expectation formulation of the above
equation allows estimation of the subgradient using sampling, i.e., the sample average, and subgradient chain
rule (see e.g., Clason and Valkonen [2020, Theorem 4.19]), given by

1

N

N∑
i=1

∂θu(xi) =
1

N

N∑
i=1

∂xi
u(xi)∂θxi, (14)

where {xi}Ni=1 are N data points sampled from Xθ. This allows interpreting our proposed method as
stochastic gradient methods with each sample xi dynamically weighted by ∂xiu(xi). For learning tasks with
model-dependent sampling probability (e.g., RL), one can instead apply log-derivative trick [Williams, 1992]
for gradient estimation (see Appendix A for more details).
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Final algorithm. We summarize the algorithm procedure in Algorithm 1. Simply put, the algorithm
follows a nested-loop design, where the inner loop focuses on solving (10) by first obtaining û⋆ that maximizes
the sample estimate of L and then derive the stochastic subgradient with (14). We terminate the inner loop
and update θt when the progress condition (9) is approximately met. If (9) is not met within a certain
number of iterations, we conclude that the current θt is approximately optimal and return the solution.

Algorithm 1: Learning with Stochastic dominance (LSD)

1 Input: Initialization θ0.
2 for t = 0, · · · , Tmax − 1 do
3 Set θt,0 = θt.

4 for t = 0, · · · , T max − 1 do
5 Sample data {xt,t̄,i}Ni=1 ∼ XN

θt,t
and {xt,i}Ni=1 ∼ XN

θt
.

6 Compute û⋆ = argmax
u∈Uk

L̂(Xθt,t , Xθt , u), where

L̂(Xθt,t , Xθt , u) :=
1

N

N∑
i=1

u(xt,t,i)−
1

N

N∑
i=1

u(xt,i).

Update θt,t+1 = θt,t − ηtgt,t, where

gt,t ∈
1

N

N∑
i=1

∂xt,t,i
u(xt,t,i)∂θxt,t,i.

if Ω̂(Xθt,t+1
, Xθt) ⩽ −ϵ/2 then

7 Set θt+1 = θt,t+1.

8 Break.

9 if θt is not updated then
10 Return θt.

3.2 Theoretical Analysis

Two questions arise naturally with regard to the theoretical guarantee of the proposed method: i), whether
it is guaranteed to converge, and ii), whether it induces a significantly higher iteration complexity compared
with standard minibatch SGD methods. The concern stems from the fact that the dynamics of Algorithm
1 cannot be interpreted as an optimization process targeting a fixed objective function, and that one round
of inner loop alone can take O(ϵ−2) iterations to end.

The following theorem addresses the concerns above by guarantying the convergence within Õ(ϵ−2) total
iteration complexity.

Theorem 2. For second-order stochastic dominance (k = 2), assume that xθ is concave with regard to θ, and

bounded subgradient ∥gt,t∥22 ⩽ G2 and bounded k−th order CDF Fk(Xθ, η) ⩽ C,∀η ∈ [a, b]. Let ηt = 1/
√
t,

and sample size N = Õ(ϵ−2), Tmax = ⌈4C/ϵ + 1⌉, T max = Õ(ϵ−2). For any initialization θ0, with probability
1− δ, Algorithm 1 finds θt such that for any θ,

Ω (Xθ, Xθt) ⩾ −ϵ

within Õ(ϵ−2) iterations.

Several remarks are in order.
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Algorithm 2: Utility solver for k = 2

1 Input: samples {xi}Ni=1 and {yi}Ni=1.

2 Sort both sequences of samples in increasing order, and merge them into {ηi}2Ni=1.
3 for i = 1, · · · , 2N do
4

F̂1(X; ηi) = F̂1(X; ηi−1) + 1ηi∈{xi}/N,

F̂1(Y ; ηi) = F̂1(Y ; ηi−1) + 1ηi∈{yi}/N,

F̂2(X; ηi) = F̂2(X; ηi−1) + (ηi − ηi−1)F̂1(X; ηi−1),

F̂2(Y ; ηi) = F̂2(Y ; ηi−1) + (ηi − ηi−1)F̂1(Y ; ηi−1).

5 Get µ̂⋆ ∈ ∆(arg maxηi∈[a,b] F̂2(X; ηi)− F̂2(Y ; ηi)).
6 for i = 2N, · · · , 1 do
7

û1(ηi) = û1(ηi+1) + µ̂⋆(ηi),

û2(ηi) = û2(ηi+1) + (ηi+1 − ηi)û1(ηi+1).

8 Return û2.

• The approximation error ϵ incorporates the statistical error due to sampling that scale with N−1/2,
which necessitates a choice of N = Õ(ϵ−2), similar to the case for empirical risk minimization.

• The iteration complexity of Õ(ϵ−2) is on par with that of subgradient methods for optimizing non-
smooth convex functions, which sets LSD as an appealing alternative to standard risk-neutral ap-
proaches in practice for risk-averse applications. The iteration complexity can be further improved by
incorporating regularization terms of µ, e.g., entropy regularization, in the variational form (11) to
ensure the uniqueness of the maximizer µ⋆, which leads to differentiability of Ω by Danskin’s theorem.

• While we state the theorem for k = 2 for simplicity, the analysis can be easily generalized to k ⩾ 2 by
adopting the Rademacher complexity of Uk and upper bound of Fk accordingly.

A key ingredient of our analysis is to relate the sub-optimality gap minθ Ω(θ, θt) in the tth loop with
the optimization progress in the subsequent rounds, despite the fact that they are associated with different
objective functions. This is made possible by exploiting a triangular inequality with Ω, which ensures that
the inner loop generally takes a smaller number of iterations than T max, ensuring the final iteration complexity
is still Õ(ϵ−2). The proof is postponed to Appendix D.

3.3 Practical Implementation

When k ⩽ 3, the computation of û⋆ can be done in an efficient way that consumes O(N) memory and

Õ(N) time [Dai et al., 2023]. Below we demonstrate the case with k = 2. Recall that each candidate utility
function u is associated with a probability measure µ by

u(x) = Eη∼µ[(η − x)+]. (15)

For L̂(X,Y, u) induced by samples {xi}Ni=1 and {yi}Ni=1, we still have

L̂(X,Y, u) =

∫ b

a

(F̂2(X; η)− F̂2(Y ; η))dµ(η),
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where F̂2(X; η) is an empirical estimate of F2(X; η) given by

F̂2(X; η) =
1

N

N∑
i=1

(η − xi)+.

Note that F̂2(X; η)− F̂2(Y ; η) is piece-wise linear and hence achieves its maximum among the sample values
{xi} and {yi}. It is then straightforward to get µ̂⋆ by assigning the weights to the maximizer(s) and
obtaining û⋆ via (15). We summarize the procedure in Algorithm 2, where the terms involving ηi with i = 0
and i = 2N + 1 are set to 0.

In general, F̂k(X; η) − F̂k(Y ; η) is piece-wise polynomial of degree (k − 1), which allows closed-form
solutions up to k = 3. For k ⩾ 4, which is less likely be considered in practice, one can resort to numerical
approximations or an optimization treatment by parameterizing µ with special neural networks, as discussed
in Dai et al. [2023].

For further practical consideration, we remark that the extra cost of computing/sampling from the
reference θt for the inner loop optimization can be alleviated by instead sampling from the set of samples
from previous iterations, in a similar way to experience replay techniques [Lin, 1992] in RL. This eliminates
the need of explicitly keeping and periodically updating the reference solution θt and makes the algorithm
more streamlined.

4 Numerical Experiments

To demonstrate the versatility of our framework, we evaluate LSD on various tasks including supervised
learning, reinforcement learning, and portfolio optimization.

4.1 Supervised Learning

We examined the performance of LSD on image classification tasks with MNIST and CIFAR-10 datasets.
For MNIST, we train a simple 6-layer convolutional neural network for 10 epoches. For CIFAR-10, we use
a 20-layer ResNet architecture and train for 200 epoches. In both experiments we set batch size to 128 and
adopt stochastic gradient descent (SGD) method to optimize the models, with learning rate set to 0.1 and
momentum set to 0.9. We repeat the training procedure on 30 random seeds. The proposed method achieves
comparable classification accuracy with SGD method, and more stable cross-entropy loss under ℓ∞-bounded
distribution shift, characterized by the average absolute deviation from median (see Theorem 3).

MNIST CIFAR-10

Metric LSD SGD LSD SGD

Accuracy 99.16% 99.17% 91.2% 91.4%
CE loss 0.0283 0.0289 0.293 0.339
MAD 0.0286 0.0293 0.292 0.337

DRO loss (ρ = 0.1)
derived from

above statistics
0.0312 0.0318 0.322 0.373

Table 1: Test performance measures of LSD versus SGD on MNIST and CIFAR-10.

4.2 Reinforcement Learning

We adopt a modified version of the CliffWalking environment from OpenAI Gym, as illustrated in Figure 2.
The action space of the agent is given by {0, 1, 2, 3}, representing moving by one step in four different
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directions. When an action is selected, with probability ϵ the agent will move in a random direction. The
agent always start from s0, and receives a reward of −1 whenever it falls off the cliffs; reaching the goal
instead assigns a positive reward of +1. Under both circumstances the episode terminates immediately. Two
strategies naturally arise: a risky policy would take the shortest route to the goal and incur a higher chance
of falling, while a safe policy prefers taking a detour to minimize the risk.

Safe Policy

Risky Policy

Figure 2: Illustration of the CliffWalking environment.

We tune the values of ϵ and γ to ensure both strategies have similar expected cumulative rewards. We
compare the policy learned by LSD (detailed in Appendix A) with the one learned by standard policy
gradient method (REINFORCE) [Williams, 1992]. The two policies yield similar expected return (0.484 v.s.
0.479), yet our approach achieves consistently lower value of F2, as demonstrated in Figure 3 (left panel),
which demonstrates the risk-averse nature of the learned policy; indeed this can be more evidently observed
by examining the density of the return in Figure 3 (right panel), where REINFORCE leads to a higher
probability of falling (higher probability mass in negative returns).
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Figure 3: The F2 (left panel) and density (right panel) of the cumulative return in the CliffWalking environ-
ment, by executing the policy learned by REINFORCE and LSD-PG, respectively.

4.3 Portfolio Optimization

We evaluate the performance of LSD on portfolio optimization with synthesized data and simulate the highly
noisy return variables by deploying mixtures of Gaussians with random generated mean and covariance. We
set the number of stocks to 100 and the number of Gaussian mixtures to 20. To better reflect the heavy-tailed
nature of the problem, we multiply each Gaussian sample’s distance to its center by a random multiplier
drawn from χ2

3/3. Table 1 compares the constructed portfolio with those resulting from the mean-variance
approach MVλ [Markowitz and Todd, 2000] using different levels of variance penalty λ, where Figure 4
further illustrates the density of the portfolio returns.

While none of the method simultaneously achieves the highest expected return and the lowest variance,
we can evaluate whether the portfolio finds a reasonable trade-off through the Sharpe ratio [Sharpe, 1998],
a popular choice for measuring the risk-compensated performance, which distinguishes risky portfolios with
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Figure 4: Density of the portfolio returns achieved by different methods.

Metric SGD LSD MV0.1 MV0.5 MV1.0

E[return] 0.501 0.195 0.501 0.207 0.128
V ar[return] 7.496 0.112 7.467 0.134 0.059
Sharpe ratio 0.183 0.585 0.183 0.567 0.528

Table 2: Comparison of LSD versus the mean-variance approach with different variance penalties for portfolio
optimization.

catastrophically large variances (highlighted in red in Table 2). We conclude that LSD yields a reason-
able construction of portfolio and circumvents the ad-hoc regularization parameter tuning in the mean-risk
approach.

5 Connections with DRO

Before finishing up the paper, we demonstrate a connection between SD and DRO, which might be of
independent interest. Given n samples {xi}ni=1, the distributionally robust formulation seek to maximize the
return under adversarial distribution shifts, i.e.,

inf
P≪P̂n,P∈B(P̂n)

EP [X],

where P̂n denote the empirical measure of the samples and B(P̂n) is an uncertainty set centering around

P̂n. The following theorem demonstrate that when the uncertainty set is induced by ℓ∞ norm, the objective
function can be written in a mean-risk form. The proof is postponed to Appendix E.

Theorem 3. It holds that

inf
P≪P̂n,∥P−P̂n∥∞⩽ρ/n

EP [X] = EP̂n
[X]− ρMADP̂n

[X],

where MADP̂n
[X] = 1

n

∑n
i=1 |xi − x̃| denotes the mean absolute deviation from sample median x̃.

It is possible to extend the above result to more general choices of uncertainty set, where the relationship
holds asymptotically (similar to Duchi et al. [2021]), from which we refrain for simplicity. On the other
hand, we have the following result characterizing the consistency between stochastic dominance and mean-
semideviation models [Ogryczak and Ruszczyński, 2001, Theorem 1].
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Theorem 4 (Ogryczak and Ruszczyński [2001]). Let k ⩾ 1 and X,Y ∈ Lk. If X ⪰(k+1) Y , then E[X] ⩾
E[Y ] and

E[X]− δ̄
(k)
X ⩾ E[Y ]− δ̄

(k)
Y .

Here, δ̄
(k)
X denotes the kth central semideviation:

δ̄
(k)
X = E

[
(E[X]−X)k1X⩽E[X]

]
, k = 1, 2, · · · .

In particular, the absolute semideviation at k = 1 can be written as

δ̄
(1)
X =

∫ E[X]

−∞
(E[X]− x)f(x)dx =

1

2
E
[∣∣X − E[X]

∣∣].
Note that it always holds that E

[
|X − X̃|

]
⩽ E

[
|X − µX |

]
, where X̃ is the median, and µX is the mean. It

follows that when there exists θ⋆ such that Xθ⋆ ⪰2 Xθ,∀θ ∈ Θ, then θ⋆ can be interpreted as an approximate
solution to the robust optimization problem

sup
θ∈Θ

inf
P≪P̂n

{
EP [Xθ] : ∥P − P̂n∥∞ ⩽

ρ

n

}
for all ρ ∈ (0, 1/2), in the sense that θ⋆ maximizes a lower bound of the objective function. The approximation

error is bounded by |µX − X̃|.

6 Conclusion

This paper develops the first practical algorithm for finding an optimal solution in terms of (generalized)
stochastic dominance for learning and decision making with uncertain outcomes. The method is computation-
ally efficient as it can be easily integrated with existing optimization methods with minimal computational
overhead, and come with theoretical guarantees for finite-time convergence. Our work opens up opportunities
to further explore the potential of stochastic dominance in risk-averse machine learning applications.
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A LSD for Policy Optimization

We detail the procedure of LSD applying to policy optimization in Algorithm 3.

Algorithm 3: Stochastic Dominance Policy Optimization

1 Input: Initialization θ0.
2 for t = 0, · · · , Tmax − 1 do
3 Set θt,0 = θt.

4 for t = 0, · · · , T max − 1 do
5 Sample trajectories {τt,t̄,i}Ni=1 with policy πθt,t and {τt,i}Ni=1 with policy πθt .

6 Compute cumulative rewards Rt,t,i = R(τt,t̄,i), Rt,i = R(τt,i)

7 Compute û⋆ = arg maxu∈Uk
L̂(Rt,t, Rt, u), where

L̂(Rt,t, Rt, u) :=
1

N

N∑
i=1

u(Rt,t,i)−
1

N

N∑
i=1

u(Rt,i).

8 Update θ with

θt,t+1 = θt,t̄ −
ηt
N

N∑
i=1

û⋆(Rt,t,i)∇θ log πθt,t(τt,t,i).

9 if Ω̂(Rt,t, Rt) ⩽ −ϵ/2 then
10 Set θt+1 = θt,t+1.

11 Break.

12 if θt is not updated then
13 Return θt.

B Proof of Proposition 1

Let {θt}∞t=0 be a chain under stochastic dominance rule, i.e., Xθi ⪰k Xθj when i ⩾ j. The compactness of

Θ assures the existence of a limit point θ̃ ∈ Θ, to which a subsequence of {θt} converges. According to the
definition of stochastic dominance, for every η ∈ R the sequence {Fk(Xθt ; η)}∞t=0 is non-decreasing. Since
Fk(Xθ; η) is continuous with regard to θ, we have

Fk(Xθ̃; η) = lim
t→∞

Fk(Xθt ; η).

By definition, Xθ̃ stochastically dominates Xθ for all θ from the chain, establishing θ̃ as an upper bound of
the chain {θt}∞t=0. The existence of maximal element is then guaranteed by Zorn’s lemma.

C Utility reformulation (12)

By Fubini’s theorem, we have∫ b

a

(Fk(X; η)− Fk(Y ; η))dµ(η)

=

∫ b

a

1

(k − 1)!

[ ∫ ∞

−∞
(η − x)k−1

+ fX(x)dx−
∫ ∞

−∞
(η − y)k−1

+ fY (y)dy
]
dµ(η)
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=
1

(k − 1)!

[ ∫ ∞

−∞

∫ b

a

(η − x)k−1
+ fX(x)dµ(η)dx−

∫ ∞

−∞

∫ b

a

(η − y)k−1fY (y)dµ(η)dy
]

=

∫ ∞

−∞
u(x)fX(x)dx−

∫ ∞

−∞
u(y)fY (y)dy = EX [u(X)]− EY [u(Y )].

D Proof of Theorem 2

We start by introducing the following lemma which bounds the statistical error due to sampling when k = 2.

Lemma 5. Let Ω̂2(X,Y ) = maxu∈U2

{
1
N

∑N
i=1 u(xi)− 1

N

∑N
i=1 u(yi)

}
, where {xi, yi}Ni=1 are i.i.d. samples

from X and Y . It holds with probability 1− 2δ′ that

∣∣Ω2(X,Y )− Ω̂2(X,Y )
∣∣ ⩽ 16(|a|+ |b|)√

N
+ 6

√
log(2/δ′)

N
.

For notational simplicity, we denote

Ω̂2(Xθt,t , Xθt) = max
u∈U2

{ 1

N

N∑
i=1

u(xθt,t,i)−
1

N

N∑
i=1

u(xθt,i)
}
.

By setting δ′ = δ/(2Tmax(T max + 1)) in Lemma 5 and invoking the union bound, we have∣∣Ω2(Xθt,t , Xθt)− Ω̂2(Xθt,t , Xθt)
∣∣ ⩽ ϵ

4
, (16a)

∣∣Ω2(Xθ⋆
t
, Xθt)− Ω̂2(Xθ⋆

t
, Xθt)

∣∣ ⩽ ϵ

4
, (16b)

for all 0 ⩽ t < Tmax, 0 ⩽ t < T max with probability 1 − δ, on which we shall condition in the remaining part
of the proof. We remark that with the remaining δ probability the Algorithm may fail to find a θt qualified
for the output condition, or return a sub-optimal solution that accidentally meet the condition. To proceed,
we show that Ω satisfies the following triangular inequality:

Ω(X,Z)

= max
µ∈∆′([a,b])

⟨Fk (X; η)− Fk (Z; η), µ (η)⟩

= max
µ∈∆′([a,b])

{
⟨Fk (X; η)− Fk (Y ; η), µ (η)⟩+ ⟨Fk (Y ; η)− Fk (Z; η), µ (η)⟩

}
⩽ max

µ∈∆′([a,b])
⟨Fk (X; η)− Fk (Y ; η), µ (η)⟩+ max

µ∈∆′([a,b])
⟨Fk (Y ; η)− Fk (Z; η), µ (η)⟩

= Ω(X,Y ) + Ω(Y,Z).

Let T be the total number of outer iterations. By (16a), for all 0 ⩽ t < T we have

Ω(Xθt+1 , Xθ) ⩽ Ω̂(Xθt+1 , Xθ) +
ϵ

4
⩽ − ϵ

4
.

Denote θ⋆t = arg minθ Ω(Xθ, Xθt). It follows that

Ω(Xθ⋆
t
, Xθt) ⩽ Ω(XθT , Xθt) ⩽

T−1∑
s=t

Ω(Xθs+1
, Xθs) ⩽ − (T − t)ϵ

4
. (17)
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Step 1. We first show that with the choice of Tmax, Algorithm 1 is guaranteed to return an θt. Otherwise,
(17) holds for T = Tmax. On the other hand, we have 0 ⩽ Fk (X; η) ⩽ C for all η ∈ [a, b]. This gives

−C ⩽ Ω(Xθ⋆
0
, Xθ0) ⩽ −Tmaxϵ

4
,

or equivalently

Tmax ⩽
4C

ϵ
.

This contradicts with the choice of Tmax.

Step 2. We then prove that the output θt satisfies

Ω
(
Xθ⋆

t
, Xθt

)
⩾ −ϵ.

According to the update rule, we have

∥θt,t+1 − θ⋆t ∥22
= ∥θt,t − ηtgt,t − θ⋆t ∥22
= ∥θt,t − θ⋆t ∥22 − 2ηt

〈
gt,t, θt,t − θ⋆t

〉
+ η2t ∥gt,t∥22

⩽ ∥θt,t − θ⋆t ∥22 − 2ηt(Ω̂2(Xθt,t̄ , Xθt)− Ω̂2(Xθ⋆
t
, Xθt)) + η2t ∥gt,t∥22.

The last step results from the convexity of Ω̂. Rearranging terms, we have

2ηtΩ2(Xθt,t̄ , Xθt)− Ω2(Xθ⋆
t
, Xθt)

⩽ ∥θt,t − θ⋆t ∥22 − ∥θt,t+1 − θ⋆t ∥22 + ∥gt,t∥22
+ 2ηt

[
Ω2(Xθt,t̄ , Xθt)− Ω̂2(Xθt,t̄ , Xθt)

]
− 2ηt

[
Ω2(Xθ⋆

t
, Xθt)− Ω̂2(Xθ⋆

t
, Xθt)

]
⩽ ∥θt,t − θ⋆t ∥22 − ∥θt,t+1 − θ⋆t ∥22 + G2 + ηtϵ,

where the last step results from (16a) and (16b). Summing over t, we obtain

2

T max∑
t=1

ηt
[
Ω(Xθt,t̄ , Xθt)− Ω(Xθ⋆

t
, Xθt)

]
⩽ ∥θt − θ⋆t ∥22 + G2

T max∑
t=1

η2t + ϵ

T max∑
t=1

ηt. (18)

As θt is not updated in the t-th outer loop, step 7 of Algorithm 1 ensures

Ω(Xθt,t , Xθt) ⩾ Ω̂(Xθt,t , Xθt) + ϵ/4 > −ϵ/4

for 1 ⩽ t ⩽ T max. Combining with the above inequality, we get

− ϵ

4
− Ω(Xθ⋆

t
, Xθt) ⩽

1

2
∑T max

t=1
ηt

[
∥θt − θ⋆t ∥22 + G2

T max∑
t=1

η2t

]
+

ϵ

2
.

Note that T max = Õ(ϵ−2) is sufficient to get

1

2
∑T max

t=1
ηt

[
∥θt − θ⋆t ∥22 + G2

T max∑
t=1

η2t

]
⩽

ϵ

4
,

which leads to Ω(Xθ⋆
t
, Xθt) ⩾ −ϵ.
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Step 3. Finally, we bound the total number of iterations. Let T t be the number of inner iterations in t−th
outer loop. By (18) we have

2

T t−1∑
t=1

ηt
[
Ω(Xθt,t̄ , Xθt)− Ω(Xθ⋆

t
, Xθt)

]
⩽ ∥θt − θ⋆t ∥22 + G2

T t−1∑
t=1

η2t + ϵ

T t−1∑
t=1

ηt. (19)

Note that Ω(Xθt,t , Xθt) ⩾ Ω̂(Xθt,t , Xθt) + ϵ/4 > −ϵ/4 for 1 ⩽ t ⩽ T t − 1. Combining with the above
inequality, we get

− ϵ

4
− Ω(Xθ⋆

t
, Xθt) ⩽

1

2
∑T t−1

t=1
ηt

[
∥θt − θ⋆t ∥22 + G2

T t−1∑
t=1

η2t

]
+

ϵ

2

⩽ Õ
( 1√

T t

)
+

ϵ

2
.

Recall from (17) that Ω(Xθ⋆
t
, Xθt) ⩽ − (T−t)ϵ

4 . We conclude that T t = Õ
(

1
(T−t)2ϵ2

)
for t ⩽ T − 3. Therefore,

the total number of iterations is bounded by

T∑
t=0

T t = Õ
( T−3∑

t=0

1

(T − t)2ϵ2
+ 3T max

)
= Õ(ϵ−2).

D.1 Proof of Lemma 5

Note that the empirical Rademacher complexity of U2 with N samples, denoted as R̂N (U2), is the same as
that of ReLU functions, i.e.,

R̂N (U2) ⩽
4(|a|+ |b|)√

N
.

Therefore, it holds with probability 1− δ that [Mohri et al., 2018, Theorem 3.3]

∣∣∣E[uk(X)
]
− 1

N

N∑
i=1

uk(xi)
∣∣∣ ⩽ 2R̂N (U2) + 3

√
log(2/δ)

N
.

Similarly,

∣∣∣E[uk(Y )
]
− 1

N

N∑
i=1

uk(yi)
∣∣∣ ⩽ 2R̂N (U2) + 3

√
log(2/δ)

N

holds with probability 1− δ. By union bound, it holds with probability 1− 2δ that

Ω2(X,Y )− Ω̂2(X,Y )

= max
u∈U2

{
E
[
u(X)

]
− E

[
u(Y )

]}
−max

u∈U2

{ 1

N

N∑
i=1

u(xi)−
1

N

N∑
i=1

u(yi)
}

⩽ max
u∈U2

{
E
[
u(X)

]
− E

[
u(Y )

]
− 1

N

N∑
i=1

u(xi) +
1

N

N∑
i=1

u(yi)
}

⩽
16(|a|+ |b|)√

N
+ 6

√
log(2/δ)

N
.
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E Proof of Theorem 3

The relationship can be established immediately by the following lemma, with u being the distribution shift
P − P̂n.

Lemma 6. Let x̃ represents the median of {xi, 1 ⩽ i ⩽ n}, and

U =
{
u ∈ Rn|1⊤u = 0, ∥u∥∞ ⩽ ϵ/n

}
.

We have

sup
u∈U

u⊤x =
ϵ

n

n∑
i=1

|xi − x̃|.

Proof. Note that U is a convex polytope. Therefore u⊤z achieves maximum at one of the vertices of U . Note
that the vertices of U can be written as

ui =


ϵ/n i ∈ Λ+

−ϵ/n i ∈ Λ−

0 otherwise

, |Λ+| = |Λ−| =
⌊n

2

⌋
.

When Λ+ collects the indices of ⌊n/2⌋ largest values in {xi} and Λ− collecting the smallest values, u⊤x
achieves its maximum at

u⊤x =
ϵ

n

[ ∑
i∈Λ+

xi −
∑
i∈Λ−

xi

]
=

ϵ

n

n∑
i=1

|xi − x̃|.
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