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Blind Deconvolution from Multiple Sparse Inputs
Liming Wang, Member, IEEE, and Yuejie Chi, Member, IEEE

Abstract—Blind deconvolution is an inverse problem when both

the input signal and the convolution kernel are unknown. We

propose a convex algorithm based on `1-minimization to solve the

blind deconvolution problem, given multiple observations from

sparse input signals. The proposed method is related to other

problems such as blind calibration and finding sparse vectors in

a subspace. Sufficient conditions for exact and stable recovery

using the proposed method are developed which shed light on

the sample complexity. Finally, numerical examples are provided

to showcase the performance of the proposed method.

Index Terms—blind deconvolution, blind calibration, convex

programming, dictionary learning, sparsity

I. INTRODUCTION

B

Lind deconvolution is a classical inverse problem that
ubiquitously appears in various areas of signal processing

[1], communications [2] and array processing [3]. For such a
problem, the observation is often posed as a convolution of
the signal with some kernel, or filter. In addition, the explicit
knowledge of the convolution kernel nor the signal is unknown
a priori. The goal of blind deconvolution is to recover both
the signal and the kernel from the observation.

Motivated by multi-channel blind deconvolution [4] and
the joint recovery problem of signals and sensor parame-
ters in array signal processing [3], the observation can be
formulated as y = g ~ x 2 Rn, where ~ denotes the
circular convolution, g 2 Rn denotes the kernel and x 2 Rn

denotes the input signal. Recently, this problem has drawn
lots of research attention, where algorithms with provable
performance guarantees are developed by assuming both g

and x satisfy certain sparsity or subspace constraints [5]–
[8]. However, these assumptions may be difficult to verify in
practice, particularly for the kernel.

In the case when multiple input signals are present, the
observations are given as yi = g~xi, for 1  i  p, where p

is the number of observations. It is known that [9], as long as
p is sufficiently large, the problem is identifiable and can be
solved via a least-squares approach by exploiting the cross-
correlations of the observations under some mild conditions
of the kernel. In this letter, we reconsider this problem by
assuming the input signals xi’s are sparse, which is motivated
by applications of compressed sensing [10]. Identifiability
under this setup is recently studied in [11]. It is natural to seek
a kernel g such that the inputs are made as sparse as possible,
however, such a direct consideration is not computationally
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feasible. Alternatively, with a mild assumption that the kernel
is invertible, we propose a convex optimization algorithm
based on `1-minimization, which can be solved efficiently.
Sufficient conditions for exact and stable recovery using the
proposed method are developed under a Bernoulli-Subgaussian
model of the sparse inputs, which shed light on the sample
complexity. In contrast, the alternating minimization algorithm
in [12] is heuristic and lack performance analysis.

Our approach is mostly inspired by [13], [14] for exact dic-
tionary learning with sparse input signals, where the problem
can be regarded as a special case of learning an invertible
circulant dictionary. Furthermore, the problem is also related
to finding sparse vectors in a subspace [15], [16] and blind
calibration [17], [18], which will be detailed later.

II. PROBLEM FORMULATION

Let xi 2 Rn denote the i-th sparse input signal and the i-th
observation yi 2 Rn can be expressed as

yi = g ~ xi = C(g)xi, i = 1, . . . , p. (1)

The common kernel or filter C(g) 2 Rn⇥n is the circulant
matrix spanned by g = [g1, . . . , gn]

T , given as

C(g) =

2

6664

g1 gn · · · g2

g2 g1 · · · g3
...

...
. . .

...
gn gn�1 · · · g1

3

7775
. (2)

The filter g is called invertible if C(g) is invertible. Denote
Y = [y1, . . . ,yp] 2 Rn⇥p and X = [x1, . . . ,xp] 2 Rn⇥p, we
can rewrite (1) as

Y = C(g)X. (3)

Furthermore, the sparse signal matrix X is assumed of the
following Bernoulli-Subgaussian model, which is standard for
modeling sparse signals.

Definition 1 (Bernoulli-Subgaussian model, [13]). X is said
to satisfy the Bernoulli-Subgaussian model with parameter ✓ 2
(0, 1), if X = ⌦ � R, where ⌦ is an i.i.d. Bernoulli matrix
with parameter ✓, and R is an independent random matrix
with i.i.d. symmetric random variables that satisfy

µ = E[|Ri,j |] 2 [1/10, 1], E[R2
i,j ]  1,

and P(|Ri,j | > t)  2 exp(�t

2
/2), 8t > 0.

We note that the sparsity of X is manipulated by the
Bernoulli distribution, and the non-zero entries of X obey the
Subgaussian distribution, thereby facilitating a very general
model of the sparse signal X.

Our goal is to recover both g and X from Y. Clearly, the
problem is not uniquely identifiable, due to the fact that we can
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always rewrite (1) as yi = (�Rkg)~ (�

�1
Rkxi), where Rk

is a circulant shift matrix by k, k = 1, . . . , n� 1, and � 6= 0

is an arbitrary scalar. Hence, recovery should be interpreted
in the sense that g and X are accurately recovered up to a
circulant shift and a scaling factor.

Since X is sparse, we aim to seek the sparsest X that
reproduces the observations:

{ˆg, ˆX} = argmin

g2Rn,X2Rn⇥p

kXk0,

subject to C(g)X = Y,X 6= 0, (4)

where k · k0 is the entry-wise `0 norm, which is unfortunately
computationally infeasible. A natural question is under what
conditions it is guaranteed that there exists a unique pair
{g,X} such that Y = C(g)X, i.e., the identifiability of blind
deconvolution problem. One sufficient condition is established
in [11], [13], where under the Bernoulli-Subgaussian model
on X, it follows that the problem (4) is identifiable with high
probability, provided that g is invertible, ✓ 2 (1/n, 1/4) and
p > Cn log n for some constant C. Throughout the paper, we
focus on the case where g is invertible.

III. A CONVEX OPTIMIZATION APPROACH

A. The Convex Formulation
Although it is desirable to develop a more tractable formu-

lation than (4) to efficiently solve the problem, the problem
is still non-convex even if we relax the `0 norm to `1 norm
due to the bilinear constraint. Hence, we seek an alternative
approach. Recall that any circulant matrix C(g) admits the
eigenvalue decomposition [19]:

C(g) = F

H · diag(ˆg) · F, (5)

where F 2 Cn⇥n is the discrete Fourier transform (DFT)
matrix, and ˆ

g = Fg. Since g is invertible, ĝi 6= 0 for all
1  i  n, then the inverse of C(g) is also circulant and can
be written as

C(g)�1
= F

H · diag(ˆg)�1 · F := C(h), (6)

where h denotes the inverse filter of g. In particular,
C(g)C(h) = C(h)C(g) = In, where In denotes the identity
matrix of size n.

Motivated by the observation that C(h)Y = C(g)�1
Y = X

is sparse, rather than aiming at reconstructing C(g), we alter-
natively seek to recover C(h), by considering the following
convex optimization algorithm:

ˆ

v = argmin

v2Rn
kC(v)Yk1, (7)

where k · k1 is the entry-wise `1 norm to motivate sparse
solutions. However, the above algorithm (7) admits a trivial
solution ˆ

v = 0. In order to avoid this case, an additional
linear constraint can be added to (7), yielding the algorithm

ˆ

v =argmin

v2Rn
kC(v)Yk1, subject to e

T
1 v = 1. (8)

where e1 = [1, 0, · · · , 0]T . This constraint not only avoids the
trivial solution, but also eliminates the scaling ambiguity. The
reason for the choice of e1 is made clear when we analyze

the performance. Once ˆ

v is obtained, one can recover X as
ˆ

X = C(v)Y.

B. Connection to Other Problems
First, the problem under study is related to learning an

invertible dictionary [13], [14], where one aims to recover
an invertible A 2 Rn⇥n and a sparse coefficient matrix
X 2 Rn⇥p from their product Y = AX. The trick used in
developing (8) is also reminiscent of the ER-SpUD algorithm
in [13]. Although it is possible to use ER-SpUD for our
problem by ignoring the circulant structure of the dictionary, it
requires solving p different subproblems, with each one similar
to the complexity of (8), which is much more demanding.

By writing C(v) = F

Hdiag(Fv)F, the objective function
of (8) can be rewritten as

kFHdiag(Fv)FYk1 =

��vec[FHdiag(Fv)FY]

��
1

=

��
(Y

T
F� F

H
)Fv

��
1
,

where vec[· ] vectorizes the argument matrix, and � denotes
the Khatri-Rao product [20]. Hence, the problem (8) can then
be interpreted as finding a sparse vector in the structured
subspace S = (Y

T
F� F

H
)F 2 Cpn⇥n [15], [16].

Finally, note that we can rewrite (3) as FY = diag(

ˆ

g)FX

by multiplying F on both sides. The problem of simul-
taneously recovering ˆ

g and X is then equivalent to blind
calibration of a compressed sensing system [17], [18], where
the sparsifying basis is the DFT matrix and ˆ

g is the unknown
calibration vector. In this case, the proposed algorithm (8)
becomes equivalent to the algorithm in [17], [18] for gain
calibration, wherein it is only studied numerically without
performance analysis.

IV. THEORETICAL ANALYSIS

We now provide theoretical analysis of the proposed method
in (8). We first establish the sufficient conditions under which
the proposed method allows exact and stable recovery, then
we comment on when these conditions hold with a high
probability under the Bernoulli-Subgaussian model of X. Let
S be the support of X and [· ]S be the argument matrix
restricted on the support S. Denote |h|(i) as the ith largest
entry of h in the absolute value, and without loss of generality
let |h|(1) = 1 to eliminate the scaling ambiguity. We first
establish following results that are useful later. For any v 2 Rn

we have

EkC(v)Xk1 = E
pX

i=1

kC(v)xik1 = npE
�����

nX

i=1

xn+1�ivi

����� ,

Ek[C(v)X]Sk1 = |S|E
�����

nX

i=1

xn+1�ivi

����� , (9)

and if n✓ � 2,

E
�����

nX

i=1

xn+1�ivi

����� �
µ

4

r
✓

n

kvk1, (10)

where the last inequality follows from [13, Lemma 16]. We
further make the following assumptions:
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Figure 1: Phase transition of the proposed algorithm with respect to ✓ and p for various values of �. The gray level for each
cell denotes the recovery success rate.

A1) There exists 0 < � < 1 such that for all w 2 Rn:
��kC(w)Xk1 � EkC(w)Xk1

��  �EkC(w)Xk1, (11)

and
��k[C(w)X]Sk1 � Ek[C(w)X]Sk1

��  �Ek[C(w)X]Sk1.
(12)

A2) There exists 0 < �1, �2 < 1 such that

(1� �1)µ✓np  kXk1  (1 + �1)µ✓np (13)

and
(1� �2)✓np  |S|  (1 + �2)✓np. (14)

With the above assumptions, we present the main theorem
which quantifies the sufficient conditions for exact recovery.

Theorem 1. Assume 2/n  ✓  (1� �)/(2(1 + �)(1 + �2)).
Under the assumptions A1) and A2), the proposed algorithm
(8) achieves exact recovery, i.e., uniquely identifies h up
to the shift and scaling ambiguity, provided that |h|(2) 
(1��)�2(1+�)(1+�2)✓

4(1+�1)
p
✓n

.

Proof. Rather than working with the original problem (8),
we first transform it into an equivalent problem. Applying a
change of variable v = C(h)w = h~w, we have

C(v)Y = C(h)C(w)C(g)X = C(w)C(h)C(g)X = C(w)X,

and
e

T
1 v = e

T
1 C(h)w = r

T
w,

where r = [h1, hn, . . . , h2]
T is the first row of C(h), and a

permuted version of h. Then (8) is equivalent to

ˆ

w = argmin

w2Rn
kC(w)Xk1, subject to r

T
w = 1. (15)

Although we cannot directly implement (15) since X and r

are unknown, but it is more convenient to analyze. We order
the entries of r in magnitude as |r|(1) � |r|(2) � · · · � |r|(n).
Without loss of generality, we assume j

⇤
= 1 is the index

of the largest entry of r in magnitude, and r1 = 1. Clearly
e1 is a feasible solution of (15). Our goal is to demonstrate
that under the assumptions of Theorem 1, it is also the unique
solution of (15), which will in turn imply that h is the unique
solution of (8).

Denote the solution of (15) as ˆ

w = w1+w2 = w1e1+w2,
where w1 is supported on the first entry, and w2 is supported

on {2, . . . , n}. Due to feasibility of ˆ

w, we have

r

T
(w1 +w2) = w1 + r

T
w2 = 1,

and it results in w1 = 1 � r

T
w2. Recall S as the support

of X, and its complement set is denoted as S

c. Let ↵ =

E |
Pn

i=1 xn+1�i(w2)i| and we have

kC( ˆw)Xk1 = kC(w1)X+ [C(w2)X]S + [C(w2)X]Sck1
= kw1X+ [C(w2)X]Sk1 + k[C(w2)X]Sck1 (16)
= kw1X+ [C(w2)X]Sk1 + kC(w2)X� [C(w2)X]Sk1
�

�
1� |rTw2|

�
kXk1 � 2 k[C(w2)X]Sk1 + kC(w2)Xk1

�
�
1� |rTw2|

�
kXk1 � 2(1 + �)E k[C(w2)X]Sk1

+ (1� �)E kC(w2)Xk1 (17)
� kXk1 � |r|(2)kw2k1kXk1 � 2(1 + �)|S|↵+ (1� �)np↵

where (16) follows from the decomposability of the `1 norm
on disjoint support sets and (17) follows from A1).

In order to show �|r|(2)kw2k1kXk1� 2(1+ �)|S|↵+(1�
�)np↵ � 0, we need

|r|(2) 
(1� �)np� 2(1 + �)(1 + �2)✓np

(1 + �1)µ✓npkw2k1
↵, (18)

and above inequality holds if

|r|(2) 
(1� �)� 2(1 + �)(1 + �2)✓

(1 + �1)µ✓

µ

4

r
✓

n

, (19)

which is assumed in the statement of the theorem. Note
that (18) and (19) follow from A2) and (10), respectively.
Therefore, we show that

�|r|(2)kw2k1kXk1 � 2(1 + �)|S|↵+ (1� �)np↵ � 0

Meanwhile, we have kC( ˆw)Xk1  kXk1. As a result,
kC( ˆw)Xk1 = kXk1 and e1 is the unique solution of (15).

Note that the assumption A2) essentially postulates h to be
a vector with most of its energy concentrated on one entry.
Consequently, its inverse filter g also possesses this property.
Therefore, Theorem 1 implies that (8) achieves exact recovery,
provided that the filter g does not deviate too far from e1.

A. Discussions of the Assumptions
With additional conditions, A1) and A2) can be established

with high probabilities. For example, it can be shown that A1)
holds with probability 1� o(1), provided that p � C0n log

4
n
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Figure 2: Phase transition of the proposed algorithm with respect to n and p for various values of ✓ when � = 0.3. The gray
level for each cell denotes the recovery success rate. The dashed line depicts the envelope of the plot.
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Figure 3: Relative recovery error of the proposed algorithm
with respect to the observation noise.

for some positive constant C0 [14]. For the assumption A2),
it is known from [13, Lemma 16 and 18] that (13) holds
with probability at least 1 � 4 exp(�C1�

2
1✓np), where C1 is

a positive constant, and (14) holds with probability at least
1�2 exp(�2�

2
2✓np/3). Combining these results with Theorem

1, it is straightforward to argue that the proposed algorithm (8)
admits exact recovery as long as p � C0n log

4
n and h is spiky

enough. This sample complexity matches the identifiability
bound in [11], [13] up to logarithmic factors.

B. Stability of the Proposed Method
We now establish a stability result for the proposed method

under observation noise, by showing that the recovery only
suffers a small deviation provided the noise level is small
enough, under the same conditions as Theorem 1.

Theorem 2. Consider the model Y = C(g)X+N, where N is
the observation noise. Under the same condition as Theorem 1,
the solution ˆ

v of the proposed algorithm (8) satisfies

kˆv � hk1  4npkhk21kNk1
L� npkhk1kNk1

, (20)

where L = ((1� �)np�2(1+ �)(1+ �2)np✓)
µ
4

q
✓
n , provided

that |h|(2)  (1��)�2(1+�)(1+�2)✓

8(1+�1)
p
✓n

and kNk1  L
npkhk1

. Here,
k · k1 denotes the entry-wise `1 norm.

Due to lack of space, the proof of Theorem 2 is presented
in the supplemental material.

V. NUMERICAL EXAMPLE

We present several numerical examples to showcase the
performance of the proposed algorithm. In these examples,

the entries of X are drawn i.i.d. from a Bernoulli-Gaussian
distribution. The parameter for the Bernoulli distribution is
✓ and the Gaussian distribution is chosen as the standard
normal distribution N (0, 1). The filter g is generated as
g = e1 + �r to avoid shift ambiguity, where r is composed
of i.i.d. standard Gaussian entries and � is a small constant.
We rescale the estimate ˆ

X to have the same `1 norm as X,
and an exact recovery is declared whenever the relative error
k ˆX � Xk1/kXk1 < 10

�3. The proposed algorithm (8) is a
standard convex programming which is solved numerically via
the CVX package [21].

Fig. 1 shows the phase transition of the proposed algorithm
with respect to ✓ and p when n = 10 for various values of �,
where the recovery success rate is calculated over 20 Monte
Carlo simulations per cell. It can be seen that the performance
improves when g becomes more peaky, which also serves as
a validation of Theorem 1. In order to explore the sample
complexity of the proposed algorithm, Fig. 2 shows the phase
transition with respect to n and p under � = 0.3 and various
values of ✓, where the recovery success rate is calculated
over 20 Monte Carlo simulations per cell. From the numerical
results, we conjecture that the algorithm succeeds with a high
probability as soon as p scales as a polynomial of log n, indi-
cating very few samples are sufficient for blind deconvolution
with sparse inputs. We refer the readers to additional numerical
experiments in the supplementary material.

In Fig. 3, we demonstrate how the relative recovery error of
the proposed algorithm changes with respect to the amplitude
of the observation noise. We set n = 10, � = 0.3, ✓ = 0.3

and p = 5. A uniform random noise on [�kNk1,�kNk1] is
applied, and the recovery error is averaged over 10 trails. We
can see that the proposed algorithm yields a stable recovery,
provided that the amplitude of the noise is small enough.

VI. CONCLUSION

Blind deconvolution with multiple sparse inputs has been
studied in this letter. Because of the sparsity assumption of
the signal, an `1-minimization algorithm has been proposed
to solve the problem efficiently, where sufficient conditions
for exact and stable recovery have been developed. We have
demonstrated that our algorithm yields promising results.
Through numerical simulations we conjecture that both the
identifiably and performance guarantee of the proposed algo-
rithm have rooms for improvement in terms of the sample
complexity, which we leave for future work.
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Blind Deconvolution from Multiple Sparse Inputs:
Supplementary Material
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I. PROOF OF THEOREM 2
Proof. We follow the same steps and symbols in the proof of Theorem 1, and (8) is now equivalent to

ŵ = argmin
w2Rn

kC(w)X+ C(h)C(w)Nk1, subject to rTw = 1.

By the proof of Theorem 1, we have

kC(ŵ)Xk1 � kXk1 � |r|(2)kw2k1kXk1 � 2(1 + �)|S|↵+ (1� �)np↵

� kXk1 + ((1� �)np� 2(1 + �)|S|)µ
4

r
✓

n
� |r|(2)kXk1)kw2k1 (1)

� kXk1 + ((1� �)np� 2(1 + �)(1 + �2)np✓)
µ

4

r
✓

n
� |r|(2)kXk1)kw2k1. (2)

Via the assumption on |r|(2) and A2), we have

|r|(2) 
(1� �)� 2(1 + �)(1 + �2)✓

(1 + �1)µ✓

µ

8

r
✓

n
(3)

 (1� �)np� 2(1 + �)(1 + �2)np✓

kXk1
µ

8

r
✓

n
. (4)

Plug (4) in (2), we have

kC(ŵ)Xk1 � kXk1 + ((1� �)np� 2(1 + �)(1 + �2)np✓)
µ

4

r
✓

n
kw2k1 (5)

Denote L = ((1� �)np� 2(1 + �)(1 + �2)np✓)
µ
4

q
✓
n , and we simply have kC(ŵ)Xk1 � kXk1 + Lkw2k1.

Hence,

kC(ŵ)X+ C(h)C(ŵ)Nk1 � kC(ŵ)Xk1 � kC(h)C(ŵ)Nk1
� kC(ŵ)Xk1 � kw1C(h)Nk1 � kC(h)C(w2)Nk1 (6)
� kC(ŵ)Xk1 � kC(h)Nk1 � npkw2k1kC(h)Nk1 (7)
� kC(ŵ)Xk1 � kC(h)Nk1 � npkw2k1khk1kNk1
� kXk1 + Lkw2k1 � kC(h)Nk1 � npkw2k1khk1kNk1, (8)

where (6) and (7) follow from the inequalities kC(h)C(w2)Nk1  npkC(h)Nk1kw2k1 and kC(h)Nk1 
kNk1khk1.

On the other hand, we have kC(ŵ)X+C(h)C(ŵ)Nk1  kXk1+ kC(h)Nk1 due to optimality of ŵ. Combining
the lower and upper bounds, we have

kXk1 + Lkw2k1 � kC(h)Nk1 � npkw2k1khk1kNk1  kXk1 + kC(h)Nk1. (9)
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Therefore, we obtain

kw2k1 
2kC(h)Nk1

L� npkhk1kNk1
(10)

 2npkhk1kNk1
L� npkhk1kNk1

, (11)

provided that

kNk1  L

npkhk1
. (12)

We know that e1 is the solution of (8) when N = 0, and the estimation perturbation caused by the noise can be
expressed as

kŵ � e1k1 = k(w1 � 1)e1 +w2k1 (13)
 |rTw2|+ kw2k1 (14)
 2kw2k1, (15)

where the last inequality follows from krk1 = 1. Let v̂ denote the solution to (8). Due to the transformation
v = C(h)w = h~w, we have

kŵ � e1k1 = kC(g)v̂ � C(g)hk1  2kw2k1. (16)

Multiply kC(h)k`1 on both sides of the inequality where k· k`1 denotes the `1 operator norm of the argument matrix,
we have

kC(h)k`12kw2k1 � kC(h)k`1kC(g)v̂ � C(g)hk1 (17)
� kv̂ � hk1, (18)

where the last inequality follows from the fact kC(h)k`1 � kC(h)vk1

kvk1
, for any non-vanishing v 2 Rn. Moreover,

since kC(h)k`1 = khk1, we obtain

kv̂ � hk1 
4npkhk21kNk1

L� npkhk1kNk1
, (19)

provided that
kNk1  L

npkhk1
. (20)

II. ADDITIONAL NUMERICAL EXAMPLE

We note that the condition in Theorem 1 is only a sufficient condition. Practically, we found that the algorithm
works well for many other situations. For example, in the following experiment, we consider the kernel to be
generated by i.i.d. standard Gaussian N (0, 1). We set n = 10, � = 0.3, ✓ = 0.3 and p = 5. The generated g is

g =
�
0.8404 �0.888 0.1001 �0.5445 0.3035 �0.6003 0.49 0.7394 1.712 �0.1941

�T
,

and the generated data X is
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X =

0

BBBBBBBBBBBBBB@

0 �1.089 0 0 0
0 0 0.7481 0.2916 0

�1.214 0 0 0.1978 0
0 0 0 1.588 0
0 0 0 �0.8045 �0.6669

1.533 0.08593 0 0 0
�0.7697 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 �0.1961 �1.166 0

1

CCCCCCCCCCCCCCA

.

As we discussed in the letter, recovery should be interpreted in the sense that g and X are accurately recovered
up to a scaling factor. The estimated kernel ĝ after rescaling is

ĝ =
�
0.8404 �0.888 0.1001 �0.5445 0.3035 �0.6003 0.49 0.7394 1.712 �0.1941

�T
,

and the estimated data X̂ after rescaling is

X̂ =

0

BBBBBBBBBBBBBB@

2.725 · 10�7 �1.089 2.386 · 10�7 �4.214 · 10�7 6.012 · 10�9

�7.748 · 10�7 �4.716 · 10�7 0.7481 0.2916 3.531 · 10�8

�1.214 �1.881 · 10�7 3.338 · 10�7 0.1978 �1.124 · 10�7

�2.258 · 10�7 7.215 · 10�8 1.279 · 10�7 1.588 �2.883 · 10�7

3.282 · 10�7 4.697 · 10�8 �9.976 · 10�8 �0.8045 �0.6669
1.533 0.08593 �4.976 · 10�9 �8.278 · 10�8 �2.883 · 10�7

�0.7697 4.697 · 10�8 2.399 · 10�7 �7.026 · 10�8 �1.124 · 10�7

�4.469 · 10�7 7.215 · 10�8 �3.979 · 10�8 �1.102 · 10�7 3.531 · 10�8

�1.999 · 10�7 �1.881 · 10�7 �1.244 · 10�7 �2.69 · 10�8 6.012 · 10�9

9.122 · 10�8 �4.716 · 10�7 �0.1961 �1.166 �2.046 · 10�7

1

CCCCCCCCCCCCCCA

.

Even though the settings do not necessarily satisfy the condition in Theorem 1, an exact recovery is still achieved.
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