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Recent successes in reinforcement learning (RL)

Google DeepMind's

AlphaFold 2

[
)

«“/
Al Breakthrough in Biology

At last — a computer program that
can beat a champion Go player PAce4s4

ALL SYSTEMS GO o

SAFEGUARD
TRANSPARENCY

RL holds great promise in the next era of artificial intelligence.
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Recap: Supervised learning

Given i.i.d training data, the goal is to make prediction on unseen data:

— pic from internet
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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

® no training data

trial-and-error

® maximize total rewards

delayed reward

‘Recalculating ... recalculating ...”
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Sample efficiency

I
CLINICAL TRIAL

DISCOVERY &
PRE-CLINICAL

PHASE | PHASE 2

Source: chinsights.com

® prohibitively large state & action space

FDA
APPROVAL

E: CBINSIGHTS

® collecting data samples can be expensive or time-consuming
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Sample efficiency

I
CLINICAL TRIAL

DISCOVERY &
PRE-CLINICAL

PHASE | PHASE 2

Source: chinsights.com

® prohibitively large state & action space

FDA
APPROVAL

E: CBINSIGHTS

® collecting data samples can be expensive or time-consuming

Challenge: design sample-efficient RL algorithms
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Computational efficiency

Running RL algorithms might take a long time ...

® enormous state-action space

® nonconvexity
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Computational efficiency

Running RL algorithms might take a long time ...

® enormous state-action space

® nonconvexity

Challenge: design computationally efficient RL algorithms )
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Theoretical foundation of RL

asymptotic
ana Iysy
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Theoretical foundation of RL

50 Iﬁpo finite-sample
¢ analysis «

asymptotic _
analysy

Understanding sample efficiency of RL requires a modern suite of
non-asymptotic analysis tools
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION High-Dimen:
Prob

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms

Part 1. basics, and model-based RL
Part 2. value-based RL
Part 3. policy optimization

We will illustrate these approaches for learning standard, robust, and
multi-agent RL with simulator/online/offline data.

10/54



Outline (Part 1)

® Basics: Markov decision processes
® Basic dynamic programming algorithms

® Model-based RL (“plug-in" approach)
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Basics: Markov decision processes



Markov decision process (MDP)

state s¢ action a;
agent ——1

environment [« — —J

vY

y S N

® S: state space

e A: action space
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Markov decision process (MDP)

state s¢ action a;
agent ——1

reward |
;Tt =TS, Q¢ |

A A 4

environment [« — —J

y S N

® S: state space
e A: action space

e r(s,a) € [0,1]: immediate reward
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Infinite-horizon

Markov decision process

state s;

action

reward

y W N

S: state space

A: action space

e

re = 1(8¢, at |

environment |« — —J

r(s,a) € [0,1]: immediate reward

m(+|s): policy (or action selection rule)
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Infinite-horizon

Markov decision process

state s;

action

reward

y W N

e

Ty =T8¢, 4t |
environment |« — —J

next state

st+1 ~ P(|ss, at)

S: state space

A: action space

r(s,a) € [0,1]: immediate reward

m(+|s): policy (or action selection rule)

P(-]s,a): unknown transition probabilities

14 /54



Value function

state s (.
_7f(] Is) To ™ T -

T4

|

| | I |
reward :> So S1 S2 S3
Ty = T(St, ag | T ; H 3 i ‘5 H 7

'~ '~

4--- environment — ag ay as a3
Al

Sth1 ~ P("Sm(lt)

Value of policy 7: cumulative discounted reward

VseS: VT(s):=E Z’ytr(st,at) |so=s
=0

84

Se|

-

a4
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Value function

state s a arsti;)rrz'ls )
= rooom ™ om
l | |
d S S S
= o | & %54 SR h W
¢--+ environment ¢~ —J a0 ay as az ar
St ~ P("st1at)
Value of policy m: cumulative discounted reward
(o]
VseS: VT(s):=E E V'r(se,ae) | so=s
t=0
® v €[0,1): discount factor
> take v — 1 to approximate long-horizon MDPs
1
1—y
15/54

> effective horizon:



Q-function (action-value function)

To T T2 T3 T4 T5
™ . | |
Q (30, Cbo) S 81— S2—; 83— 84— 85— XY
(S L A L L .
ao a1 a2 az a4 as

Q-function of policy 7:

V(s,a) e SxA: Q7(s,a) =E Z’ytrt|so =s,a0=a
=0

® (g¢7 s1,a1, S2,a2,- - ): induced by policy 7
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Q-function (action-value function)

0 r T2 3 T4 75
o) @ -G--g-s-lg-Lg L -
aO’ a1 ay a}, a?; ‘a'5'/
o 1 T T3 T4 5
Q" (0, a0) ’—I—' —|—»52—|—»33—|—.s4_|_.35_|_.
a,g El &'{ &3 al @

Q-function of policy 7:

V(s,a) e SxA: Q7(s,a) =E Z’ytrt|so =s,a0=a

t=0

® (g¢7 s1,a1, S2,a2,- - ): induced by policy 7
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Finite-horizon MDPs

Th = 1(Sh, an I
“~""1 environment [« — -

next state
Sht1 ™~ P}L("S’H ah)

H: horizon length

S: state space with size S e A: action space with size A
rn(Sn,an) € [0,1]: immediate reward in step h

= {wh},?zl: policy (or action selection rule)

Py,(-|s,a): transition probabilities in step h
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Finite-horizon MDPs

reward
T = 1(5h, an I

“~""1 environment [« — -

next state
Sh1 ~ Pu(:|sn, an)

M=

value function: V;"(s) =E [ rh(Sh, ap) | Sp = 51

t=h

Q-function: Q7 (s, a) :

H
E l rh(Sh, an) ‘ Sp=S,ap = (L]
t=h
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Optimal policy and optimal value

state s

14

=
=
&=

optimal policy 7*: maximizing value function max, V™
Proposition (Puterman’94)

For infinite horizon discounted MDP, there always exists a deterministic
policy ©*, such that

V™ (s)>V™(s), Vs, and .
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Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™

* optimal value / Q function: V* := V™" Q* := Q™
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Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™
* optimal value / Q function: V* := V™" Q* := Q™

® How to find this ©*7
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Basic dynamic programming algorithms
when MDP specification is known



Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m:S — A, how good is 77 (i.e., how to compute V7™ (s), Vs7)



Policy evaluation: Given MDP M = (S, A,r, P,) and policy
m:S — A, how good is 77 (i.e., how to compute V7™ (s), Vs7)

Possible scheme:
® execute policy evaluation for each 7

® find the optimal one



Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V7(8) = Eqmr(s) [Q”(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

Richard Bellman
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V7(8) = Eqmr(s) [Q”(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

® one-step look-ahead !//‘!@ —

Richard Bellman
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Policy evaluation: Bellman’s consistency equation

e V™ /Q™: value / action-value function under policy 7

Bellman’s consistency equation

V7(8) = Eqmr(s) [Q”(s, a)]

Q(s,a)= risa) +v E | VS |
——v s'~P(-|s,a) ——
immediate reward next state's value

® one-step look-ahead

® |et P™ be the state-action transition matrix
induced by m:

QU=r+1P"Q" = Q" =(I-~P")lr
Richard Bellman

21/54



Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(@Q)(s,a):== 7r(s,a) +v E max Q(s',a’)
s'~P(-|s,a) La’€A
immediate reward
next state's value

® one-step look-ahead
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Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(@Q)(s,a):== r(s,a) +v E max Q(s',a’)
s'~P(-|s,a) La’€A
immediate reward
next state's value

® one-step look-ahead

Bellman equation: Q* is unique solution to

T(Q*) — Q*
~v-contraction of Bellman operator:
“T(Ql) o T(QQ)HOO < fYHQl B Q2”OO Richard Bellman
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Two dynamic programming algorithms

Q(U)

Value iteration (VI) T
(1)
Fort=0,1,..., ¢
-
Q(t-‘rl) _ T(Q(t)) Qw .
Q4

Policy iteration (PI)
FOI’tZO,l,---,
policy evaluation: Q) = Q™"

policy improvement: 71 (s) = argmax QW (s,a)
ac
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When the model is unknown . ..

Reinforcement ||\

Learning

An Introduction
second edition

|
Richard S. Sutton and Andrew G. Barto / \

Voot

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS
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When the model is unknown

THIRD EDITION
voww: B

Reinforcement ||\
Learning

A Introduction
second edition

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

—

Richard S. Sutton and Andrew G. Barto

L

|

-
,
’

L

Need to learn optimal policy from samples w/o model specification

24 /54



Three approaches

Wt model AL,

&@i’f/ (ie. P € RISIAIXIS]) %,19
! model-based X

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

25 /54



Three approaches

o> model P,

e et “, .
,;'”‘;{)’ > (ie. P € RISIAIxIS]) 4 ‘uﬁs
; wodel-based )

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

Tutorial Part 2: Value-based approach
— learning w/o estimating the model explicitly

Tutorial Part 3: Policy-based approach
— optimization in the space of policies
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Three approaches

’<’.V°\': _____ > model p{q

T <
&@t’j, > (ie. P c RISIAIXIS) ‘uﬁs
; wodel-based '

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

Tutorial Part 2: Value-based approach
— learning w/o estimating the model explicitly

Tutorial Part 3: Policy-based approach
— optimization in the space of policies
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Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)
2. Offline RL / batch RL
3. Robust RL



A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s, a, S/(i))}lgiSN
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A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s, a, S/(i))}lgiSN

® construct 7 based on samples (in total |S||A| x N)

27 /54



(. -sample complexity: how many samples are required to

learn an e-optimal policy ?

-~

Vs: V() >V*(s)—e



An incomplete list of works

Kearns and Singh, 1999
Kakade, 2003

Kearns 3t al., 2002

Azar et al., 2012

Azar et al., 2013

Sidford et al, 2018a, 2018b
Wang, 2019

Agarwal et al, 2019
Wainwright, 2019a, 2019b
Pananjady and Wainwright, 2019
Yang and Wang, 2019
Khamaru, 2020

Mou et al., 2020

Li et al., 2020

Cui and Yang, 2021

29 /54



Model estimation

Sampling: for each (s, a), collect
N ind. samples {(s, a, Sl(i))}lgigN

generative model
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Model estimation

Sampling: for each (s, a), collect
N ind. samples {(s, a, Sl(i))}lgigN

Empirical estimates

!
generative model (s'ls, a) Z 1 {s

TV
empirical frequency

30/54



Empirical MDP + planning

— Azar et al., 2013, Agarwal et al., 2019

[/ empirical MDP

HEBN
| [ |
| - u =
BB | planning =%
le
| BB orac
| | . .
| | | B e.g. dynamic programming
N
| |
r

empirical P

Find policy based on the empirical MDP (empirical maximizer)
—_———— ~——_— ———

using, e.g., policy iteration (ﬁ,r)
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Challenges in the sample-starved regime

| H B
[
| =
|
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|Al!
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Challenges in the sample-starved regime

| H B
[
| =
[
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|Al!

e Can we trust our policy estimate when reliable model estimation is
infeasible?

32/54



(~-based sample complexity

Theorem (Agarwal Kakade, Yang'19)
Forany 0 < e < \/7 the optimal policy ™ of empirical MDP achieves

IVF =V <e

with high prob., with sample complexity at most

o(a=a)
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(~-based sample complexity

Theorem (Agarwal Kakade, Yang'19)

Forany 0 < e < \/7 the optimal policy ™ of empirical MDP achieves

IVF =V <e

with high prob., with sample complexity at most

5 (_ISIIA]
o) kLl
<(1 —7)%?
® matches minimax lower bound: ﬁ((l‘fg)f;' z) when ¢ < —
IS]IA]|

(equivalently, when sample size exceeds =2 %) Azar et al., 2013
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(~-based sample complexity

Theorem (Agarwal Kakade, Yang'19)

Forany 0 < e < \/7 the optimal policy ™ of empirical MDP achieves

IVF =V <e

with high prob., with sample complexity at most

5 (_ISIIA]
o) kLl
<(1 —7)%?
® matches minimax lower bound: ﬁ((l‘fg)f;' z) when ¢ < —
IS]IA]|

(equivalently, when sample size exceeds =2 %) Azar et al., 2013

® established upon leave-one-out analysis framework
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sample
complexity

ISII-A]
(1=7)

1s)14] |

(=)

$

‘K:%'
«be’ ) .
O — Sidford et al. "18a

S

Agarwal et al.'19

AN , N °S,
7
z\ >
N
> %
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sample
complexity

v
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sample
complexity

Agarwal et al., 2019 still requires a burn-in sample size > (577)2

34/54



sample

complexity
g
3
\:%'
5114 i
1-7)2[= & — Sidford et al. "18a
A

o - &
\)(\

+

(\\«@

isiAl |- @
1-v L 1 1 >
@\\ é‘\\ @\\/ 5-2
% ’
ke
3 3
Agarwal et al., 2019 still requires a burn-in sample size > (|fl‘j;‘2

Question: is it possible to break this sample size barrier? J
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Perturbed model-based approach (Li et al. ’20)

[ empirical MDP

|
H B
|
|
H B
o ]

empirical P

perturb
rewards

—

|

—Lietal,

planning
oracle

\Qj_e:ynamic programming

b
<

empirical

2020

*

Tp

Find policy based on the empirical MDP with slightly perturbed rewards
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Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

Forany 0 <e < ﬁ the optimal policy 7}, of perturbed empirical MDP
achieves

IV = V¥l <€

with high prob., with sample complexity at most

A=)
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Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

Forany 0 < e < ﬁ the optimal policy 7}, of perturbed empirical MDP
achieves

IV — V¥ <e

with high prob., with sample complexity at most
~ S
5(_ISI4
(1 —7)3e?

® matches minimax lower bound: Q((l‘ﬂlé;) Azar et al., 2013

e full e-range: € € (0, ﬁ] — no burn-in cost

® established upon more refined leave-one-out analysis and a
perturbation argument

36 /54



sample
complexity

X
N
> //
¢ s
>
éé — Sidford et al.'18a
......... X o




Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)
2. Offline RL / batch RL
3. Robust RL



Offline RL / batch RL

® Collecting new data might be expensive or time-consuming

® But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

L) - L]
i L) i RN
@ é N -
& | ILE $ L
p ~ S PEROAL.EACHDAY
’ < =
medical records data of self-driving clicking times of ads
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Offline RL / batch RL

® Collecting new data might be expensive or time-consuming

® But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES
o o L
[é i L/ s v ]
NETONGHOLS VEHOLES X

L

AN ,
& PR A

s

vy B

medical records data of self-driving clicking times of ads

Question: Can we design algorithms based solely on historical
data? J

39/54



Offline RL / batch RL

A historical dataset D = { a(® s/(l))}: N independent copies of
s~ p°, an~m(-|s), s' ~ P(-]s,a)

for some state distribution p® and behavior policy 7®

40 /54



Offline RL / batch RL

A historical dataset D = { a(® s/(l))}: N independent copies of
s~ p°, an~m(-|s), s' ~ P(-]s,a)

for some state distribution p® and behavior policy 7®

Goal: given some test distribution p and accuracy level ¢, find an
g-optimal policy 7 based on D obeying

V() -V = E [V(s)] - B [VA() <e

S~p S~ p

— in a sample-efficient manner

40 /54



Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*
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Challenges of offline RL

¢ Distribution shift:
distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

3
5 y
B N, /
mm Gl N
e o )
~. //

o

uniform coverage over entire space
(sufficiently explored)

41/54



Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

N / Practically, Y
/ \ /

i sl - A
/ ~ o A
= -\ samples cover all (s,a) & all polncueg/\ / historical dataset D A
B AN )

i \\\ /,/ />\ ﬂ-l

- N {

D) I T Yo’ \ o o
L T2 yi N , o
B ! / ~ Fee”

N Janssustag SN S
\\‘<7>',\\ /// \\\\>/7’/’
uniform coverage over entire space
(sufficiently explored)

partial coverage
(inadequately explored)

41/54



How to quantify quality of historical dataset D (induced by 7°)?
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient

C* := max d” (5,0) b(s, )
s,a d™(s,a)

where d™(s,a) = (1 — ) Y52, Y'P((s',a") = (s,a) | 7)
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient

C* :=m xd BOl

occupancy density of m* 1
sa d™(s,a) occupancy density of w° ||
where d™(s,a) = (1 — ) Y52, Y'P((s*,a") = (s,a) | 7)
/’/0\‘(\/ N ‘ \»\\
A /
e captures distributional shift / historical datajetD 3
N Q \ /
e allows for partial coverage [ m .
C* < o0

42 /54



Key idea: pessimism in the face of uncertainty

— Jin et al. 20, Rashidinejad et al. 21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. 20, Rashidinejad et al. 21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)

offline

lower confidence bounds
— stay cautious about under-explored (s, a)

43 /54



Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P
2. (value iteration) for ¢t < Tyay:

~

Qi(s,a) + |:T(8,a)+’y<ﬁ(’|8,(1),‘/}t—1>]+

for all (s,a), where V;(s) = max, Qs(s, a)

43 /54



Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (pessimistic value iteration) for ¢ < Ty ay:

~

Qi(s,a) « |:T(8, a) +’y<]3(. | s,a), ‘7t—1> — b(s,a; 12_1) }—F

penalize poorly visited (s,a)

for all (s,a), where V;(s) = max, Q:(s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

1. build empirical model P

2. (pessimistic value iteration) for ¢ < Ty ay:

~

Qi(s,a) « |:T(8, a) +’y<]3(. | s,a), ‘7t—1> — b(s,a; ‘/}t—l) }—F

penalize poorly visited (s,a)

compared w/ prior works
® no need of variance reduction e variance-aware penalty

43 /54



Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy T returned by VI-LCB achieves

V*p)—V7(p) <e

with high prob., with sample complexity at most

(=)
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Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy T returned by VI-LCB achieves

V*(p) = V7(p) <e

with high prob., with sample complexity at most
~ SC~*
ol—-="=__
((1 = 7)362>

® matches minimax lower bound: ﬁ(%) Rashidinejad et al, 2021

® depends on distribution shift (as reflected by C*)

e full e-range (no burn-in cost)

44 /54



sample

. A
complexity %2,
2
/R
/l‘\
NG




Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)
2. Offline RL / batch RL
3. Robust RL



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment
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Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment

Sim2Real Gap: Can we learn optimal policies that are robust to
model perturbations? J

47 /54



Distributionally robust MDP

action

state s ~ .
_Zr(_||8t) o r o r3 T4

|:>80‘|31‘82‘|83‘|S4|
4. A 4. ..

\ \
—’ N -’ N N

ao ai a2 asz Qg4

Sox

Sc:+1 ~ P('|Sz,at)

Uncertainty set of the norminal transition kernel P°:
U (P°)={P: p(P,P°) <o}

Robust value/Q function of policy 7:

PeUe(P°)

VseS: V™o(s):= inf E.p [Z'y T ! So = s]

V(s,a) eSxA: Q7(s,a):

inf E try| s =s,a0 =a
peus(po) " LZ_;’Y t| 0 0 1

The optimal robust policy 7* maximizes V™7(p)

4854



Robust Bellman’s optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™7 satisfy

Q"7 (s,a) =r(s,a) +~ inf (Ps.a, V),
Py €U (PS,)

V*7(s) = max Q*(s,a)
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Robust Bellman’s optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™7 satisfy

Q*J(S? a) = 7"(8, a) + Y inf <PS7CL7 V*70> ’
Pra€UU”(P,)
V*7(s) = max Q*(s,a)

Robust value iteration:

Q(s,a) < r(s,a) +~ inf <P8,aa V),
Ps a€U? (P2,)

where V (s) = max, Q(s,a).

49 /54



Learning distributionally robust MDPs

arbitra ry

(s,a)

Nominal Transition
kernel
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Learning distributionally robust MDPs

arbi,trarg

(s,a)

Nominal Transition
kernel

Goal of robust RL: given D := {(s;,a;, s})}}\.; from the nominal
environment P, find an e-optimal robust policy 7 obeying

V*(p) = VT (p) < e

— in a sample-efficient manner
50 /54



A curious question

. . . Learn the optimal policy of

. . = /,’! the nominal MDP?
’/

- - r”’ IS
HE B =
" =3 W (l

NN

EE B - . =
. . . ~4 Learn the robust policy

. - around the nominal MDP?

empirical MDP
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A curious question

. . . Learn the optimal policy of
.. . = /)' the nominal MDP?
’/
| | el
HE B
H B R
| | NS
am B - .
. . . ~4 Learn the robust policy
. - around the nominal MDP?

empirical MDP

Robustness-statistical trade-off? Is there a statistical premium that
one needs to pay in quest of additional robustness? J

51/54



When the uncertainty set is TV

Sample complexity“
54 bound [Cl |
T a0 1 u Clavier et al.] =
(1 — 7)452 [~ Upper boun [Clavier et al.]
|
1
|
SA ] Standard MDPs
T3 === upper & minimax lower bound T~~~
(I =)
SA
Upper & minimax lower bound
SA (this work)
(1—n)2e?
SA(I _ ’Y) Lower bound [Yang et al.]
2 >
€ 0 1
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When the uncertainty set is TV

Sample complexity“
54 bound [Cl |
T a0 1 u Clavier et al.] =
(1 — 7)452 [~ Upper boun [Clavier et al.]
|
1
|
SA ] Standard MDPs
T3 === upper & minimax lower bound T~~~
(I =)
Upper & minimax lower bound
SA (this work)
(1—n)2e?
SA(I _ ’Y) Lower bound [Yang et al.]
€2 > o

1

RMDPs are easier to learn than standard MDPs.

-
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When the uncertainty set is y? divergence

Sample complexity“

Upper bound 5%Ac
2 P ti and Kalathil 1—n)te?
S<A [Panaganti and Kalathil] ( 7) Lower bound
(1 _ 7)452 (this work)
Upper bound 5S40
(this work) (1 —n)te?
SA -
(=
SAo SAc
=)' 1 +o) =
SA Standard MDPs
(1 — )32 N . U e upper & minimax lower bound =
SA a Lower bound [Yang et al.]
(1—7)e? 1 1 1

v
Q

o(1/(1-7)
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When the uncertainty set is y? divergence

Sample complexity“
S?Ac
SZA [Panaganti and Kalathil] (1 —7)te? ——
(1 — ’7)452 (this work)
SAc
SA -
(a—e
SAc
62
SA Standard MDPs
(1 _ 7)352 N ) U S upper & minimax lower bound
i - Lower bound [Yang et al.]
CERE . .
o(1/(1-)
RMDPs can be harder to learn than standard MDPs. J
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Summary of this part

Model-based RL (a “plug-in” approach)

® Sampling from a generative model (simulator)
e Offline RL / batch RL
® Robust RL

Papers:

“Breaking the sample size barrier in model-based reinforcement learning with a generative
model,” G Li, Y Wei, Y Chi, Y Chen, NeurlPS'20, Operators Research'23

“Settling the sample complexity of model-based offline reinforcement learning,” G Li, L Shi, Y
Chen, Y Chi, Y Wei, 2022

“The curious price of distributional robustness in reinforcement learning with a generative
model,” L Shi, G Li, Y Wei, Y Chen, M Geist, Y Chi, 2023
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Non-Asymptotic Analysis for
Reinforcement Learning (Part 2)

Yuxin Chen
Wharton Statistics & Data Science, SIGMETRICS 2023



Multi-agent RL with a generative model



Multi-agent reinforcement learning (MARL)

E S

3/ 53



Two-player zero-sum Markov games (finite-horizon)

state sp, ction ap
P » max-player —_— —I
state sp_— action by, I
___________ 'i m|n—player’— —_ —I

4===7 environment —
< : '

e S =[9]: state space e A = [A]: action space of max-player

e H: horizon e 3 = [B]: action space of min-player
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Two-player zero-sum Markov games (finite-horizon)

state sp ction ap
P ) max-player -_— —I

reward 75,

state S J— action by,
___________ >l min-player —— _|
reward -7,

4===7 environment —
< : '

e S =[9]: state space e A = [A]: action space of max-player

e H: horizon e 3 = [B]: action space of min-player

e immediate reward: max-player r(s,a,b) € [0, 1]
min-player —r(s, a,b)
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Two-player zero-sum Markov games (finite-horizon)

state Sp, action

N pn (- | sn)
___________ max-player — — — —I

reward 75,
action

state sp K by ~ Vh(' ‘ Sh) I
----------- @ - _I
reward -7,

4===7 environment —
< : '

e S = [S]: state space e A = [A]: action space of max-player
e H: horizon e 3 = [B]: action space of min-player
e immediate reward: max-player r(s,a,b) € [0, 1]

min-player —r(s, a,b)
o 1 :S x[H] = A(A): policy of max-player
v:S x [H|] — A(B): policy of min-player
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Two-player zero-sum Markov games (finite-horizon)

action

state Sp ~ G
___________ max-player _—— —I

reward 75,
action

state sp K by ~ Vh(' ‘ Sh) I
----------- @ - _I
reward -7, I

4===7 environment —
< : '

next state
Sha1 ~ Pu(- | sh, an, bn)

e S =[9]: state space e A = [A]: action space of max-player
e H: horizon e 3 = [B]: action space of min-player
e immediate reward: max-player r(s,a,b) € [0, 1]
min-player —r(s, a,b)
o 1 :S x[H] = A(A): policy of max-player
v:S x [H|] — A(B): policy of min-player
e P,(-|s,a,b): unknown transition probabilities

4/ 53



Value function under independent policies (i, ) (no coordination)

H
Vi (s) :=E [Z T1(8h, an, br) ‘ 51 = S]
h=1
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Value function under independent policies (4, ) (no coordination)

H
VIY(s) = | > rh(Sh; an, bn) ’ s1=15
h=1

state s

which action a
to take?

e Each agent seeks optimal policy maximizing her own value
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Value function under independent policies (4, ) (no coordination)

H
Vi (s) :=E [Z T1(8h, an, br) ‘ 51 = 8]
h=1

¢ S .
r t\x\\ & N /”,W
L - which action b o
R e =
PR state s N
' \g “

e Each agent seeks optimal policy maximizing her own value

e But two agents have conflicting goals ...

5/ 53



Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE pOliC pair /L*, v*) obeys
Y Y

* * gk . *
max VY =VHF Y =minVH* Y
n v
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e no unilateral deviation is beneficial
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* * % . *
max VY =VHF Y =minVH* Y
n v

e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An e-NE policy pair (i, 7) obeys

max VY —e < VHY <minV*Y 4 ¢
m v

e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)

6/ 53



Learning NEs with a simulator

stmulator

input: any (s,a,b,h)
output: an independent sample s ~ Py(-| s, a,b)
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Learning NEs with a simulator

stmulator

input: any (s,a,b,h)
output: an independent sample s ~ Py(-| s, a,b)

Question: how many samples are sufficient to
learn an e-Nash policy pair?

7/ 53



Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for any (s, h)

1. for each (s, a,b, h), call simulator N times
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

’_’ _____________________ , catl generative model
N times

for any (s, h)

1. for each (s, a,b, h), call simulator N times
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a,b)

empirical
model P

’ _____________________ , catl generative model
N times

for any (s, h)

1. for each (s, a,b, h), call simulator N times
2. build empirical model P
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a, b)

planning
oracle
empirical | ()
model P
A
" _____________________ , cail gewnerative model
N times

for any (s, h)

1. for each (s,a,b,h), call simulator N times

2. build empirical model P, and run “plug-in" methods
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Model-based approach (non-adaptive sampling)

— Zhang, Kakade, Basar, Yang '20

for each (a, b)

planning
oracle
empirical | ()
model P
A
" _____________________ , cail gewnerative model
N times

for any (s, h)

1. for each (s,a,b,h), call simulator N times

2. build empirical model P, and run “plug-in" methods

. 4
sample complexity: H—fﬁ J

8/ 53



Curse of multiple agents

~
s !E!
(<

1 player: A
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Curse of multiple agents

§ "‘\”&
1 player: A 2 players: AB
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Curse of multiple agents

1 player: A 2 players: AB m players: A1As--- Ay,
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Curse of multiple agents

1 player: A 2 players: AB m players: A1As--- Ay,

9/ 53




horizon

HG
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V-learning
............ .
model-based
........ .
A+B AB  4tactions



horizon

HG

H4

A
V-learning
............ .
\7 model-based
e
........ p .

&
A+ B AB

##actions



horizon
A
V-learning
F6 [ .

model-based

e our algorithm

0 ; E >
A+B AB  4tactions

Theorem 1 (Li, Chi, Wei, Chen '22)
For any 0 < € < H, one can design an algorithm that finds an e-Nash
policy pair (i, V) with high prob., with sample complexity at most

~ (H4S(A + B))

0 = (minimax-optimal Ve)




Model-free / value-based RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Model-based vs. model-free RL

o model A,
7o | e P e RISIMIXIS) < T
& ~g
/ model-based \
samples value function
(experience) policy
2. ~
e wodel-free -

Model-based approach (“plug-in”
1. build empirical estimate P for P

2. planning based on empirical P

Model-free / value-based approach
— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...

12/ 53



finite-time &
finite-sample analysis

asymptotic
analysis

1989 1992 1994 2018

Focus of this part: classical Q-learning algorithm and its variants



A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead
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TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to

T(Q) ="
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A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
s'~P(-|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead
Bellman equation: Q* is unique solution to
TQ)=0Q"

e takeaway message: it suffices to solve the
Bellman equation

. . . Richard Bellman
e challenge: how to solve it using stochastic

samples?

14/ 53



Q-learning: a stochastic approximation algorithm

i

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

TQ) -Q=0
where
@ e 1 g o)

immediate reward ;
next state’s value
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(37a) + nt(ﬁ(Qt)(SvaJ - Qt(sﬂa))v > 0

sample transition (s,a,s’)
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(sva) + nt(,n(Qt)(Sva> - Qt(sﬂa))v > 0

sample transition (s,a,s’)

Te(Q)(s,a) = 7(s,a) +ymax Q(s', a’)

T(Q)(s,a) =T(S,a)+’y E [maXQ(sl,a’)]

s/~P(:|s,a) - a

16/ 53



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



A generative model / simulator

— Kearns, Singh '99

generative model

Each iteration, draw an independent sample (s, a, s) for given (s,a)

18/ 53



Synchronous Q-learning

&

Chris Watkins Peter Dayan

fort=0,1,...,7T
for each (s,a) e S x A

draw a sample (s, a,s’), run

Qer1(s,a) = (L —m)Qu(s,a) + Ut{r(s, a) + ymax Qu(s', a')}

synchronous: all state-action pairs are updated simultaneously J

e total sample size: T|S||A|

19/ 53



Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

B(24L) 14> 2
6<i) if|Al =1 (TD learning)

(1—7)3e?
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Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

B(24L) 14> 2
6<i) if|Al =1 (TD learning)

(1—7)3e?

e Covers both constant and rescaled linear learning rates:

1 1
= c1(1—y)T or T = ca(1—7)t
1+ log? T 1+ log? T
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Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

=~ S||.A -
O(rft) iflAz2 ()
5(%) if|Al =1 (minimax optimal)

other papers sample complexity
= _ISll4l
Even-Dar & Mansour '03 21—~ o
(1=v)%e
kant’ IS|2]4)2
Beck & Srikant'12 (1—7)5e2
L ISIIAI
Wainwright '19 (i—7)5e2
Chen, Maguluri, Shakkottai, Shanmugam '20 I "‘}l )
(1—-v)°e
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All this requires sample size at least 7= HA‘ s (A >2) ...

D
SR
\\/

sample
complexity

(log scale)

1
log scale
- (log scale)



All this requires sample size at least J“i‘ s (A >2) ..

Pt
4 SR
sample K

complexity

(log scale)

1
log scale
- (log scale)

Question: Is Q-learning sub-optimal, or is it an analysis artifact?



. S
A numerical example: % samples seem necessary . ..
(1-7)%e

— observed in Wainwright '19

a=1
a=2 . 108
1 g
Q 1-p O ! g
—
©O—— 0 g
1- z
3]
=¥
Q
N
2 10°
4'7 - 1 E ——— Q-learning .
p frd T § , ———— Theory: N =< iy
")/ 10 10 15 20 25 30 35 40
discount complexity:
r(07 1) — O, 74(1, 1) — T.(l, 2) — 1 1scount complexity: g p
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Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with |A| > 2 such that to
achieve ||QQ — Q*||so < €, synchronous Q-learning needs at least

Q <(1‘f|’7¢4€2> samples
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Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with |A| > 2 such that to
achieve ||QQ — Q*||so < €, synchronous Q-learning needs at least

Q <(1‘f|’7¢452> samples

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates
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Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with |A| > 2 such that to
achieve ||QQ — Q*||so < €, synchronous Q-learning needs at least

Q <(1‘f|’7¢452> samples

sample b
complexity
(log scale)

log scale
1-7 (log ) 23/ 53



Improving sample complexity via variance reduction

— a powerful idea from finite-sum stochastic optimization



Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qu(s,a) = (1 =m)Qi-1(5,0) + n(Ti(Qr-1) =T(@Q) + T(@Q) )(s,a)

use @ to help reduce variability

25/ 53



Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qu(s,a) = (1 =m)Qi-1(5,0) + n(Ti(Qr-1) =T(@Q) + T(@Q) )(s,a)

use @ to help reduce variability

e (Q: some reference Q-estimate

e 7 empirical Bellman operator (using a batch of samples)
Te(Q)(s,a) = 7(s,a) + ymax Q(s', a’)

TQa) =r(sa)+y  E  [maxQ(s',a)]

s'~P(ls,a)  ©

25/ 53



An epoch-based stochastic algorithm

— inspired by Johnson & Zhang '13

update variance-reduced

Q-learning
)-)-)‘)‘
epoch 1 epoch 2 epoch 3

for each epoch
1. update Q and 7(Q) (which stay fixed in the rest of the epoch)

2. run variance-reduced Q-learning updates iteratively

26/ 53



Sample complexity of variance-reduced Q-learning

Theorem 4 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates
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Sample complexity of variance-reduced Q-learning

Theorem 4 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates

e minimax-optimal for 0 < e <1
o remains suboptimal if 1 < ¢ < ;-

27/ 53



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Markovian samples and behavior policy

observed: (So——($1——> 82 ——>83——>S4 ——>85 —;
H H 7 I 7 H 1 1

m(+1s0) mo([s1) mo(-ls2) mu(-[ss) ms([sa) mu(|ss)

O

learn:  so—— 81— 82— 83— 84— 85—
L ./ L/ L
ag ai az as a4 as

7 (lso) ™ (ls1) m*([s2) 7*(:|s3) 7*(|sa) 7*(-[s5)

Observed:  {s;,a,¢}t>0  generated by behavior policy 7
—_————

stationary Markovian trajectory

Goal: learn optimal value V* and Q* based on sample trajectory
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Markovian samples and behavior policy

observed: (So——>(81——> 82 —~—>83——>S4——>S5
‘\_— '\_a’l \_—" ! ;~_¢" '\\ -

‘o
ay az as a4 as

S

aq
T

m(+1s0) mo([s1) mo(-ls2) mu(-[ss) ms([sa) mu(|ss)

O

learn:  sp—— 81— 82— 83— S4——> 85
] 4] ] v % F 7
‘\_a' ‘\_,' ‘\_a' ‘\_4' ‘\_-/ ‘\_,

ag ai az as as as

il T

IS
7 (lso) ™ (ls1) m*([s2) 7*(:|s3) 7*(|sa) 7*(-[s5)

S|

Key quantities of sample trajectory
e minimum state-action occupancy probability (uniform coverage)
1
in := min s,a €0, =—
fmin m(ss0) € [0

. . stationary distribution
e mixing time: fmix

29/ 53



Q-learning on Markovian samples

Chris Watkins Peter Dayan

Qt+1(st,at) = (1 —m)Qe(st, ar) + meTe(Qt) (e, ae), >0

only update (s¢,at)-th entry
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Q-learning on Markovian samples

Chris Watkins Peter Dayan

Qt+1(st,at) = (1 —m)Qe(st, ar) + meTe(Qt) (e, ae), >0

only update (s¢,at)-th entry

Te(Q)(st, at) = r(st, ar) +ymax Q(si41,a’)
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Q-learning on Markovian samples

A
(s0 auj\ I
\ |
(silay |
observed: 88_) 8;1\ ) 3:2\_) Si ) Si /‘; si /‘} S| < K (52,/02)
ag ay az az ay as |
|
subo) | |
I |
Q(s,a)

e asynchronous: only a single entry is updated each iteration
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Q-learning on Markovian samples

observed: (So——(s1——>S2——>/s3 84
) 4 %

s Lt L’ \

-~ - -
ag ay a2

%
!
g

\
as EZ
T

m(-s0) m([s1) mo(|s2) mb(-|s3) mu(-[sa) mu(-]s5)

A

ao)

k)

Q(s,a)

ar)l™

e asynchronous: only a single entry is updated each iteration

e off-policy: target policy n* # behavior policy m

Jaz)
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Sample complexity of asynchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi’21)
Forany 0 <e < ﬁ sample complexity of async Q-learning to yield
|Q — Q||coc < € with high prob. (or E[||Q — Q*||ec] < €) is at most
1 n tmix
fimin(1 = 7)€% pmin(1 —7)

(up to log factor)




Sample complexity of asynchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi’21)

FoAr any 0 <e < ﬁ sample comp/exitonf async Q-learning to yield
|Q — Q||coc < € with high prob. (or E[||Q — Q*||ec] < €) is at most

1 75mix
+ up to log factor
Mmin(1 - 7)452 Mmin(l - ’Y) ( g )

other papers sample complexity

Even-Dar, Mansour '03 (E“ff",))/:;;
) s (L1 1
Even-Dar, Mansour'03 (%)* + (fe) ™o, we (3,1)

Beck & Srikant '12 Lral9ll

Qu & Wierman '20 ;(tlmﬁ

Li, Wei, Chi, Gu, Chen '20 W + m

Chen, Maguluri, Shakkottai, Shanmugam '21

W -+ other-term(tmix)




Linear dependency on 1/imin

C%) ™
o F o4
IO O S

s =
et 8
2] g

sample o 2

: 3

complexity g S
g/E & NS
A FSEING
S /|« N NG
AR
A (]
9'!7 Q ﬁ@}p N\
s @)
S |SIAL

>0.21
\_-\eta\. 20'
>|S| A

tmix
Hmin

. o 1 -
if we take Mmin =< TSTAT teover X
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Effect of mixing time on sample complexity

Markov Chains
and Mixing Times

1 + tmix
,Ltmin(1 - ’7)452 /f‘min(1 - 7)

o reflects cost taken to reach steady state
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Effect of mixing time on sample complexity

Markov Chains
and Mixing Times

1 + tmix
,L‘min(1 - 7)452 Mmin(1 - 7)

o reflects cost taken to reach steady state

e one-time expense (almost independent of ¢)
— it becomes amortized as algorithm runs

— prior art: W (Qu & Wierman '20)
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Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|Sva)

for some state distribution p® and behavior policy 7®

36/ 53



Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|87G)

for some state distribution p® and behavior policy 7®

Single-policy concentrability
* T 4 ’ \\»\\
d™ (s,a
C* := max M >1 B \
s, d” (37 CL) 7 historical dataset D //\
where d™: occupancy distribution under 7 \}\ . \
| ! T r
e captures distributional shift

e allows for partial coverage
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How to design offline model-free algorithms
with optimal sample efficiency?



How to design offline model-free algorithms
with optimal sample efficiency?

pessimism variance
(low confidence bounds) reduction

— | LCB-Q| = [LCB—Q—Advantage]




LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty
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QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

38/ 53



LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

sample size: é(ﬁ;?) =  sub-optimal by a factor of ﬁ; J

Issue: large variability in stochastic update rules

38/ 53



Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3

Theorem 6 (Yan, Li, Chen, Fan’22, Shi, Li, Wei, Chen, Chi’22)

Fore € (0,1 — ], LCB-Q-Advantage achieves V*(p) — V%(p) <e
with optimal sample complexity O(ﬁ)

39/ 53
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Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |:> {sh»ah, 7 e
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7!

episode 1 |::> {sh»ah, 7 e

[n=ane! execute 7>
\
L 2 92 2\H
episode 2 {8h> @ T =1
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |::> {sh»ah, 7 e

= e ] execute 7>

Lo 2 2 2\H
episode 2 :> {8h: @k, i h=1

e execute &

episode K |:> {Sf ai{7 Tf}{j:l
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

ik execute 7!

episode 1 |::> {sh»ah, 7 e

SRR ! LL execute 7>
35
L 2 2 2\H
episode 2 :> {8h: @k, i h=1

e execute &

episode K |:> {Sf ai{7 T}{(}hH:I

exploration (exploring unknowns) vs. exploitation (exploiting learned info)J
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Regret: gap between learned policy & optimal policy

adversary learner

A
-3/ )

initial state execute
51 = policy !

episode 1
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Regret: gap between learned policy & optimal policy

adversary learner

initial state : execute . |n|t|aI state execute
3% policy 7" . = policy 7€

episode 1 episode K
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
I 51 I = policy 7! = = s{{ = policy ©f

episode 1 episode K

Performance metric: given initial states {s¥}X_ | define

chosen by nature/adversary

K

Regret(T) = > (Vi(sf) — Vi (s}))
k=1

43/ 53



Existing algorithms
e UCB-VI: Azar et al.'17
e UBEV: Dann et al.'17
e UCB-Q-Hoeffding: Jin et al. 18
e UCB-Q-Bernstein: Jin et al.’18
e UCB2-Q-Bernstein: Bai et al.'19
Regret(T) > VH2SAT e EULER: Zanette et al.'19
e UCB-Q-Advantage: Zhang et al.’20
o UCB-M-Q: Menard et al. 21

e Q-EarlySettled-Advantage: Li et
al.’21

Lower bound
(Domingues et al. '21)



Which model-free algorithms are sample-efficient for online RL?



Which model-free algorithms are sample-efficient for online RL?

early-settled
ucB variance variance
exploration reduction reduction

= |ucBQ| = [UCB—Q—Advantage] =

Jin et al.’18 Zhang et al. '20 Li et al. 21




Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus
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Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH J

Issue: large variability in stochastic update rules
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UCB Q-learning with UCB and variance reduction

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji'20

e asymptotically regret-optimal
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Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji'20
e asymptotically regret-optimal
e Issue: high burn-in cost O(S®A*H?)
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UCB Q-learning with UCB and variance reduction

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji'20
e asymptotically regret-optimal
e Issue: high burn-in cost O(S®A*H?)

One additional idea: early settlement of reference updates — Li, Shi,
Chen, Chi’'23
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UCB Q-learning with UCB and variance reduction

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji'20
e asymptotically regret-optimal
e Issue: high burn-in cost O(S®A*H?)

One additional idea: early settlement of reference updates — Li, Shi,
Chen, Chi’'23
memory
complexity
b
e regret-optimal w/ near-minimal UCB-M-Q

. . Y g T W UCB-VI
burn-in cost in S and A STAH . @

o memory-efficient O(SAH) . 5

e computationally efficient:
runtime O(T)

UCB-Q-Advantage

LY : g — ? ................................................ @ .
Q-EarlySettled-Advantage ¢ burn-in cost

0 SaApoly(H)  S3AHS  SSA'H?
47/ 53



Summary of this part

sample
complexity

T et 21.20,21

1SIAl

[SIA]

memory
complexity

S?AH

SAH

0

.......... @@ UCB-VI

Q-Eav\y?ett\ed-Advzntzge

UCB-Q-Advantage
. burn-in cost

S Apoly(H) S3AHS

)

Model-free RL can achieve memory efficiency,

computational efficiency, and sample efficiency at once!

— with some burn-in cost though
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A triad of RL approaches

— Figure credit: D. Silver



Policy optimization in practice

maximizey value(policy(6))

e directly optimize the policy, which is the quantity of interest;
® allow flexible differentiable parameterizations of the policy;

® work with both continuous and discrete problems.

T —Z,
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Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, €.g. (Fazel et al., 2018; Bhandari and Russo,
2019; Agarwal et al., 2019; Mei et al. 2020), and many more.

Our goal:
® understand finite-time convergence rates of popular heuristics;

® design fast-convergent algorithms that scale for finding
policies with desirable properties.



Outline

® Backgrounds and basics
® policy gradient method

e Convergence guarantees of single-agent policy optimization
® (natural) policy gradient methods
® finite-time rate of global convergence
® entropy regularization and beyond

e Multi-agent policy optimization: two-player zero-sum games
® Matrix game
® Markov game

[ ]

Concluding remarks and further pointers



Backgrounds: policy optimization in tabular
Markov decision processes



Searching for the optimal policy

fl [ e
Reinforcement ||\ —_— Dynamic Programming
Learning \ [ and Optimal Control

A9 Introduction f
Second edition /

Richard . Sutton and Andeew G.Barto | /7|11

i

Goal: find the optimal policy 7* that maximize V™ (s)

® optimal value / Q function: V*:= V"™, Q* := Q™



Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Es)p [V (5)]

Parameterization:
T = Ty J

maximizeg  V7"(p) := Eqsup [V (5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,---
i+l — g(t) anV”‘(*t) (p)

where 1 is the learning rate.




Softmax policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Es)p [V (5)]
softmax parameterization:
mp(als) o< exp(6(s,a)) J

maximizeg  V7"(p) := Eqsup [V (5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,---
i+l — g(t) anV”‘(*t) (p)

where 1 is the learning rate.




Finite-time global convergence guarantees



Global convergence of the PG method?

Loading...

7

¢ (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

¢ (Mei et al., 2020) Softmax PG converges to global opt in

c(ISl, 1A]

T v"' )O(%) iterations

Is the rate of PG good, bad or ugly? J

10



A negative message

Theorem (Li, Wei, Chi, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

1 o(ry) . )
—|S|> 7 iterations

to achieve |V — V*||o < 0.15.

¢ Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

e Also hold for average sub-opt gap \8% Y oscs [V(t)(s) - V*(s)].

11



MDP construction for our lower bound

S S Su
00000 00000 00000 00000 00000 00000 00000
(1;”1 a 1: ai I,' I,' /' /’
¢ ra Y . 4 — 4
S I St S IV A A 7 A '/
] ag ayir ap apr Qay ¥ 1 1 i
R S ¥ he iv iy iy
: Si Sy 3 4 5 6 ceo [(H
-~ A A ag A 4 A 4 A 4 A 4 A
1
ag al a; - ala]’//// 1 ey | ,/// ! !
e e e
1 o0 e
1
1 o1 «! «! A\ A
! /d J/ap /! H / : / : K H / H
: LA S A Y A WY 00 N A N A -
ay ap ! { { ! {
1 1 1 1 1 1 1
00000 00000 00000 00000 00000 00000 00000
St Sz Sy

Key ingredients: for 3 < s < H < %

o 7 (agpt | 5) keeps decreasing until () (aopt |5 —2) ~ 1

12



What is happening in our constructed MDP?

v

Convergence time for state s grows geometrically as s increases

convergence-time(s) 2 (convergence-time(s — 2))1'5

13



J.JLJLJLJLJLHJ%H

1OnAna0N M
s

/F__;/Y // F@;LX%

firy; ,7 ASS
% \!lly- — ’L}‘?

“Seriously, lady, at this hour you'd make a
lot better time taking the subway.”



Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---

0D = 90 4 n(FO) Vv (p)

where 1 is the learning rate and ]—'g is the Fisher information matrix

]-"p‘9 =E {(Vg log mo(als)) (Vg log 7T9(a|5))T]

15



Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in
training RL algorithms, with KL regularization

KL o) = 5 (6 — 010)T (6 — 6)
via constrained or proximal terms:
0D = argmax V4 (p) + (0= 09) TV () — KL, 7o)
~ 00+ n(F) VoV (o),
leading to exactly NPG!

NPG ~ TRPO/PPO! J

16



NPG in the tabular setting

Natural policy gradient (NPG) method (Tabular setting)
Fort=0,1,---, NPG updates the policy via

D (s) oc 7B (]s) exp (nQ(t)(s,-))
N—— 1-— Y

current policy
soft greedy

where Q) := Q’Tm is the Q-function of #®), and n > 0.

® invariant with the choice of p

® Reduces to policy iteration (Pl) when 1 = cc.

17



Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set (9 as a uniform policy. For allt > 0, we have

log | A| n 1 > 1
no (1-9)?

VO (p) > V¥ (o) - ( L

Implication: set 7 > (1 — v)%log|.A|, we find an e-optimal policy
within at most

m iterations.

Global convergence at a sublinear rate independent of |S|, |A! J

18



Booster #2: entropy regularization

action 0 1 T2 T3 T4
state s ap ~ 77("515)

------- N L S I
0— 81— 82— S 8

reward | |:> P ) G G A .
Ty = 7‘(St, N ap aiy as as Q4

<-=- environment 4= —J 2 4 2 2 2
— w(lso)  wCls)  w(Clsa)  wClss)  mls)

sén ~ P(se,ar)

To encourage exploration, promote the stochasticity of the policy
using the “soft” value function (Williams and Peng, 1991):

Z’yt(rt + TH(W(-\st)) | S9 =5

t=0

VseS: Vi(s):=E

T

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

maximizey V?(p) := Esnp [VO(5)] J

19



Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient

) =8
L

20—

UOT}RZIIR[NTSI 9SBAIOUT

log m(ay)

Natural Policy Gradient

Can we justify the efficacy of entropy-regularized NPG?

20



Entropy-regularized NPG in the tabular setting

Entropy-regularized NPG (Tabular setting)
Fort=0,1,---, the policy is updated via
_nT_

D ([s) oc 7O (]s) 17T exp(QW(s, ) /) T
——— S——

current policy soft greedy

where Q(Tt) = Q’;m is the soft Q-function of 7, and 0 < n< 1_77

® invariant with the choice of p

® Reduces to soft policy iteration (SPI) when n = 1_77



Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZM given 7(0);

—Read the paper for the inexact case

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate 0 < n < (1 — ~)/, the entropy-regularized
NPG updates satisfy

® Linear convergence of soft Q-functions:

1Q% — QY| < Cry (1 — 1)

for all t > 0, where Q% is the optimal soft Q-function, and

* T
€1 = 10: = QP+ 27 (1= 1™ ) o2 — logn ¥

v

22



Implications

To reach [|Q% — Q"|| < ¢, the iteration complexity is at most

¢ General learning rates (0 <7 < 1_77)

1 <Cl’)/>
— log | ——
nT €

® Soft policy iteration (n = —7)

L (ucg:—c;@uoov)
0g
11— €

Global linear convergence of entropy-regularized NPG
at a rate independent of |S], |A|! J

23



Comparisons with entropy-regularized PG

Log Policy Difference

Natural Policy Gradient

Policy Gradient
WS/

---= Natural Policy Gradient
Policy Gradient

0 1000 2000 3000 1000 5000
#iterations

(Mei et al., 2020) showed entropy-regularized PG achieves

V(o) = Vi (o) < (Vi () = V% ()

P

p (oo}

(1—7)*
(8/7 + 4+ 8log [A])[S]

2
~exp | — min p(s) ( inf minﬂ(k)(a|s))

0<k<t—1 s,a

can be exponential in |S| and ﬁ

Much faster convergence of entropy-regularized NPG
at a dimension-free rate! J

24



Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T=0

B

QY

Q

e =¥l

0 1000 2000 3000 4000
#iterations

5000

0 1000 2000 3000

4000 5000
#iterations

Linear rate: niT log (1) Sublinear rate: W
Ours (Agarwal et al. 2019)

Entropy regularization enables fast convergence! )

25



A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,a)

immediate reward

+7 E
s'~P(|s,a) [W('|5’)a’wﬂ'(‘|5/)

next state's value

Soft Bellman equation: QX is unique solution to
T-(QF) = Q7
~-contraction of soft Bellman operator:

|77(Q1) — Tr(Q2)|lo <Y[Q1 — Q2o

max [ Q(s',a") —r7log 7r(a'|s’)}] ,
——— ————

entropy

Richard

Bellman

26



Analysis of soft policy iteration (n = 1=2)

T

Policy iteration Soft policy iteration

7 70

Bellman operator Soft Bellman operator

27



A key linear system: general learning rates

NN D)
Qs — Q| and y = QY — 710g £
@ = Tlog €M 0

where £ o () is an auxiliary sequence, then

Let x; := [

777_ t+1
$t+1<A$t+7<1— ) Y,

where

is a rank-1 matrix with a non-zero eigenvalue 1 —n7
——

contraction rate!

|

28



Beyond entropy regularization

Leverage regularization to promote structural properties of the
learned policy.

cost-sensitive RL sparse exploration constrained and safe RL

weighted 1-norm Tsallis entropy log-barrier
For further details, see: (Lan, PMD 2021) and (Zhan et al, GPMD 2021)

29



Policy optimization for games



Policy optimization: saddle-point optimization

Given an initial state distribution s ~ p, find policy © such that

in  VHY(p) := Egu, [V
i (p) oV (s)]

31



Entropy regularization in MARL

action

state Sh ap ~ pup(- | sn)

______ 7 | max-player —
r reward 7, Th Th+1 Th+2 TH
1 fat actlon
I state Sp b ~ v (-

. S e

e R 2 @l @rl@nls - By
1 reward -7, o/ ' [ ~_' h 1e_s
1 h \\a_h,/l ‘ah“/ ‘\af:al ‘\(iH_/I
L . 2 by bh+1 bny2 b

H environment wn(an|sn)?

" next state vn(bnlsn)

Shi1 ~ Pu(- | snyan, bn)

Promote the stochasticity of the policy pair using the “soft” value
function (Williams and Peng, 1991; Cen et al., 2020):

H

VEY(s):=E Z (rn + 7H(pn(-|5n)) — TH(wa(|sn))) ‘ so=5|,
h=1

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

max min VH*Y
pEA(A)ISI ueA(lB)|5| () J
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Quantal response equilibrium (QRE)

Quantal response equilibrium (McKelvey and
Palfrey, 1995)

reprrrrersers BLOVE
The quantal response equilibrium (QRE) is the policy =

ek . . .

pair (uk,vr) that is the unique solution to QuANTAL
EQUILIBRIUM
max min _ VH"(p).
LEA(A)IS| LEA(B)IS]

v

® Unlike NE, QRE assumes bounded rationality: action
probability follows the logit function.

Translating to an e-NE: setting 7 =< O (¢/H).
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Soft value iteration

Soft value iteration: for h=H,... 1
Qn(s,a,b) <ry(s,a,b)+

: maxmin u(s') " Q1 (s)v(s') + TH(u(s") — TH((s) |,
s'~Pp(+]s,a,b) = v

Entropy-regularized matrix game

where Qn(s) = [Qn(s, )] € RAXE,

Entropy-regularized matrix game

. T
A H —T7H
(e o Av o+ rH(p) — TH(Y)
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Failure of NPG/MWU methods

o Multiplicative Weights Update
(MWU):

p ) (a) o p® (a) =7 exp (n[Av1],)
V) (8) o 10 (01 exp (—n{AT ),

® > (0: step size;

® The trajectory may cycle/diverge!
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Motivation: an implicit update method

Implicit update (IU) method
Fort=0,1,---,

pD) o [uO=77 exp ([AV(HI)]/T)”T
p(t+1) o [V(t)]lfm' exp (_[ATM(t+1)]/7_)777

Theorem (Cen, Wei, Chi, 2021)
Suppose that 0 < n < 1/7, then for all t > 0,

KL(CE 1 ¢W) < (1 —nm)tKL(¢E ] ¢™),

where KL(¢* || ¢®)) = KL (pt]|n®) + KL (v£||[v®).

4

Can we make this practical?
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From implicit updates to policy extragradient methods

Optimistic multiplicative weights update (OMWU) method
(Related to OMD, Rakhlin and Sridharan, 2013): for t =0,1,---,

predict : ) o [uO]E exp ([ AV“) /T)m
D) o [pO]1=n Texp (—[A /T)nT
(t+1) t)1— At/

B (e P
D) o [pOP=1T excp (—[AT a+D] /7)™

Theorem (Cen, Wei, Chi, 2021)

Suppose that n < min{2 +2hA”w, 4“2“ } then for all t > 0, the

last-iterate converges to e-QRE within 9) ( log = ) iterations.

Linear, last-iterate convergence to the QRE!



Soft value iteration via nested-loop OMWU
Soft value iteration: for h=H,... 1

Qn(s,a,b) <rp(s,a,b)+

. E lmaxminu(S')TQhH(5’)1/(8/)+TH(M(S'))TH(V(S’)),
s'~Pp(+|s,a,b) © v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B,

® _®

Nested-loop approach: (k1,5 vp, ) ¢ OMWU(Qp)
-
Periodic value update Policy update via
\ - OMWU

Qn + SVI(Qn+1)

However, not easy to use in online settings...
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A two-timescale single-loop approach?

Soft value iteration: for h = H,...,1

Qn(s,a,b) <rp(s,a,b)+

+ E [maxminM(S')TQhH(S')V(S') + 7 H(u(s) - TH(V(S'))]’
s'~Pp(+]s,a,b) H v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B,

Single-loop, two-timescale approach:

QU « (1 - a)Q® + a - lookahead ;L(HD DY amwu(Q®)
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Main result: episodic setting

Theorem (Cen, Chi, Du, Xiao, 2022)

The last-iterate of the two-timescale single-loop algorithm finds an
e-QRE in ,
~(H 1
0] < log )
T €

iterations, corresponding to 0] (H?S) iterations for finding an e-NE.

® First last-iterate convergence result for the episodic setting.

® Almost dimension-free: independent of the size of the
state-action space.
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Main result: discounted setting

Theorem (Cen, Chi, Du, Xiao, 2022)

For the infinite-horizon ~-discounted setting, the last-iterate of the
single-loop algorithm finds an e-QRE in

(=)

iterations, and in O (O—isv)“e> iterations for finding an e-NE.

<

e . . ~ 5 /2
® This significantly improves upon the prior art O (%)

of (Wei et al., 2021) and O (%) of (Zeng et al.,

2022) in all parameter dependencies.



Concluding Remarks



Concluding remarks

state . FiRsT-ORDER METHODS
action IN OPTIMIZATION
______ agent —
Dynamic Programming r
and Optimal Control H
1.
v L reward Amir Beck
i i-—€==1 environment
: inext state

Understanding non-asymptotic performances of RL algorithms
is a fruitful playground! J

Promising directions:

® function approximation e hybrid RL
® multi-agent/federated RL ® many more...
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Beyond the tabular setting

Policy network Value network
Poy @l9) vy (8")
*
9
L N . ii”
°
. .
0 O
s s

Figure credit: (Silver et al., 2016)
e function approximation for dimensionality reduction
® Provably efficient RL algorithms under minimal assumptions

(Osband and Van Roy, 2014; Dai et al., 2018; Du et al., 2019; Jin et al., 2020)
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Multi-agent RL

e 4

® Competitive setting: finding Nash equilibria for Markov
games

® Collaborative setting: multiple agents jointly optimize the
policy to maximize the total reward

(Zhang, Yang, and Basar, 2021; Cen, Wei, and Chi, 2021)
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Hybrid RL

® interact with environment

this is done
many times
=

,-ﬁ;, \ Online RL

® actively collect new data

train for
many epoch:

deploy learned policy in new scenarios

Offline/Batch RL

® no interaction

big dataset from
past interactions

® data is given

Can we achieve the best of both worlds?
(Wagenmaker and Pacchiano, 2022; Song et al., 2022; Li et al., 2023)



RL meets federated learning

Federated reinforcement learning enables multiple agents to
collaboratively learn a global model without sharing datasets.

Central server

e 2 Iy

Agent 1 Agent2 7 Agentk T Agentk

Can we achieve linear speedup via federated learning?
(Khodadadian et al., 2022; Woo et al., 2023)
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