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Parameter Estimation or Image Inversion

I Image: Observable image y ∼ p(y;θ), whose distribution is
parameterized by unknown parameters θ.

I Inversion: Estimate θ, given a set of samples of y.
I Source location estimation in MRI and EEG
I DOA estimation in sensor array processing
I Frequency and amplitude estimation in spectrum analysis
I Range, Doppler, and azimuth estimation in radar/sonar



Parameter Estimation or Image Inversion

I Canonical Model: Supperposition of modes:

y(t) =
k−1∑

i=0

ψ(t; νi )αi + n(t)

I p = 2k unknown parameters: θ = [ν1, . . . , νk , α1, . . . , αk ]T

I Parameterized modal function: ψ(t; ν)
I Additive noise: n(t)

I After Sampling:



y(t0)
y(t1)

...
y(tm−1)


 =

k−1∑

i=0




ψ(t0; νi )
ψ(t1; νi )

...
ψ(tm−1; νi )


αi +




n(t0)
n(t1)

...
n(tm−1)




or
y = Ψ(ν)α+ n =

k−1∑

i=0

ψ(νi )αi + n

I Typically, ti ’s are uniformly spaced and almost always m > p.



Parameter Estimation or Image Inversion

I Canonical Model:

y = Ψ(ν)α+ n =
k−1∑

i=0

ψ(νi )αi + n

I DOA estimation and spectrum analysis:

ψ(ν) = [e jt0ν , e jt1ν , . . . , e jtm−1ν ]T

where ν is the DOA (electrical angle) of a radiating point source.
I Radar and sonar:

ψ(ν) = [w(t0 − τ)e jωt0 ,w(t1 − τ)e jωt1 , . . . ,w(tm−1 − τ)e jωtm−1 ]T

where w(t) is the transmit waveform and ν = (τ, ω) are delay and
Doppler coordinates of a point scatterer.
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Classical Parameter Estimation or Image Inversion

I Matched filtering

I Sequence of rank-one subspaces, or 1D test images, is matched to
the measured image by filtering, correlating, or phasing.

I Test images are generated by scanning a prototype image (e.g., a
waveform or a steering vector) through frequency, wavenumber,
doppler, and/or delay at some desired resolution ∆ν.

P(`) = ‖ψ(`∆ν)Hy‖2
2

A. Pezeshki: Multi-rank MVDR Beamforming      
ISS Seminar, Princeton University, Feb. 1, 2007

Beamforming

A simple beamformer: Conventional (or Bartlett) beamformer

Sequence of plane-waves

Properties of the Bartlett beamformer:

Very simple 
Low resolution and high sidelobes
Good interference suppression 
at some angles

Estimates the 
signal power

Matched Filtering

Bearing Response Cross-Ambiguity
I Peak locations are taken as estimates of νi and peak values are

taken as estimates of source powers |αi |2.
I Resolution: Rayleigh Limit (RL), inversely proportional to the

number of measurements



Classical Parameter Estimation or Image Inversion

I Matched filtering (Cont.)

I Extends to subspace matching for those cases in which the model
for the image is comprised of several dominant modes.

I Extends to whitened matched filter, or minimum variance
unbiased (MVUB) filter, or generalized sidelobe canceller.

H. L. Van Trees, “Detection, Estimation, and Modulation Theory: Part I”,

D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proc. IEEE, vol. 70, pp. 10551096, Sep. 1982.

T.-C.Lui and B. D. Van Veen, “Multiple window based minimum variance spectrum estimation for
multidimensional random fields,” IEEE Trans. Signal Process., vol. 40, no. 3, pp. 578–589, Mar. 1992.

L. L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE Trans. Signal Process., vol. 42, no. 8, pp.
21462157, Aug. 1994.

A. Pezeshki, B. D. Van Veen, L. L. Scharf, H. Cox, and M. Lundberg, “Eigenvalue beamforming using a
multi-rank MVDR beamformer and subspace selection,” IEEE Trans. Signal Processing, vol. 56, no. 5, pp.
1954–1967, May 2008.



Classical Parameter Estimation or Image Inversion

I ML Estimation in Separable Nonlinear Models

I Low-order separable modal representation for the image:

y = Ψ(ν)α+ n =
k−1∑

i=0

ψ(νi )αi + n

Parameters ν in Ψ are nonlinear parameters (like frequency, delay,
and Doppler) and α are linear parameters (comples amplitudes).

I Estimates of linear parameters (complex amplitudes of modes)
and nonlinear mode parameters (frequency, wavenumber, delay,
and/or doppler) are extracted, usually based on maximum
likelihood (ML), or some variation on linear prediction, using `2

minimization.



Classical Parameter Estimation or Image Inversion

I Estimation of Complex Exponential Modes
I Physical model:

y(t) =
k−1∑

i=0

νti αi + n(t); ψ(t; νi ) = νti

where νi = edi+jωi is a complex exponential mode, with damping
di and frequency ωi .

I Uniformly sampled measurement model:

y = Ψ(ν)α

Ψ(ν) =




ν0
0 ν0

1 · · · ν0
k−1

ν1
0 ν1

1 · · · ν1
k−1

ν2
0 ν2

1 · · · ν2
k−1

...
...

. . .
...

νm−1
0 νm−1

1 · · · νm−1
k−1



.

Here, without loss of generality, we have taken the samples at
t = `t0, for ` = 0, 1, . . . ,m − 1, with t0 = 1.



Classical Parameter Estimation or Image Inversion

I ML Estimation of Complex Exponential Modes

min
ν,α
‖y −Ψ(ν)α‖2

2

α̂ML = Ψ(ν)†y

ν̂ML = argmin yHPA(ν)y; AHΨ = 0

Prony’s method (1795), modified least
squares, linear prediction, and Iterative
Quadratic Maximum Likelihood
(IQML) are used to solve exact ML or
its modifications. Rank-reduction is
used to combat noise.

D. W. Tufts and R. Kumaresan, “Singular value decomposition and improved frequency estimation using linear
prediction,” IEEE Trans. Acoust., Speech, Signal Process., vol. 30, no. 4, pp. 671675, Aug. 1982.

D. W. Tufts and R. Kumaresan, “Estimation of frequencies of mul- tiple sinusoids: Making linear prediction
perform like maximum likelihood,” Proc. IEEE., vol. 70, pp. 975989, 1982.

L. L. Scharf “Statistical Signal Processing,” Prentice Hall, 1991.



Classical Parameter Estimation or Image Inversion

I Example:
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Classical Parameter Estimation or Image Inversion

I Fundamental limits and performance bounds:

I Fisher Information

I Kullback-Leibler
divergence

I Cramér-Rao bounds

I Ziv-Zakai bound

I SNR Thresholds

Fisher Edgeworth Kullback

Leibler Cramér Rao

I Key fact: Any subsampling of the measured image has
consequences for resolution (or bias) and for variability (or
variance) in parameter estimation.

L. L. Scharf “Statistical Signal Processing,” Prentice Hall, 1991.
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Review of Compressed Sensing

I Compressed Sensing [Name coined by David Donoho] was
pioneered by Donoho and Candès, Tao and Romberg in 2004.

I There is now a vast literature on this topic since the last decade.



Sparse Representation

Sparsity: Many real world signals admit sparse representation. The
signal s ∈ Cn is sparse in a basis Ψ ∈ Cn×n, as

s = Ψx;

I Multipath channels are sparse in the number of strong paths.

I Images are sparse in the wavelet domain.



Compression on the Fly

Compressed Sensing aims to characterize attributes of a signal
with a small number of measurements.

I Incoherence Sampling: the linear measurement y ∈ Cm is
obtained via an incoherent matrix Φ ∈ Cm×n, as

y = Φs + n,

where m� n. — subsampling.

I The goal is thus to recover x from y.



Uniqueness of Sparse Recovery

I Let A = ΦΨ ∈ Cm×n. We seek the sparsest signal satisfying the
observation:

(P0:) min
x
‖x‖0 subject to y = Ax.

where ‖ · ‖0 counts the number of nonzero entries.

I Spark: Let Spark(A) be the size of the smallest linearly
dependent subset of columns of A.

Theorem (Uniqueness, Donoho and Elad 2002)

A representation y = Ax is necessarily the sparsest possible if
‖x‖0 < Spark(A)/2.

Proof: If x and x′ satisfy Ax = Ax′, ‖x′‖0 ≤ ‖x‖0, then
A(x− x′) = 0 for ‖x− x′‖0 < Spark(A) implies x = x′.

D. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via `1
minimization,” PNAS 100.5 (2003): 2197-2202.



Sparse Recovery via `1 Minimization

I The above `0 minimization is NP-hard. A convex relaxation leads
to the `1 minimization, or basis pursuit:

I Mutual Coherence: Let µ(A) = maxi 6=j |〈ai , aj〉|, where ai and aj

are normalized columns of A.
I Spark(A) > 1/µ(A).

Theorem (Equivalence, Donoho and Elad 2002)

A representation y = Ax is the unique solution to (P1) if
‖x‖0 <

1
2 + 1

2µ(A) .

S. Chen, D. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM journal on scientific
computing 20, no. 1 (1998): 33-61.

D. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via `1
minimization,” PNAS 100.5 (2003): 2197-2202.

(P1:) min
x
‖x‖1 subject to y = Ax.



Stable Sparse Recovery via Convex Relaxation

I When ‖n‖2 ≤ ε, we incorporate this into the basis pursuit:

(P1:) x∗ = arg min
x
‖x‖1 s.t. ‖y − Ax‖2 ≤ ε

I Restricted Isometry Property: If A satisfies the restricted
isometry property (RIP) with δ2k , then for any two k-sparse
vectors x1 and x2:

1− δ2k ≤
‖A(x1 − x2)‖2

2

‖x1 − x2‖2
2

≤ 1 + δ2k .

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information,” Information Theory, IEEE Transactions on 52.2 (2006): 489-509.
Picture Credit: Mostafa Mohsenvand.



Performance Guarantees Via RIP

Theorem (Candès, Tao, Romberg, 2006)

If δ2k <
√

2− 1, then for any vector x, the solution to basis pursuit
satisfies

‖x∗ − x‖2 ≤ C0k−1/2‖x− xk‖1 + C1ε.

where xk is the best k-term approximation of x.

I exact recovery if x is k-sparse and
ε = 0.

I stable recovery if A preserves the
isometry between sparse vectors.

I Many random ensembles (e.g. Gaussian, sub-Gaussian,
partial DFT) satisfies the RIP as soon as

m ∼ Θ(k log(n/k))



Extensions

I Recovery algorithms: Orthogonal Matching Pursuit (OMP),
CoSaMP, Subspace Pursuit, Iterative Hard Thresholding,
Bayesian inference, approximate message passing, etc...

I Refined signal models: tree sparsity, group sparsity, multiple
measurements, etc...

I Measurement schemes: deterministic sensing matrices,
structured random matrices, adaptive measurements, etc...



References

I The CS repository hosted by the DSP group at Rice University:
http://dsp.rice.edu/cs

I The Nuite Blanche blog, maintained by Igor Carron, has a
well-maintained list:
https://sites.google.com/site/igorcarron2/cs

I Check the Nuite Blanche blog for recent updates:
http://nuit-blanche.blogspot.com/

http://dsp.rice.edu/cs
https://sites.google.com/site/igorcarron2/cs
http://nuit-blanche.blogspot.com/
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CS and Fundamental Estimation Bounds

I Canonical model before compression:

y = Ψ(ν)α+ n = s(θ) + n

where θT = [νT ,αT ] ∈ Cp and s(θ) = Ψ(ν)α ∈ Cn.

I Canonical model after compression:

Φy = Φ(Ψ(ν)α+ n) = Φ(s(θ) + n)

where Φ ∈ Cm×n, m� n, is a compressive sensing matrix.

I Question: How are fundamental limits for parameter estimation
(i.e., Fisher Information, CRB, KL divergence, etc.) affected by
compressively sensing the data?



Fisher Information

I Observable: y ∼ p(y;θ)
I Fisher Score: Sensitivity of log-likelihood function to the

parameter vector
∂

∂θi
log p(y;θ)

I Fisher information matrix: Covariance of Fisher score

{J(θ)}i ,j = E

[(
∂

∂θi
log p(y;ν)

)(
∂

∂θj
log p(y;θ)

)
|θ
]

= −E

[
∂2

∂2θiθj
log p(y;θ)|θ

]

Measures the amount of
information that the
measurement vector y
carries about the parameter
vector θ. Fisher Edgeworth



Cramér-Rao Lower Bound (CRB)

I Cramér-Rao lower bound: Lower bounds the error covariance of
any unbiased estimatior T (y) of the parameter vector θ from
measurement y.

tr[covθ(T (y))] ≥ tr[J−1(θ)]

Cramér Rao

I The ith diagonal element of J−1(θ) lower bounds the MSE of
any unbiased estimator Ti (y) of the ith parameter θi from y.

I Volume of error concentration ellipse:

det[covθ(T (y))] ≥ det[J−1(θ)]



CS, Fisher Information, and CRB

I Complex Normal model (Canonical
model):

y = s(θ)+n ∈ Cn; y = CN n[s(θ),R]

I Fisher information matrix:

J(θ) = GH(θ)R−1G(θ)

=
1

σ2
GH(θ)G(θ), when R = σ2I

G(θ) = [g1(θ), . . . , gk(θ)]; gi (θ) =
∂s(θ)

∂θi

I Cramér-Rao lower bound:

(J−1(θ))ii = σ2(gH
i (θ)(I−PGi(θ))gi (θ))−1

When one sensitivity looks

likes a linear combination of

others, performance is poor.

L. L. Scharf and L. T. McWhorter, “Geometry of the Cramer-Rao bound,” Signal Process., vol. 31, no. 3, pp.
301–311, Apr. 1993.



CS, Fisher Information, and CRB

I Compressive measurement
(canonical model):

z = Φy = Φ[s(θ) + n] ∈ Cm;

I Fisher information matrix:

Ĵ(θ) =
1

σ2
GH(θ)PΦH G(ν) = ĜH(θ)Ĝ(θ)

Ĝ(θ) = [ĝ1(θ), . . . , ĝk(θ)]; ĝi (θ) = PΦH

∂s(θ)

∂θi

I Cramer-Rao lower bound:

(Ĵ−1(θ))ii = σ2(ĝH
i (θ)(I−PĜi(θ))ĝi (θ))−1

Compressive measurement

reduces the distance between

subspaces: loss of information.

L. L. Scharf and L. T. McWhorter, “Geometry of the Cramer-Rao bound,” Signal Process., vol. 31, no. 3, pp.
301–311, Apr. 1993.



CS, Fisher Information, and CRB

I Question: What is the impact of compressive sampling on the
Fisher information matrix and the Cramér-Rao bound (CRB) for
estimating parameters?



CS, Fisher Information, and CRB

Theorem (Pakrooh, Pezeshki, Scharf, Chi ’13)

(a) For any compression matrix, we have

(J−1(θ))ii ≤ (Ĵ−1(θ))ii ≤ 1/λmin(GT (θ)PΦT G(θ))

(b) For a random compression matrix, we have

(Ĵ−1(θ))ii ≤
λmax(J−1(θ))

C (1− ε)

with probability at least 1− δ − δ′.

Remarks:
I (Ĵ−1)ii is the CRB in estimating the ith parameter θi .
I CRB always gets worse after compressive sampling.
I Theorem gives a confidence interval and a confidence level for

the increase in CRB after random compression.



CS, Fisher Information, and CRB

I δ satisfies

Pr
(
∀q ∈ 〈G(θ)〉 : (1− ε)‖q‖2

2 ≤ ‖Φq‖2
2 ≤ (1 + ε)‖q‖2

2

)
≥ 1− δ.

I 1− δ′ is the probability that λmin((ΦΦT )−1) is larger than C .

I If entries of Φm×n are i.i.d. N (0, 1/m), then

I δ ≤ d(2
√

p/ε′)pee−m(ε2/4−ε3/6), where

(
3ε′

1− ε′ )
2 + 2(

3ε′

1− ε′ ) = ε.

I δ′ is determined from the distribution of the largest eigenvalue of
a Wishart matrix, and the value of C , from a hypergeometric
function.

P. Pakrooh, L. L. Scharf, A. Pezeshki and Y. Chi, “Analysis of Fisher information and the Cramer-Rao bound
for nonlinear parameter estimation after compressed sensing”, in Proc. 2013 IEEE Int. Conf. on Acoust.,
Speech and Signal Process. (ICASSP), Vancouver May 26-31, 2013.



CRB after Compression

Example: Estimating the DOA of a point source at boresight θ1 = 0
in the presence of a point interferer at electrical angle θ2.

I The LHS figure shows the after compassion CRB (red) for estimating
θ1 = 0 as θ2 is varied inside the (−2π/n, 2π/n] interval. Gaussian
compression is done from dimension n = 8192 to m = 3000.

I Bounds on the after compression CRB are shown in blue and black.
The upper bounds in black hold with probability at least 1− δ − δ′,
where δ′ = 0.05. An upper bound for δ versus the dimension of the
compression matrix is plotted on the RHS.



Kullback-Leibler (KL) Divergence

KL divergence: A non-symmetric measure of the difference between
two probability distributions

D(p(y;θ)||p(y;θ′)) =

∫

y

p(y;θ) log
p(y;θ)

p(y;θ′)
dy

Kullback Leilber

S. Kullback and R. A. Leibler, “On Information and Sufficiency,” Annals of Mathematical Statistics, vol. 22, no.
1, pp. 79–86, 1951.



CS and KL Divergence

KL divergence between CN (s(θ),R) and CN (s(θ′),R):

D(θ,θ′) =
1

2
[(s(θ)− s(θ′))HR−1(s(θ)− s(θ′))].

I After compression with Φ:

D̂(θ,θ′) =
1

2
[(s(θ)− s(θ′))HΦH(ΦRΦH)−1Φ(s(θ)− s(θ′))].

I With white noise R = σ2I:

D̂(θ,θ′) =
1

2σ2
[(s(θ)− s(θ′))HPΦH (s(θ)− s(θ′))].

Theorem (Pakrooh, Pezeshki, Scharf, and Chi (ICASSP’13))

C (1− ε)D(θ,θ′) ≤ D̂(θ,θ′) ≤ D(θ,θ′)
with probability at least 1− δ − δ′, where δ, δ′.
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Work by Others

I Nielsen, Christensen, and Jensen (ICASSP’12): Bounds on mean
value of Fisher Information after random compression.

I Ramasamy, Venkateswaran, and Madhow (Asilomar’12): Bounds
on Fisher information after compression in a different noisy
model.

I Babadi, Kalouptsidis, and Tarokh (TSP 2009): Existence of an
estimator (“Joint Typicality Estimator”) that asymptotically
achieves the CRB in linear parameter estimation with random
Gaussian compression matrices.



Breakdown Threshold and Subspace Swaps

I Threshold effect: Sharp
deviation of Mean Squared
Error (MSE) performance
from Cramer-Rao Bound
(CRB).

I Breakdown threshold:
SNR at which a threshold
effect occurs with
non-negligible probability. Donald W. Tufts (1933-2012)

D. W. Tufts, A. C. Kot, and R. J. Vacarro, “The threshold effect in signal processing algorithms which use an
estimated subspace,” in SVD and Signal Processing, II, R. J. Vaccaro (Ed), New York: Elsevier, 1991.



Breakdown Threshold and Subspace Swaps

I Subspace Swap: Event in which
measured data is more accurately
resolved by one or more modes of
an orthogonal subspace to the
signal subspace.

I Cares only about what the data
itself is saying.

I Bound probability of a subspace
swap to predict breakdown SNRs.

J. K. Thomas, L. L. Scharf, and D. W. Tufts, “Probability of a Subspace Swap in the SVD,” IEEE Trans Signal
Proc., vol 43, no 3, pp 730-736, Mar. 1995.



Signal Model: Mean Case

I Before compression:

y : CN n[Ψα, σ2I]; Ψ ∈ Cn×k

I After compression with compressive sensing matrix
Φcs ∈ Cm×n,m < n:

ycs : CNm[ΦcsΨα, σ
2ΦcsΦ

H
cs ]

or equivalently (with some abuse of notation):

ycs : CNm[ΦΨα, σ2I], Φ = (ΦcsΦ
H
cs)−1/2Φcs



Subspace Swap Events

I Subspace Swap Event E : One or more modes of the orthogonal
subspace 〈H〉 resolves more energy than one or more modes of
the noise-free signal subspace 〈Ψ〉.



Subspace Swap Events

I Subevent F : Average energy resolved in the orthogonal subspace
〈H〉 = 〈Ψ〉⊥ is greater than the average energy resolved in the
noise-free signal subspace 〈Ψ〉.

min
i
|ψH

i y|2 ≤1

k
yHPΨy <

1

n − k
yHPHy≤ max

i
|hH

i y|2

I Subevent G : Energy resolved in the apriori minimum mode ψmin

of the noise-free signal subspace 〈Ψ〉 is smaller than the average
energy resolved in the orthogonal subspace 〈H〉.

|ψH
miny|2 < 1

n − k
yHPHy≤ max

i
|hH

i y|2.



Probability of Subspace Swap: Mean Case

Theorem (Pakrooh, Pezeshki, Scharf (GlobalSIP’13))

(a) Before compression:

Pss ≥ 1− P[
yHPΨy/k

yHPHy/(n − k)
> 1]

= 1− P[F2k,2(n−k)(‖Ψα‖2
2/σ

2) > 1]

‖Ψα‖2
2/σ

2 is the SNR before compression.

(b) After compression:

Pss ≥ 1− P[F2k,2(m−k)(‖ΦΨα‖2
2/σ

2) > 1]

‖ΦΨα‖2
2/σ

2 is the SNR after compression.

P. Pakrooh, A. Pezeshki, and L. L. Scharf, “Threshold effects in parameter estimation from compressed data,”
Proc. 1st IEEE Global Conference on Signal and Information Processing, Austin, TX, Dec. 2013.



Sensor Array Processing–Mean Case

−30 −25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNR (dB)

P
s
s

 

 

AC

BC

−30 −25 −20 −15 −10 −5 0 5 10
−70

−60

−50

−40

−30

−20

−10

0

SNR (dB)

M
S

E
 (

d
B

)

 

 

ML: AC

Approx: AC

ML: BC

Approx: BC

CRB: AC

CRB: BC

Analytical lower bounds for the
probability of subspace swap. Array size:
n = 188 elements; Compressed array
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Empirical MSE (average over 200 trials)
and MSE bounds for estimating θ1 = 0;
Interfering source at θ2 = π/188; Array
size: n = 188 elements; Compressed

array m = 28 elements.

I Bounds on subspace swap probabilities and SNR treshold are
poredictive of MSE performance loss.

I ML Approximation: Method of intervals

MSE ≈ Pssσ
2
0 + (1− Pss)σ2

CR



Sensor Array Processing–Mean Case
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Signal Model: Covariance Case

I Before compression:

y : CN n[0,ΨRααΨ
H + σ2I]; Ψ ∈ Cn×k

I After compression with compressive sensing matrix
Φcs ∈ Cm×n,m < n:

ycs : CNm[0,ΦcsΨRααΨ
HΦH

cs + σ2ΦcsΦ
H
cs ]

or equivalently (with some abuse of notation):

ycs : CNm[0,ΦΨRααΦΨH + σ2I], Φ = (ΦcsΦ
H
cs)−1/2Φcs .

I Assume data consists of L iid realizations of y arranged as
Y = [y1, y2, · · · , yL].



Probablity of Subspace Swap: Covariance Case

Theorem (Pakrooh, Pezeshki, Scharf (GlobalSIP’13))

(a) Before compression:

Pss ≥ 1− P[
tr(YHPΨY/kL)

tr(YHPHY/(n − k)L)
> 1]

= 1− P[F2kL,2(n−k)L >
1

1 + λk/σ2
].

λk = evmin(ΨRααΨ
H)

λk/σ
2: Effective SNR before compression

(b) After compression:

Pss ≥ 1− P[F2kL,2(m−k)L >
1

1 + λ′k/σ
2

].

λ′k = evmin(ΦΨRααΨ
HΦH)

λ′k/σ
2: Effective SNR after compression



Sensor Array Processing–Covariance Case
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probability of subspace swap; n = 188

and m = 28

Empirical MSE and MSE bounds;
Interfering source at θ2 = π/188; 200
snapshots; Averaged over 500 trials;

n = 188 and m = 28.
I Bounds on subspace swap probabilities and SNR treshold are

poredictive of MSE performance loss.
I ML Approximation: Method of intervals

MSE ≈ Pssσ
2
0 + (1− Pss)σ2

CR

P. Pakrooh, A. Pezeshki, and L. L. Scharf, “Threshold effects in parameter estimation from compressed data,”
Proc. 1st IEEE Global Conference on Signal and Information Processing, Austin, TX, Dec. 2013.



References on Breakdown Thresholds

I P. Pakrooh, A. Pezeshki, and L. L. Scharf, “Threshold effects in
parameter estimation from compressed data,” Proc. 1st IEEE Global
Conference on Signal and Information Processing, Austin, TX, Dec.
2013.

I D. Tufts, A. Kot, and R. Vaccaro, The threshold effect in signal
processing algorithms which use an estimated subspace, SVD and
Signal Processing II: Algorithms, Analysis and Applications, New York:
Elsevier, 1991, pp. 301320.

I J. K. Thomas, L. L. Scharf, and D. W. Tufts, The probability of a
subspace swap in the SVD, IEEE Transactions on Signal Processing,
vol. 43, no. 3, pp. 730736, Mar. 1995.

I B. A. Johnson, Y. I. Abramovich, and X. Mestre, MUSIC, G-MUSIC,
and maximum-likelihood performance breakdown, IEEE Transactions
on Signal Processing, vol. 56, no. 8, pp. 3944-3958, Aug. 2008.



Intermediate Recap: Fundamental Limits

I Compression (even with Gaussian or similar random matrices)
has performance consequences.

I The CR bound increases and the onset of threshold SNR
increases. These increases may be quantified to determine where
compressive sampling is viable.
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Basis Mismatch: NonLin. Overdet. vs. Lin. Underdet.

I Convert the nonlinear problem into a linear system via
discretization of the parameter space at desired resolution:

s(θ) =
k−1∑

i=0

ψ(νi )αi

= Ψphα

Over-determined &
nonlinear

s ≈ [ψ(ω1), · · · ,ψ(ωn)]




x1

...
xn




= Ψcsx

Under-determined linear &
sparse

I The set of candidate νi ∈ Ω is quantized to Ω̃ = {ω1, · · · , ωn},
n > m; Ψph unknown and Ψcs assumed known.



Basis Mismatch: A Tale of Two Models

Mathematical (CS) model:

s = Ψcsx

The basis Ψcs is assumed,
typically a gridded imaging
matrix (e.g., n point DFT
matrix or identity matrix), and
x is presumed to be k-sparse.

Physical (true) model:

s = Ψphα

The basis Ψph is unknown, and
is determined by a point spread
function, a Green’s function, or
an impulse response, and α is
k-sparse and unknown.

Key transformation:

x = Ψmisα = Ψ−1
cs Ψphα

x is sparse in the unknown
Ψmis basis, not in the identity
basis.



Basis Mismatch: From Sparse to Incompressible

DFT Grid Mismatch:

Ψmis = Ψ
−1
cs Ψph =




L(∆θ0 − 0) L(∆θ1 − 2π(n−1)
n

) · · · L(∆θn−1 − 2π
n

)

L(∆θ0 − 2π
n

) L(∆θ1 − 0) · · · L(∆θn−1 − 2π·2
n

)

.

.

.

.

.

.
. . .

.

.

.

L(∆θ0 − 2π(n−1)
n

) L(∆θ1 − 2π(n−2)
n

) · · · L(∆θn−1 − 0)




where L(θ) is the Dirichlet kernel:

L(θ) =
1

n

n−1∑

`=0

e j`θ =
1

n
e j θ(n−1)

2
sin(θn/2)

sin(θ/2)
.

−10 −5 0 5 10
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θ/(2π/N)

si
n
(N

θ
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2
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N
si
n
(θ
/
2
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Slow decay of the
Dirichlet kernel means
that the presumably
sparse vector
x = Ψmisα is in fact
incompressible.



Basis Mismatch: Fundamental Question

Question: What is the consequence of assuming that x is k-sparse in
I, when in fact it is only k-sparse in an unknown basis Ψmis , which is
determined by the mismatch between Ψcs and Ψph?

. . . . . .

Basis Mismatch

Two models:

s = Ψ0x = Ψ1θ

Key transformation:

x = Ψθ = Ψ−1
0 Ψ1θ

x is sparse in the unknown Ψ basis, not in the identity basis.

Physical Model CS InverterCS Sampler

y = Φs

min ‖x‖1

s.t. y = ΦΨcsx
s = Ψphα

() June 25, 2014 1 / 1



Sensitivity to Basis Mismatch

I CS Inverter: Basis pursuit solution satisfies

Noise-free: ‖x∗ − x‖1 ≤ C0‖x− xk‖1

Noisy: ‖x∗ − x‖2 ≤ C0k−1/2‖x− xk‖1 + C1ε

where xk is the best k-term approximation to x.

I Similar bounds CoSaMP and ROMP.

I Where does mismatch enter? k-term approximation error.

x = Ψmisα = Ψ−1
cs Ψphα

I Key: Analyze the sensitivity of ‖x− xk‖1 to basis mismatch.



Degeneration of Best k−Term Approximation

Theorem (Chi, Scharf, P., Calderbank (TSP 2011))

Let Ψmis = Ψ−1
cs Ψph = I + E, where x = Ψmisα. Let 1 ≤ p, q ≤ ∞

and 1/p + 1/q = 1.

I If the rows eT` ∈ C1×n of E are bounded as ‖e`‖p ≤ β, then

‖x− xk‖1 ≤ ‖α−αk‖1 + (n − k)β‖α‖q.

I The bound is achieved when the entries of E satisfy

emn = ±β · e j(arg(αm)−arg(αn)) · (|αn|/‖α‖q)q/p.

Y. Chi, L.L. Scharf, A. Pezeshki, and A.R. Calderbank, “Sensitivity to basis mismatch in compressed sensing,”
IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2182–2195, May 2011.



Bounds on Image Inversion Error

Theorem (inversion error)

Let A = ΦΨmis satisfy δA
2k <

√
2− 1 and 1/p + 1/q = 1. If the rows

of E satisfy ‖em‖p ≤ β, then

‖x− x∗‖1 ≤ C0(n − k)β‖α‖q. (noise-free)

‖x− x∗‖2 ≤ C0(n − k)k−1/2β‖α‖q + C1ε. (noisy)

I Message: In the presence of basis mismatch, exact or near-exact
sparse recovery cannot be guaranteed. Recovery may suffer large
errors.

Y. Chi, L.L. Scharf, A. Pezeshki, and A.R. Calderbank, “Sensitivity to basis mismatch in compressed sensing,”
IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2182–2195, May 2011.



Mismatch in Modal Analysis
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Mismatch in Modal Analysis
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Mismatch in Modal Analysis
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Mismatch in Modal Analysis

But what if we make the grid finer and finer?
I Over-resolution experiment:

I m = 25 samples

I Equal amplitude complex tones at f1 = 0.5 Hz and f2 = 0.52 Hz
(half the Rayleigh limit apart), mismatched to mathematical basis.

I Mathematical model is s = Ψcsx, where Ψcs is the m × n, with
n = mL, “DFT” frame that is over-resolved to ∆f = 1/mL.

Ψcs =
1√
m




1 1 · · · 1

1 e j 2π
mL · · · e j 2π(mL−1)

mL

...
...

. . .
...

1 e j 2π(m−1)
mL · · · e j 2π(m−1)(mL−1)

mL



.

I What we will see:
I MSE of inversion is noise-defeated, noise-limited, quantization

limited, or null-space limited—depending on SNR.

L. L. Scharf, E. K. P. Chong, A. Pezeshki, and J. R. Luo, “Sensitivity considerations in compressed sensing,” in
Conf. Rec. Asilomar’11, Pacific Grove, CA,, Nov. 2011, pp. 744–748.



Noise Limited, Quantization Limited, or Null Space Limited
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I From noise-defeated to noise-limited to quantization-limited to
null-space limited.

I Results are actually too optimistic. For a weak mode in the
presence of a strong interfering mode, the results are worse.

L. L. Scharf, E. K. P. Chong, A. Pezeshki, and J. R. Luo, “Sensitivity considerations in compressed sensing,” in
Conf. Rec. Asilomar’11, Pacific Grove, CA,, Nov. 2011, pp. 744–748.



Noise Limited, Quantization Limited, or Null Space Limited
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I Again, from noise-defeated to noise-limited to
quantization-limited to null-space limited.

I Again, for a weak mode in the presence of a strong interfering
mode, the results are much worse.

L. L. Scharf, E. K. P. Chong, A. Pezeshki, and J. R. Luo, “Sensitivity considerations in compressed sensing,” in
Conf. Rec. Asilomar’11, Pacific Grove, CA,, Nov. 2011, pp. 744–748.



Scatter Plots for BPDN Estimates

I Scatter plots for the normalized errors in estimating the sum and
difference frequencies using BPDN.
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I At L = 2 mean-squared error is essentially bias-squared, whereas for
L = 9 it is essentially variance.

I Average frequency is easy to estimate, but the difference frequency is
hard to estimate. (Vertical scale is nearly 10 times the horizontal scale.)

I BPDN favors large negative differences over large positive differences
(better estimates the mode at f1 than it estimates the mode at f2).



Scatter Plots for OMP Estimates

I Scatter plots for the normalized errors in estimating the sum and
difference frequencies using BPDN.
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I Preference for large negative errors in estimating the difference
frequency disappears.

I Correlation between sum and difference errors reflects the fact that a
large error in extracting the first mode will produce a large error in
extracting the second.
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Remedies to Basis Mismatch : A Partial List

These approaches still assume a grid.

I H. Zhu, G. Leus, and G. B. Giannakis, “Sparsity-cognizant total
least-squares for perturbed compressive sampling,” IEEE Transactions
on Signal Processing, vol. 59, May 2011.

I M. F. Duarte and R. G. Baraniuk, “Spectral compressive sensing,”
Applied and Computational Harmonic Analysis, Vol. 35, No. 1, pp.
111-129, 2013.

I A. Fannjiang and W. Liao, “Coherence-Pattern Guided Compressive
Sensing with Unresolved Grids,” SIAM Journal of Imaging Sciences,
Vol. 5, No. 1, pp. 179-202, 2012.



Intermediate Recap: Sensitivity of CS to Basis Mismatch

I Basis mismatch is inevitable and sensitivities of CS to basis
mismatch need to be fully understood. No matter how finely we
grid the parameter space, the actual modes almost never lie on
the grid.

I The consequence of over-resolution (very fine gridding) is that
performance follows the Cramer-Rao bound more closely at low
SNR, but at high SNR it departs more dramatically from the
Cramer-Rao bound.

I This matches intuition that has been gained from more
conventional modal analysis where there is a qualitatively similar
trade-off between bias and variance. That is, bias may be
reduced with frame expansion (over-resolution), but there is a
penalty to be paid in variance.
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Going Off the Grid

We will discuss two recent approaches that allow for parameter
estimation without discretization with theoretical guarantees.

I Atomic Norm Minimization by [Tang et. al., 2012]:
I Tightest convex relaxation to recover the spectral sparse signals;
I Θ(r log r log n) samples are sufficient to guarantee exact recovery

if the frequencies are well-separated by about 4RL;
I Extensions to multi-dimensional frequencies and multiple

measurement vector models.
I Enhanced Matrix Completion by [Chen and Chi, 2013]:

I take advantage of shift invariance of harmonics and reformulate
the problem into completion of a matrix pencil.

I Θ(r log3 n) samples are sufficient to guarantee exact recovery if
the Gram matrix formed by sampling the Dirichlet kernel at
pairwise frequency separations are well-conditioned.

I work with multi-dimensional frequencies.

G. Tang; Bhaskar, B.N.; Shah, P.; Recht, B., ”Compressed Sensing Off the Grid,” Information Theory, IEEE
Transactions on , vol.59, no.11, pp.7465,7490, Nov. 2013.

Y. Chen and Y. Chi, “Robust Spectral Compressed Sensing via Structured Matrix Completion,” IEEE Trans. on
Information Theory, Apr. 2013, in revision.
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The Atomic Norm Approach

The atomic norm is proposed to find tightest convex relaxations of
general parsimonious models including sparse signals as a special case.
The prescribed recipe is:

I Step 1: assume the signal of interest can be written as a
superposition of small numbers of atoms in A:

x =
r∑

i=1

ciai , ai ∈ A, ci > 0.

I Step 2: define the atomic norm of the signal as:

‖x‖A = inf {t > 0 : x ∈ tconv(A)}

= inf

{∑

i

ci

∣∣∣x =
∑

i

ciai , ai ∈ A, ci > 0

}
.

I Step 3: formulate a convex program to minimize the atomic
norm with respect to the measurements.

Chandrasekaran, V., B. Recht, P. A. Parrilo, and A. S. Willsky. ”The convex geometry of linear inverse
problems.” Foundations of Computational Mathematics 12, no. 6 (2012): 805-849.



Examples: The Atomic Norm Approach

Several popular approaches become special cases of the atomic norm
minimization framework.

I Sparse signals: an atom for sparse signals is a normalized vector
of sparsity one, and the atomic norm is `1 norm;

I Low-rank matrices: an atom for low-rank matrices is a
normalized rank-one matrix; and the atomic norm is nuclear
norm;

(a) unit ball of `1 norm (b) unit ball of nuclear norm

Chandrasekaran, V., B. Recht, P. A. Parrilo, and A. S. Willsky. ”The convex geometry of linear inverse
problems.” Foundations of Computational Mathematics 12, no. 6 (2012): 805-849.



Atomic Norm For Spectrally-Sparse Signals

I Let x(t) =
∑r

i=1 die
j2πfi t , fi ∈ [0, 1), t = 0, . . . , n − 1. Denote

F = {fi}ri=1.

I Stack x(t) into a vector x: x =
∑r

i=1 dia(fi ), di ∈ C where a(f )
is the atom defined as

a(f ) =
1√
n

[
1 e j2πf . . . e j2πf (n−1)

]
.

I Atomic norm:

‖x‖A = inf

{∑

k

|ck |
∣∣∣x =

∑

k

cka(fk), fk ∈ [0, 1)

}

= inf
u,t

{
1

2
Tr(toep(u)) +

1

2
t
∣∣∣
[
toep(u) x

x∗ t

]
� 0

}
.

which can be equivalently given in an SDP form.

G. Tang; Bhaskar, B.N.; Shah, P.; Recht, B., ”Compressed Sensing Off the Grid,” Information Theory, IEEE
Transactions on , vol.59, no.11, pp.7465,7490, Nov. 2013.



Spectral Compressed Sensing with Atomic Norm

I Random Subsampling: We observe a subset Ω of entries of x
uniformly at random:

xΩ = PΩ (x) .

I Atomic Norm Minimization:

min
s
‖s‖A subject to sΩ = xΩ,

I It can be solved efficiently using off-the-shelf SDP solvers.

(Primal:) min
u,s,t

1

2
Tr(toep(u)) +

1

2
t

subject to

[
toep(u) s

s∗ t

]
� 0,

sΩ = xΩ.

G. Tang; Bhaskar, B.N.; Shah, P.; Recht, B., ”Compressed Sensing Off the Grid,” Information Theory, IEEE
Transactions on , vol.59, no.11, pp.7465,7490, Nov. 2013.



Recovering the Frequencies via Dual Polynomial

I The dual problem can be used to recover the frequencies:

(Dual:) max
q
〈qΩ, xΩ〉R subject to ‖q‖∗A ≤ 1, qΩc = 0.

where ‖q‖∗A = sup
f ∈[0,1)

|〈q, a(f )〉| := sup
f ∈[0,1)

Q(f )

I The primal problem is optimal when the dual polynomial Q(f )
satisfies:





Q(fi ) = sign(di ), fi ∈ F
|Q(f )| < 1, f /∈ F
qΩc = 0

I This is also stable under noise.

G. Tang; Bhaskar, B.N.; Shah, P.; Recht, B., ”Compressed Sensing Off the Grid,” Information Theory, IEEE
Transactions on , vol.59, no.11, pp.7465,7490, Nov. 2013.



Performance Guarantees for Noiseless Recovery

Theorem (Tang et. al., 2012)

Suppose a subset of m entries are observed uniformly at random.
Additionally, assume the phase of the coefficients are drawn i.i.d.
from the uniform distribution on the complex unit circle and

∆ = min
fj 6=fk
|fj − fk | ≥

1

b(n − 1)/4c ,

then m ≥ C
{

log2 n
δ , r log n

δ log r
δ

}
is sufficient to guarantee exact

recovery with probability at least 1− δ with respect to the random
samples and signs, where C is some numerical constant.

I Random data model, and random observation model.
I m = Θ(r log n log r) samples suffice if a separation condition of

about 4RL is satisfied.

G. Tang; Bhaskar, B.N.; Shah, P.; Recht, B., ”Compressed Sensing Off the Grid,” Information Theory, IEEE
Transactions on , vol.59, no.11, pp.7465,7490, Nov. 2013.



Phase Transition

Figure : Phase transition diagrams when n = 128 and the separation is set
to be 1.5 RL. Both signs and magnitudes of the coeffients are random.

G. Tang; Bhaskar, B.N.; Shah, P.; Recht, B., ”Compressed Sensing Off the Grid,” Information Theory, IEEE
Transactions on , vol.59, no.11, pp.7465,7490, Nov. 2013.



Extension for MMV Models

I For multiple spectrally-sparse signals X =
∑r

i=1 a(fi )b∗i ∈ Cn×L,
we define the atomic set A composed of atoms as

A(f ,b) = a(f )b∗ ∈ Cn×L, ‖b‖2 = 1.

I The atomic norm is defined and computed as [Chi, 2013]

‖X‖A = inf

{∑

k

ck
∣∣X =

∑

k

ckA(fk ,bk), ck ≥ 0

}

= inf
u,W

{
1

2
Tr(toep(u)) +

1

2
Tr(W)

∣∣∣
[
toep(u) X

X∗ W

]
� 0

}
.

I The single vector case becomes a special case when L = 1. The
algorithm is tractable however the complexity might become high
when L is large.

Y. Chi, “Joint Sparsity Recovery for Spectral Compressed Sensing”, in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Florence, Italy, May 2014.



Two-Dimensional Frequency Model

I Stack x (t) =
∑r

i=1 die
j2π〈t,fi 〉 into a matrix X ∈ Cn1×n2 .

I The matrix X has the following Vandermonde decomposition:

X = Y · D︸︷︷︸
diagonal matrix

· ZT .

Here, D := diag {d1, · · · , dr} and

Y :=


1 1 · · · 1
y1 y2 · · · yr
...

...
...

...

yn1−1
1 yn1−1

2 · · · yn1−1
r


︸ ︷︷ ︸

Vandemonde matrix

,Z :=


1 1 · · · 1
z1 z2 · · · zr
...

...
...

...

zn2−1
1 zn2−1

2 · · · zn2−1
r


︸ ︷︷ ︸

Vandemonde matrix

where yi = exp(j2πf1i ), zi = exp(j2πf2i ), fi = (f1i , f2i ).

I Goal: We observe a random subset of entries of X, and wish to
recover the missing entries.



Extension for Two-dimensional Frequencies

I The atomic norm can be similarly defined for two-dimensional
frequencies and similar sample complexity holds [Chi and Chen,
2013].

I However, the atomic norm doesn’t have a simple equivalent SDP
form as in 1D since the Vandermonde decomposition lemma
doesn’t hold for two-dimensional frequencies.

I The exact SDP characterization is studied by [Xu et. al., 2014].

Y. Chi and Y. Chen, “Compressive Recovery of 2-D Off-Grid Frequencies,” in Asilomar Conference on Signals,
Systems, and Computers (Asilomar), Pacific Grove, CA, Nov. 2013.

Xu, Weiyu, et al. ”Precise semidefinite programming formulation of atomic norm minimization for recovering
d-dimensional (D ≥ 2) off-the-grid frequencies.” Information Theory and Applications Workshop (ITA), 2014.



Just Discretize?

I Consider a fine discretization of the parameter space

Fm = {ω1, . . . , ωm} ⊂ [0, 1)

and Am = [a(ω1), . . . , a(ωm)], a discrete approximation of the
atomic norm minimization is

(Primal-discrete:) min
cm
‖cm‖1 s.t. Am

Ω cm = xΩ

(Dual-discrete:) max
q
〈qΩ, xΩ〉R s.t. |〈q, a(ωm)〉| ≤ 1, i = 1, . . . ,m;

qΩc = 0.

I Under mild technical conditions, the solution to the discrete
approximation converges to that of the atomic norm
minimization as the discretization gets finer.

Tang, G., B. N. Bhaskar, and B. Recht. ”Sparse recovery over continuous dictionaries-just discretize.” Signals,
Systems and Computers, 2013 Asilomar Conference on. IEEE, 2013..
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Matrix Completion?

recall that X = Y︸︷︷︸
Vandemonde

· D︸︷︷︸
diagonal

· ZT
︸︷︷︸

Vandemonde

.

where D := diag {d1, · · · , dr}, and

Y :=


1 1 · · · 1
y1 y2 · · · yr
...

...
...

...

yn1−1
1 yn1−1

2 · · · yn1−1
r

,Z :=


1 1 · · · 1
z1 z2 · · · zr
...

...
...

...

zn2−1
1 zn2−1

2 · · · zn2−1
r


I Quick observation: X is a low-rank matrix with rank(X) = r .

I Quick idea: can we apply Matrix Completion algorithms on X?

Convex Relaxation




√
? ?

√ √
?

√
?

√ √
? ?

√ √
?√ √ √ √
?√ √

? ?
√




︸ ︷︷ ︸
Σ

decompose
=




√
0 0

√ √
0

√
0

√ √
0 0

√ √
0√ √ √ √
0√ √

0 0
√




︸ ︷︷ ︸
Σ0

+




0 ? ? 0 0
? 0 ? 0 0
? ? 0 0 ?
0 0 0 0 ?
0 0 ? ? 0




︸ ︷︷ ︸
H

• Applying Taylor expansion:

Σn
o = Σn

o K∗
︸︷︷︸

sparse matrix

Σn
o + H∗

︸︷︷︸
support known

+ W︸︷︷︸
residual

– Treat W as noise (BUT WHY???)
⇐ W small
⇐ H∗K∗H∗ and Σ0 − Σn

0 small

Yuxin Chen () Model Selection with Missing Data June 21, 2011 9 / 19



Matrix Completion

I Matrix Completion can be thought as an extension of CS to
low-rank matrices.

I The Netflix problem: Let X ∈ Rn1×n2 satisfying rank(X) = r .

Convex Relaxation




√
? ?

√ √
?

√
?

√ √
? ?

√ √
?√ √ √ √
?√ √

? ?
√




︸ ︷︷ ︸
Σ

decompose
=




√
0 0

√ √
0

√
0

√ √
0 0

√ √
0√ √ √ √
0√ √

0 0
√




︸ ︷︷ ︸
Σ0

+




0 ? ? 0 0
? 0 ? 0 0
? ? 0 0 ?
0 0 0 0 ?
0 0 ? ? 0




︸ ︷︷ ︸
H

• Applying Taylor expansion:

Σn
o = Σn

o K∗
︸︷︷︸

sparse matrix

Σn
o + H∗

︸︷︷︸
support known

+ W︸︷︷︸
residual

– Treat W as noise (BUT WHY???)
⇐ W small
⇐ H∗K∗H∗ and Σ0 − Σn

0 small

Yuxin Chen () Model Selection with Missing Data June 21, 2011 9 / 19

I Given the set of observations PΩ(X), find the matrix with the
smallest rank that satisfies the observations:

minimize
M∈Rn1×n2

rank(M)

subject to PΩ (M) = PΩ (X) ,

users

movies



Solve MC via Nuclear Norm Minimization

I Relax the rank minimization problem to a convex optimization:

minimize
M∈Rn1×n2

‖M‖∗

subject to PΩ (M) = PΩ (X) ,

where ‖M‖∗ = sum(σi (M)).
I Coherence measure: Let the SVD of X = UΛVT . Define the

coherence measure

max
1≤i≤n1

‖UTei‖2 ≤
√
µn1

r
, max

1≤i≤n2

‖VTei‖2 ≤
√
µn2

r
.

where ei ’s are standard basis vectors.
I 1 ≤ µ ≤ max(n1, n2)/r ;
I subspace with low coherence: e.g. all one vectors;
I subspace with high coherence: e.g. standard basis vectors.

Candès, E. J., and B. Recht. ”Exact matrix completion via convex optimization.” Foundations of
Computational mathematics 9.6 (2009): 717-772.
Candès, E. J., and T. Tao. ”The power of convex relaxation: Near-optimal matrix completion.” Information
Theory, IEEE Transactions on 56.5 (2010): 2053-2080.



Performance Guarantees and Its Implication

Theorem (Candès and Recht 2009, Gross 2010, Chen 2013)

Assume we collect m = |Ω| samples of X uniformly at random. Let
n = max{n1, n2}. Then the nuclear norm minimization algorithm
recovers X exactly with high probability if

m > Cµrn log2 n

where C is some universal constant.

I Implication on our problem: Can we apply Matrix Completion
algorithms on the two-dimensional frequency data matrix X?

I Yes, but it yields sub-optimal performance. It requires at least
r max{n1, n2} samples.

I No, X is no longer low-rank if r > min (n1, n2). Note that r can
be as large as n1n2

Candès, E. J., and B. Recht. ”Exact matrix completion via convex optimization.” Foundations of
Computational mathematics 9.6 (2009): 717-772.
Gross, David. ”Recovering low-rank matrices from few coefficients in any basis.” Information Theory, IEEE
Transactions on 57, no. 3 (2011): 1548-1566.
Chen, Yudong. ”Incoherence-Optimal Matrix Completion.” arXiv preprint arXiv:1310.0154 (2013).



Revisiting Matrix Pencil: Matrix Enhancement

Given a data matrix X, Hua proposed the
following matrix enhancement for
two-dimensional frequency models:

I Choose two pencil parameters k1 and k2;
5 10 15 20 25 30 35

5

10

15

20

25

30

35

I An enhanced form Xe is an k1 × (n1 − k1 + 1) block
Hankel matrix :

Xe =




X0 X1 · · · Xn1−k1

X1 X2 · · · Xn1−k1+1

...
...

...
...

Xk1−1 Xk1 · · · Xn1−1


 ,

where each block is a k2 × (n2 − k2 + 1) Hankel matrix as
follows

Xl =




xl,0 xl,1 · · · xl,n2−k2

xl,1 xl,2 · · · xl,n2−k2+1

...
...

...
...

xl,k2−1 xl,k2 · · · xl,n2−1


 .



Low Rankness of the Enhanced Matrix

I Choose pencil parameters k1 = Θ(n1) and k2 = Θ(n2), the
dimensionality of Xe is proportional to n1n2 × n1n2.

I The enhanced matrix can be decomposed as follows:

Xe =




ZL

ZLYd
...

ZLYk1−1
d


D

[
ZR,YdZR, · · · ,Yn1−k1

d ZR

]
,

I ZL and ZR are Vandermonde matrices specified by z1, . . . , zr ,
I Yd = diag [y1, y2, · · · , yr ].

I The enhanced form Xe is low-rank.
I rank (Xe) ≤ r

I Spectral Sparsity ⇒ Low Rankness

I holds even with damping modes.

Hua, Yingbo. ”Estimating two-dimensional frequencies by matrix enhancement and matrix pencil.” Signal
Processing, IEEE Transactions on 40, no. 9 (1992): 2267-2280.



Enhanced Matrix Completion (EMaC)

I The natural algorithm is to find the enhanced matrix with the
minimal rank satisfying the measurements:

minimize
M∈Cn1×n2

rank (Me)

subject to Mi ,j = Xi ,j ,∀(i , j) ∈ Ω

where Ω denotes the sampling set.

I Motivated by Matrix Completion, we will solve its convex
relaxation:

(EMaC) : minimize
M∈Cn1×n2

‖Me‖∗
subject to Mi ,j = Xi ,j , ∀(i , j) ∈ Ω

where ‖ · ‖∗ denotes the nuclear norm.

I The algorithm is referred to as Enhanced Matrix Completion
(EMaC).



Enhanced Matrix Completion (EMaC)

(EMaC) : minimize
M∈Cn1×n2

‖Me‖∗
subject to Mi ,j = Xi ,j ,∀(i , j) ∈ Ω

I existing MC result won’t apply – requires at least O(nr) samples

I Question: How many samples do we need?

Convex Relaxation



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=
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

√
0 0

√ √
0

√
0

√ √
0 0

√ √
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0 0
√


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Σ0

+


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0 ? ? 0 0
? 0 ? 0 0
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


︸ ︷︷ ︸
H

• Applying Taylor expansion:

Σn
o = Σn

o K∗
︸︷︷︸

sparse matrix

Σn
o + H∗

︸︷︷︸
support known

+ W︸︷︷︸
residual

– Treat W as noise (BUT WHY???)
⇐ W small
⇐ H∗K∗H∗ and Σ0 − Σn

0 small
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Introduce Coherence Measure

I Define the 2-D Dirichlet kernel:

K(k1, k2, f1, f2) :=
1

k1k2

(
1− e−j2πk1f1

1− e−j2πf1

)(
1− e−j2πk2f2

1− e−j2πf2

)
,

I Define GL and GR as r × r Gram matrices such that

(GL)i ,l = K(k1, k2, f1i − f1l , f2i − f2l),

(GR)i ,l = K(n1 − k1 + 1, n2 − k2 + 1, f1i − f1l , f2i − f2l).
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Introduce Coherence Measure

I Incoherence condition holds w.r.t. µ if

σmin (GL) ≥ 1

µ
, σmin (GR) ≥ 1

µ
.

I µ = Θ(1) holds under many scenarios:
I Randomly generated frequencies;
I Mild perturbation of grid points;
I In 1D, well-separated frequencies by 2 times RL [Liao and

Fannjiang, 2014].

W. Liao and A. Fannjiang. ”MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution.”
arXiv preprint arXiv:1404.1484 (2014).



Theoretical Guarantees for Noiseless Case

Theorem (Chen and Chi, 2013)

Let n = n1n2. If all measurements are noiseless, then EMaC recovers
X perfectly with high probability if

m > Cµr log3 n.

where C is some universal constant.

I deterministic signal model, random observation;
I coherence condition µ only depends on the frequencies but the

amplitudes.
I near-optimal within logarithmic factors: Θ(r log3 n).
I general theoretical guarantees for Hankel (Toeplitz) matrix

completion, which are useful for applications in control, MRI,
natural language processing, etc.

Y. Chen and Y. Chi, “Robust Spectral Compressed Sensing via Structured Matrix Completion,” IEEE Trans. on
Information Theory, Apr. 2013, in revision.



Phase Transition

m: number of samples

r:
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Figure : Phase transition diagrams where spike locations are randomly
generated. The results are shown for the case where n1 = n2 = 15.



Robustness to Bounded Noise

Assume the samples are noisy X = Xo + N, where N is bounded
noise:

(EMaC-Noisy) : minimize
M∈Cn1×n2

‖Me‖∗
subject to ‖PΩ (M− X) ‖F ≤ δ,

Theorem (Chen and Chi, 2013)

Suppose Xo satisfies ‖PΩ(X− Xo)‖F ≤ δ. Under the conditions of
Theorem 1, the solution to EMaC-Noisy satisfies

‖X̂e − Xe‖F ≤
{

2
√

n + 8n +
8
√

2n2

m

}
δ

with probability exceeding 1− n−2.
I The average entry inaccuracy is bounded above by O( n

mδ). In
practice, EMaC-Noisy usually yields better estimate.

Y. Chen and Y. Chi, “Robust Spectral Compressed Sensing via Structured Matrix Completion,” IEEE Trans. on
Information Theory, Apr. 2013, in revision.



Singular Value Thresholding (Noisy Case)

I Several optimized solvers for Hankel matrix completion exist, for
example [Fazel et. al. 2013, Liu and Vandenberghe 2009]

Algorithm 1 Singular Value Thresholding for EMaC

1: initialize Set M0 = Xe and t = 0.
2: repeat
3: 1) Qt ← Dτt (Mt) (singular-value thresholding)
4: 2) Mt ← HankelX0 (Qt) (projection onto a Hankel matrix consistent

with observation)
5: 3) t ← t + 1
6: until convergence
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Robustness to Sparse Outliers

I What if a constant portion of measurements are arbitrarily
corrupted?

Xcorrupted
i ,l = Xi ,l + Si ,l

where Si ,l is of arbitrary amplitude.
I Reminiscent of the robust PCA approach [Candes et. al. 2011,

Chandrasekaran et. al. 2011]

I Solve the following algorithm:

(RobustEMaC) : minimize
M,S∈Cn1×n2

‖Me‖∗ + λ‖Se‖1

subject to (M + S)i ,l = Xcorrupted
i ,l , ∀(i , l) ∈ Ω
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Theoretical Guarantees for Robust Recovery

(RobustEMaC) : minimize
M,S∈Cn1×n2

‖Me‖∗ + λ‖Se‖1

subject to (M + S)i ,l = Xcorrupted
i ,l , ∀(i , l) ∈ Ω.

Theorem (Chen and Chi, 2013)

Assume the percent of corrupted entries is s is a small constant. Set
n = n1n2 and λ = 1√

m log n
. Then RobustEMaC recovers X with high

probability if
m > Cµr 2 log3 n,

where C is some universal constant.

I Sample complexity: m ∼ Θ(r 2 log3 n), slight loss than the
previous case;

I Robust to a constant portion of outliers: s ∼ Θ(1)

Y. Chen and Y. Chi, “Robust Spectral Compressed Sensing via Structured Matrix Completion,” IEEE Trans. on
Information Theory, Apr. 2013, in revision.



Robustness to Sparse Corruptions
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Figure : Robustness to sparse corruptions: (a) Clean signal and its corrupted
subsampled samples; (b) recovered signal and the sparse corruptions.



Phase Transition for Line Spectrum Estimation

Fix the amount of corruption as 10% of the total number of samples:
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Figure : Phase transition diagrams where spike locations are randomly
generated. The results are shown for the case where n = 125.



Comparisons between the two Approaches

EMaC Atomic Norm

Signal model Deterministic Random

Observation model Random Random

Success Condition Coherence Separation condition

Amplitudes No condition Randomly generated

Sample Complexity Θ(r log3 n) Θ(r log r log n)

Bounded Noise Yes Not shown

Sparse Corruptions Yes Not shown



Comparisons of EMaC and Atomic Norm Minimization

Phase transition for line spectrum estimation: numerically, the
EMaC approach seems less sensitive to the separation condition.

• without separation

• with 1.5 RL separation

EMaC Atomic Norm
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Concluding Remarks

I Compression, whether by linear maps (e.g, Gaussian) or by
subsampling, has performance consequences for parameter
estimtion. Fisher information decreases, CRB increases, and the
onset of breakdown threshold increases.

I Model mismatch is inevitable and can result in considerable
performamce degredation, and therefore sensitivities of CS to
model mismatch need to be fully understood.

I Recent off-the-grid methods provide a way forward for a class of
problems, where modes to be estimated respect certain
separation or coherence conditions. But sub-Rayleigh resolution
still eludes us!



Thank You! Questions?
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