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Low-Rank Matrix Completion
Yuejie Chi, Senior Member, IEEE

Imagine one observes a small subset of entries in a large matrix and aims to recover the entire matrix. Without
a priori knowledge of the matrix, this problem is highly ill-posed. Fortunately, data matrices often exhibit low-
dimensional structures that can be used effectively to regularize the solution space. The celebrated effectiveness of
Principal Component Analysis (PCA) in science and engineering suggests that most variability of real-world data can
be accounted for by projecting the data onto a few directions known as the principal components. Correspondingly,
the data matrix can be modeled as a low-rank matrix, at least approximately. Is it possible to complete a partially
observed matrix if its rank, i.e., its maximum number of linearly-independent row or column vectors, is small?

Low-rank matrix completion arises in a variety of applications in recommendation systems, computer vision,
and signal processing. As a motivating example, consider users’ ratings of products arranged in a rating matrix.
Each rating may only be affected by a small number of factors – such as price, quality, and utility – and how
they are reflected on the products’ specifications and users’ expectations. Naturally, this suggests that the rating
matrix is low-rank, since the numbers of users and products are much higher than the number of factors. Often,
the rating matrix is sparsely observed, and it is of great interest to predict the missing ratings to make targeted
recommendations.

I. RELEVANCE

The theory and algorithms of low-rank matrix completion have been significantly expanded in the last decade
with converging efforts from signal processing, applied mathematics, statistics, optimization and machine learning.
This lecture note provides an introductory exposition of some key results in this rapidly developing field.

II. PREREQUISITES

We expect the readers to be familiar with basic concepts in linear algebra, optimization and probability to
understand this lecture note.

III. PROBLEM STATEMENT

Let M ∈ Rn1×n2 be a rank-r matrix, whose thin Singular Value Decomposition (SVD) is given as

M = UΣV >, (1)

where U ∈ Rn1×r, V ∈ Rn2×r are composed of orthonormal columns, and Σ is an r-dimensional diagonal matrix
with the singular values arranged in a non-increasing order, i.e. σ1 ≥ · · · ≥ σr > 0. The “degrees of freedom” of
M is (n1 + n2 − r)r, which is the total number of parameters we need to uniquely specify M .

Assume we are given partial observations of M over an index set Ω ⊂ {1, 2, . . . , n1} × {1, 2, . . . , n2}. To
concisely put it, define the observation operator PΩ : Rn1×n2 → Rn1×n2 as

[PΩ(M)]ij =

{
Mij , (i, j) ∈ Ω

0, otherwise
.

Our goal is to recover M from PΩ(M), when the number of observation m = |Ω| � n1n2 is much smaller
than the number of entries in M , under the assumption that M is low-rank, i.e. r � min{n1, n2}. For notational
simplicity in the sequel, let n = max{n1, n2}.
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IV. SOLUTION

A. Which low-rank matrices can we complete?

To begin with, we ask the following question: what kind of low-rank matrices can we complete? To motivate,
consider the following 4× 4 rank-1 matrices M1 and M2, given as

M1 =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 , M2 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .
The matrix M1 is more difficult to complete, since most of its entries are zero, and we need to collect more
measurements to make sure enough mass comes from its nonzero entries. In contrast, the mass of M2 is more
uniformly distributed across all entries, making it easier to propagate information from one entry to another.

To put it differently, a low-rank matrix is easier to complete if its energy spreads evenly across different coordinates.
This property is captured by the notion of coherence [1], which measures the alignment between the column/row
spaces of the low-rank matrix with standard basis vectors. For a matrix U ∈ Rn1×r with orthonormal columns, let
PU be the orthogonal projection onto the column space of U . The coherence parameter of U is defined as

µ(U) =
n1

r
max

1≤i≤n1

‖PUei‖22 =
n1

r
max

1≤i≤n1

∥∥∥U>ei∥∥∥2

2
, (2)

where ei is the ith standard basis vector. Fig. 1 provides a geometric illustration of the coherence parameter µ(U).
For a low-matrix M whose SVD is given in (1), the coherence of M is defined as

µ = max{µ(U), µ(V )}. (3)

Notably, the coherence µ is determined by the the singular vectors of M and independent of its singular values.
Since 1 ≤ µ(U) ≤ n1/r and 1 ≤ µ(V ) ≤ n2/r, we have 1 ≤ µ ≤ n/r. In the earlier example, the coherence of
M1 matches the upper bound n/r, while the coherence of M2 matches the lower bound 1. The smaller µ is, the
easier it is to complete the matrix.
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Fig. 1. Illustration of the coherence parameter µ(U). µ(U) is small when all the standard basis vectors ei have approximately the same
projections onto the subspace U , as shown in (a); and µ(U) is large if U is too aligned with certain standard basis vector, as shown in (b).

B. Which observation patterns can we handle?

Low-rank matrix completion can still be hopeless even when most of the entries are observed. Consider, for
example, the following observation pattern for a 4× 4 matrix:

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

 ,
where ? indicates an observed entry, and ? indicates a missing entry. The last column of the matrix cannot be
recovered since it can lie anywhere in the column space of the low-rank matrix. Therefore, we require at least
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r observations per column/row. To bypass such pessimistic observation patterns, it is useful to think of random
observation patterns. A popular choice is the Bernoulli model, where each entry is observed independently and
identically with probability p := m/(n1n2). By a coupon-collecting argument [2], under the Bernoulli model, it
is impossible to recover a low-rank matrix with less than some constant times µnr log n measurements using any
algorithm, which is referred to as the information-theoretic lower bound. Compared with the degrees of freedom
which is on the order of nr, we pay a price in sample complexity by a factor of µ log n, highlighting again the role
of coherence in low-rank matrix completion.

C. Matrix completion via convex optimization

We present the first algorithm based on convex optimization. To promote the low-rank structure of the solution, a
natural heuristic is to find the matrix with the minimum rank that is consistent with the observations, leading to

min
Φ∈Rn1×n2

rank(Φ) s.t. PΩ(Φ) = PΩ(M). (4)

However, since rank minimization is NP-hard, the above formulation is intractable. Motivated by the success of
`1 norm minimization for sparse recovery in compressed sensing [3], we consider convex relaxation for the rank
heuristic. Observing that the rank of Φ equals to the number of its nonzero singular values, we replace rank(Φ) by
the sum of its singular values, denoted as the nuclear norm:

‖Φ‖∗ ,
min{n1,n2}∑

i=1

σi(Φ),

where σi(Φ) is the ith singular value of Φ. The nuclear norm is the tightest convex relaxation of the rank constraint,
i.e. the nuclear norm ball {Φ : ‖Φ‖∗ ≤ 1} is the convex hull of the collection of unit-norm rank-1 matrices:
{uv> : ‖u‖ = ‖v‖ = 1}. Notably, the nuclear norm is also unitarily invariant, and can be represented as the
solution to a semidefinite program,

‖Φ‖∗ = min
W1,W2

1

2
(Tr(W1) + Tr(W2))

s. t.
[
W1 Φ
Φ> W2

]
� 0.

Hence, instead of solving (4) directly, we solve nuclear norm minimization, which searches for a matrix with the
minimum nuclear norm that satisfies all the measurements:

min
Φ∈Rn1×n2

‖Φ‖∗ s.t. PΩ(Φ) = PΩ(M). (5)

This gives a convex program that can be solved efficiently in polynomial time. Moreover, it doesn’t require knowledge
of the rank a priori.

The performance of nuclear norm minimization has been investigated in a recent line of elegant works [2]-[5],
which suggests it can exactly recover a low-rank matrix as soon as the number of measurements is slightly larger
than the information-theoretic lower bound by a logarithmic factor. Suppose that each entry of M is observed
independently with probability p ∈ (0, 1). If p satisfies

p ≥ Cµr log2 n

n
,

for some large enough constant C > 0, then with high probability, the nuclear norm minimization algorithm (5)
exactly recovers M as the unique optimal solution of (5). Fig. 2 illustrates the geometry of nuclear norm minimization
when the number of measurements is sufficiently large. When both µ and r are much smaller than n, this means
we can recover a low-rank matrix even when the proportion of observations is vanishingly small.

D. Matrix completion via nonconvex optimization

The computational and memory complexities of nuclear norm minimization can be quite expensive for large-scale
problems, even with first-order methods, due to optimizing over and storing the matrix variable Φ. Therefore, it
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Fig. 2. Geometric illustration of nuclear norm minimization: the cylinder represents level sets of the nuclear norm; the hyperplane represents
the measurement constraint. The two sets intersect at the thickened edges, which correspond to low-rank solutions.

is necessary to consider alternative approaches whose complexities scale more favorably in n. This leads to the
second algorithm based on gradient descent using a proper initialization. If the rank of the matrix M is known, it
is natural to incorporate this knowledge and consider a rank-constrained least-squares problem:

min
Φ∈Rn1×n2

‖PΩ(Φ−M)‖2F , s.t rank(Φ) ≤ r, (6)

where ‖ · ‖F is the Frobenius norm of a matrix. Invoking the low-rank factorization Φ = XY >, where X ∈ Rn1×r

and Y ∈ Rn2×r, we can rewrite (6) as an unconstrained, yet nonconvex optimization problem:

min
X,Y

f(X,Y ) :=
∥∥∥PΩ(XY > −M)

∥∥∥2

F
. (7)

On one end, the memory complexities of X and Y are linear in n instead of quadratic in n when dealing with Φ.
On the other end, we can only determine X and Y up to scaling and rotational ambiguities in (7), since for any
α 6= 0 and orthonormal matrix Q ∈ Rr×r, we have XY > = (αXQ)(α−1Y Q)>. To fix the scaling ambiguity, it
is useful to consider a modified loss function1

F (X,Y ) =
1

4p
f(X,Y ) +

1

16

∥∥∥X>X − Y >Y
∥∥∥2

F
,

where the second term is introduced to motivate solutions where X and Y have balanced norms.
How do we optimize the nonconvex loss F (X,Y )? A plausible strategy proceeds in two steps.

1) The first step aims to find an initialization that is close to the ground truth, which can be provided via the
so-called spectral method [6]. Consider the partially-observed matrix 1

pPΩ(M), which is an unbiased estimate of

M with expectation E
[

1
pPΩ(M)

]
= M . Therefore, its best rank-r approximation produces a reasonably good

initial guess. Let U0Σ0V
>

0 be the best rank-r approximation of 1
pPΩ(M), where U0 ∈ Rn1×r, V0 ∈ Rn2×r

contain orthonormal columns and Σ0 is an r× r diagonal matrix. The spectral initialization sets X0 = U0Σ
1/2
0

and Y0 = V0Σ
1/2
0 .

2) The second step aims to refine the initial estimate locally via simple iterative methods, such as gradient descent
[7], [8], following the update rule [

Xt+1

Yt+1

]
=

[
Xt

Yt

]
− ηt

[
∇XF (Xt,Yt)
∇Y F (Xt,Yt)

]
, (8)

where ηt is the step size, and ∇XF (X,Y ), ∇Y F (X,Y ) are the partial derivatives with respect to X and
Y that can be derived easily.

Recall the SVD of M in (1), denote X\ = UΣ1/2 and Y \ = V Σ1/2; this allows us to write the factorization
as M = X\Y \> and call Z\ = [X\>,Y \>]> ∈ R(n1+n2)×r the ground truth. Since Z\ is only identifiable up to

1The observation probability p, if not known, can be faithfully estimated by the sample proportion |Ω|/(n1n2).
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orthonormal transforms, let the optimal transform between the tth iterate Zt = [X>t ,Y
>
t ]> ∈ R(n1+n2)×r and Z\ as

Ht := argmin
R∈Rr×r,RR>=I

∥∥∥ZtR−Z\
∥∥∥

F
.

Assume the condition number κ := σ1/σr of M is a bounded constant, then as long as

p ≥ C1
µ3r3 log3 n

n

for some sufficiently large constant C1 > 0, with high probability, the iterates satisfy [8]∥∥∥ZtHt −Z\
∥∥∥

F
≤ C2ρ

tµr
1
√
np

∥∥Z\
∥∥

F
, ∀t ≥ 0,

where C2 > 0, 0 < ρ < 1 are some constants, provided that the step size 0 < ηt ≡ η ≤ 2/ (25κσ1). Hence, gradient
descent converges at a geometric rate, as soon as the number of measurements is on the order of µ3r3n log3 n,
which scales linearly in n up to logarithmic factors. To reach ε-accuracy, i.e.

∥∥ZtHt −Z\
∥∥

F
/
∥∥Z\

∥∥
F
≤ ε, gradient

descent needs an order of log(1/ε) iterations. The number of iterations is independent of the problem size and
therefore the computational cost is much cheaper in conjunction with low cost per iteration.

E. Summary

Table I summarizes the figures-of-merit of the discussed algorithms using state-of-the-art theory.

sample complexity computational complexity
information-theoretic lower bound µnr log n NP-hard

Nuclear norm minimization µnr log2 n polynomial-time
Gradient descent with spectral initialization µ3nr3 log3 n linear-time

TABLE I
FIGURE-OF-MERITS FOR LOW-RANK MATRIX COMPLETION IN TERMS OF ORDER-WISE SAMPLE COMPLEXITY AND COMPUTATIONAL

COMPLEXITY.

V. NUMERICAL EXAMPLE

Let M be a rank-10 matrix of size 104 × 104 with about 5% of observed entries, i.e. p = 0.05, where X\ and
Y \ are generated with i.i.d. standard Gaussian entries. We implement gradient descent with spectral initialization to
recover M . Fig. 3 plots the normalized error

∥∥XtY
>
t −M

∥∥
F
/ ‖M‖F with respect to the iteration counts, which

verifies the geometric convergence predicted by the theory. Indeed, the normalized error is below 10−5 within 30
iterations!

VI. WHAT WE HAVE LEARNED

Under mild statistical models, low-rank matrix completion admits efficient algorithms with provable near-optimal
performance guarantees, using both convex and nonconvex optimization techniques. The theory and algorithms
discussed herein can be extended to recover matrices that are approximately low-rank using noisy measurements.
Low-rank matrix completion can be viewed as a special case of low-rank matrix estimation using an underdetermined
set of linear equations. Other linear measurement patterns are also actively studied, motivated by applications
such as sensor network localization, phase retrieval, quantum state tomography, and so on. Furthermore, low-rank
matrix completion can be made robust even when many of the observations are corrupted by outliers of arbitrary
magnitudes, known as the sparse and low-rank decomposition problem [9].

Low-rank structures are ubiquitous in modern data science problems, and are becoming increasingly popular as a
modeling tool. Understanding the algorithmic and theoretical properties of estimation of low-rank structures is still
an active area of research that will have a growing impact in future years. For a recent survey on low-rank matrix
estimation, please see [10].
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Fig. 3. Normalized error of low-rank matrix completion with respect to the iteration count via gradient descent with the spectral initialization
for a 104 × 104 matrix of rank-10 using about 5% observations.
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