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Sensing and imaging advances

New imaging/sensing modalities allow us to probe the nature in
unprecedented manners.

microscopy

Radio astronomy

seismic imaging

The large amount of data brings exciting opportunities that call for
new tools that are scalable in computation and memory.



Low-rank matrices in imaging science

Why low-rank images?
e redundant representations of latent information;
e a small number of sources of interest;

e ‘lifting” of indirect correlation measurements.

xray
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mask
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hyperspectral imaging radar imaging optical imaging



Beyond imaging science
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recommendation systems localization

community detection

bioinformatics



Low-rank matrix sensing

M c Rnl X122 A()
rank(M) =r linear map

y = A(M) + noise

Recover M in the sample-starved regime:
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Convex relaxation via nuclear norm minimization

min  rank(Z) st. y~A(Z)



Convex relaxation via nuclear norm minimization

min  rank(Z) st. y~AZ)

@ cvx surrogate

min 1ZIl.
ZeRnl Xno
st. y~A2)

where || - ||« is the nuclear norm.




Convex relaxation via nuclear norm minimization

min  rank(Z) st. y~AZ)
@ cvx surrogate
min_ 2]
ZeRnl Xno
st. y~A2)
where || - ||« is the nuclear norm.

Significant developments in the last decade:

Fazel '02, Recht, Parrilo, Fazel '10, Candés, Recht'09, Candes, Tao'10, Cai et al.'10, Gross '10,

Negahban, Wainwright '11, Sanghavi et al.’13, Chen, Chi'14, ...



Convex relaxation via nuclear norm minimization

min  rank(Z) st. y~AZ)
@ cvx surrogate
min_ 2]
ZeRnl Xno
st. y~A2)
where || - ||« is the nuclear norm.

Significant developments in the last decade:

Fazel '02, Recht, Parrilo, Fazel '10, Candés, Recht'09, Candes, Tao'10, Cai et al.'10, Gross '10,

Negahban, Wainwright '11, Sanghavi et al.’13, Chen, Chi'14, ...

Poor scalability: operate in the ambient matrix space J




Low-rank matrix factorization

min  rank(Z)
ZeRnl Xno



Low-rank matrix factorization

min  rank(Z) st. y~AZ)
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Low-rank matrix factorization

min  rank(Z) st. y=~A(Z)
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Low-rank matrix factorization

min  rank(Z) st. y=~A(Z)
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Nonconvex problems are hard (in theory)!

“..in fact, the great watershed in optimization isn't between
linearity and nonlinearity, but convexity and nonconvexity.

R. T. Rockafellar, in SIAM Review, 1993



Nonconvex problems are hard (in theory)!
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“...in fact, the great watershed in optimization isn't between
linearity and nonlinearity, but convexity and nonconvexity.

R. T. Rockafellar, in SIAM Review, 1993



Recent developments: provable nonconvex optimization
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“Nonconvex Optimization Meets
Low-Rank Matrix Factorization: An
Overview,” Chi, Lu, Chen TSP 2019

Phase retrieval: Netrapalli et al.’13, Candgs, Li,
Soltanolkotabi '14, Chen, Candés ‘15, Cai, Li, Ma'15,
Zhang et al.'16, Wang et al. '16, Sun, Qu, Wright '16,
Ma et al.’17, Chen et al.'18, Soltani, Hegde '18, Ruan
and Duchi, '18, ...

Matrix sensing/completion: Keshavan et
al.’09, Jain et al.’09, Hardt'13, Jain et al.'13, Sun,

Luo '15, Chen, Wainwright '15, Tu et al.'15, Zheng,
Lafferty '15, Bhojanapalli et al. 16, Ge, Lee, Ma'16, Jin et
al.’16, Ma et al.'17, Chen and Li'17, Cai et al.'18, Li,
Zhu, Tang, Wakin '18, Charisopoulos et al. 19, ...

Blind deconvolution/demixing: Li et al."16,
Lee et al.’16, Cambareri, Jacques'16, Ling, Strohmer 16,
Huang, Hand '16, Ma et al.'17, Zhang et al.'18, Li,
Bresler '18, Dong, Shi'18, Shi, Chi'1l9, Qu et al.'19...

Dictionary learning: Arora et al.'14, Sun et
al.'15, Chatterji, Bartlett '17, Bai et al.'18, Gilboa et
al.’18, Rambhatla et al.'19, Qu et al.'19,...

Robust principal component analysis:
Netrapalli et al.'14, Yi et al.'16, Gu et al.'16, Ge et
al."'17, Cherapanamjeri et al.'17, Vaswani et al.'18,
Maunu et al.'19, ...

Deep learning: Zhong et al.’17, Bai, Mei,
Montanari'17, Du et al.'17, Ge, Lee, Ma'17, Du et
al.'18, Soltanolkotabi and Oymak, '18...



This talk: geometry, robustness, acceleration

Optimization geometry:
When and why does simple gradient descent work well for
low-rank matrix estimation?

Robustness to adversarial outliers:
Can we design provably robust gradient algorithms that are
oblivious to the presence of outliers?

Acceleration for ill-conditioned matrix estimation:

Can we design provably fast gradient algorithms that are
insensitive to the condition number of low-rank matrices?
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Geometry and implicit regularization
in nonconvex low-rank matrix estimation

Yuxin Chen Cong Ma Kaizheng Wang Yuanxin Li
Princeton Princeton Princeton CcMU



Low-rank matrix completion: dealing with missing data
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Given partial samples of a low-rank matrix M = X, X, € R™"
in an index set §2, fill in missing entries.
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What might the loss function look like?

Full observation = PCA: f(X) = || XX - M|>.

f (X)) restricted strongly convex and smooth

along descent direction V' when X is close to X,.

F0) = pex” — 117}

o w
™

“Basin of attraction”
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Parameter recovery via gradient descent (GD)

)

e Spectral initialization: find an initial
point in the “basin of attraction”.

Flx) = xx” 117}

Xo = SVD,(Pa(M))

v e Gradient iterations:
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Parameter recovery via gradient descent (GD)

)

e Spectral initialization: find an initial
point in the “basin of attraction”.

Xo = SVD,(Pa(M))

~— e Gradient iterations:

0 \\VA—"" “Basin of attraction”
- T

F \— —, X1 =Xt —nVf(Xy)

_ ) B
)

Bl

fort=0,1,...

Question: Does vanilla GD still work with partial observations? J
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Which region has benign geometry?

Finite-sample level (p < W) : assume every entry is
observed i.i.d. with probability 0 < p < 1.

J

Question: which matrix is easier to complete?
100 -+ 0 111 .- 1
000 ---0 111 --- 1

_ VS.
000 ---0 1 11 1

15



Which region has benign geometry?

Finite-sample level (p < %) : assume every entry is
observed i.i.d. with probability 0 < p < 1.

Question: which matrix is easier to complete? J

1 00 --- 0 1 1 1 1
0 00 0 1 1 1 1
VS.

000 ---0 111 --- 1
coherent incoherent

Low-rank matrix completion is only well-defined for “incoherent”
matrices whose energies are spread evenly across the entries.

15



Which region has benign geometry?

Finite-sample level (p < po'ynﬂ) : assume every entry is
observed i.i.d. with probability 0 < p < 1.

f (X)) restricted strongly convex and smooth

along descent direction V' only when X is incoherent:
X = Xill2,00 < [[Xsll2,00

region of local strong convexity 4+ smoothness

16



Our findings: gradient descent is implicitly regularized

region of local strong convexity + smoothness
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Gradient descent implicitly forces iterates to remain
incoherent even without regularization
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Theoretical guarantees - noise-free case

Theorem (Ma, Wang, Chi, Chen, FoOCM 2020)

Suppose M = X, X, is rank-r, p-incoherent and has a condition
number k = omax (M) /omin(M). Vanilla GD (with spectral
initialization) achieves

HXtXtT —M|r <e-omin(M)

e Computational: within O(rlog1) iterations;

e Statistical: as long as the sample complexity satisfies

n’p Z nr’poly(u, K, log n).

Key idea: the iterates are implicitly regularized J

18



Noisy matrix completion via vanilla GD
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The phenomenon is quite general

Prior theory Our theory
sample iteration sample iteration
complexity complexity complexity complexity
Phase 1 1
retrieval nlogn nlog (g) nlogn log nlog (g)
Quadratic 61,2 4.2 1 4 2 1
sensing nr®log®n | n*r’log (1) nrtlogn r?log (1)
Matrix 3 1
completion n/a n/a nripolylogn log (1)
Blind 1
deconvolution n/a n/a Kpoly logm log (2)

.

Huge computational savings!

20



Towards robustness to adversarial outliers

A

Yuanxin Li Yingbin Liang Huishuai Zhang
CcMU Oosu MSRA




Qutlier-corrupted low-rank matrix sensing

M € R < A() e R™
rank(M) =r linear map y
1 n
.
|
= =
Sensor failures =
Malicious attacks
m

y = AM)+ s, AM)={{A, M)}}%,

outliers

Arbitrary but sparse outliers: ||s|p < a-m, where 0 < a < 1is
fraction of outliers.

22



Existing approaches fail

e Spectral initialization would fail:
Xy < top-r SVD of
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Even a single outlier can fail the algorithm!
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Median-truncated gradient descent

Key idea: “median-truncation” —
discard samples adaptively based on
how large sample gradients / values
deviate from median

24



Median-truncated gradient descent

Key idea: “median-truncation” —
discard samples adaptively based on
how large sample gradients / values
deviate from median

¢ Robustify spectral initialization: X + top-r SVD of

v=" Y A

i:|y;| Smedian(y:l)

24



Median-truncated gradient descent

Key idea: “median-truncation” —
discard samples adaptively based on
how large sample gradients / values
deviate from median

¢ Robustify spectral initialization: X + top-r SVD of
1
Y = m Z YiA;
i:|y;| Smedian(y:l)
¢ Robustify gradient descent:
Xit1 :Xt_% Z Viei(yi; Xe), t=0,1,...

iz|rf|Smedian(|r}|)

where 7¢ := |y; — (A;, X4)| is the size of the gradient.



Theoretical guarantees

Theorem (Li, Chi, Zhang, and Liang, IMIAI 2020)

For low-rank matrix sensing with i.i.d. Gaussian design,
median-truncated GD (with robust spectral initialization) achieves

IX: X, — M|lp < & owmin(M),
e Computational: within O(rlog1) iterations;
e Statistical: the sample complexity satisfies
m > nr’poly(k,logn);

e Robustness: and the fraction of outliers

a < 1/\/r.

25



Theoretical guarantees

Theorem (Li, Chi, Zhang, and Liang, IMIAI 2020)

For low-rank matrix sensing with i.i.d. Gaussian design,
median-truncated GD (with robust spectral initialization) achieves

IX: X, — M|lp < & owmin(M),
e Computational: within O(rlog1) iterations;
e Statistical: the sample complexity satisfies
m > nr’poly(k,logn);

e Robustness: and the fraction of outliers

a < 1/\/r.

Median-truncated GD adds robustness to GD obliviously.

25



Numerical example

Low-rank matrix sensing:

yi:<Ai,M>—|-Si, 1=1,....m

Ground truth GD GD median-TGD
! ! no outliers 1% outliers 1% outliers
Median-truncated GD achieves similar performance as if

performing GD on the clean data.

Li, Chi, Zhang and Liang, “Non-convex low-rank matrix recovery with arbitrary outliers via
median-truncated gradient descent”, Information and Inference: A Journal of the IMA, 2020.
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Accelerating ill-conditioned matrix estimation

Tian Tong Cong Ma
CcMU Princeton



Convergence slows down for ill-conditioned matrices

2
: T
min  f(X,Y) HPQ (XY - M)
XY F
0 T T
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Vanilla GD converges in O(Fa log %) iterations.

— Can we accelerate the convergence to O(log1)?
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A new algorithm: scaled gradient descent (ScaledGD)
e Spectral initialization.
‘ {; e Scaled gradient iterations:
: w X=X — V(X)) (X[ X))

A N————
N v preconditioner

fort=0,1,...

29



A new algorithm: scaled gradient descent (ScaledGD)
e Spectral initialization.
‘ {; e Scaled gradient iterations:
: w X=X — V(X)) (X[ X))

A N————
N v preconditioner

fort=0,1,...

For the asymmetric case:

X=X —nVxf(X, Y)Y, YV) !
Y1 =Y —nVy f(X, Vi) (X, X))

29



A new algorithm: scaled gradient descent (ScaledGD)
e Spectral initialization.
‘ {; e Scaled gradient iterations:
: w X=X — V(X)) (X[ X))

A N————
N v preconditioner

fort=0,1,...

For the asymmetric case:

X1 =X, —nVxf(X, Y)Y, Y) !
Yiri =Y, —nVy f( Xy, Yt)(XtTXt)_l

ScaledGD is a preconditioned gradient method. J

29



ScaledGD for low-rank matrix completion

10° :
® -o-ScaledGD k =1
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10 - ScaledGD x = 10 ]
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5 10°
2
B
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Huge computational saving: ScaledGD converges in an
k-independent manner with a minimal overhead!

J
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Theoretical guarantees of ScaledGD

Theorem (Tong, Ma and Chi, 2020)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD
with spectral initialization achieves

1X.Y," — M|lp < € omin(M)

e Computational: within O(log 1) iterations;
e Statistical: the sample complexity satisfies

m > nr?k?.

Acceleration for ill-conditioning: ScaledGD provably
accelerates vanilla GD for low-rank matrix sensing.

31



ScaledGD works more broadly

10°
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Robust PCA

-e-ScaledGD k =1
|=—ScaledGD k =5
|+ ScaledGD x = 10
&= ScaledGD & = 20

- VanillaGD « = 20

Relative error

1070

1072

0 100 200 300 400 500 600 700 800 900 1000
Iteration count

Hankel matrix completion

ScaledGD is more efficient when the low-rank matrix is
ill-conditioned.

J

Code available at https://github.com/Titan-Tong/ScaledGD
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Final remarks



Bridging the theory-practice gap

Computational: Statistical:
near dimension-free near-optimal
iteration complexity sample complexity

Robustness:

adversarial outliers
ill-conditioning

Nonconvex low-rank matrix estimation:

e identification and exploitation of benign geometric properties;
e analyzing iterate trajectories beyond black-box optimization;
e simple variants of GD lead to robust and accelerated convergence.
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Future directions

Problems

Robust PCA @
Blind deconvolution @

Matrix completion @

Phase retrieval ®

?

v

@ @
GD  Altmin

L
SGD

Limitations of current framework:

U/ o)
Y

?

Algorithms

e largely case-by-case: lengthy proofs, somewhat similar recipes;

e somewhat strong assumptions, e.g. Gaussian measurements,

uniformly sampling...
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