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Abstract

We consider the problem of differentially private stochastic convex optimization (DP-SCO) in a
distributed setting with M clients, where each of them has a local dataset of N i.i.d. data samples from
an underlying data distribution. The objective is to design an algorithm to minimize a convex population
loss using a collaborative effort across M clients, while ensuring the privacy of the local datasets. In
this work, we investigate the accuracy-communication-privacy trade-off for this problem. We establish
matching converse and achievability results using a novel lower bound and a new algorithm for distributed
DP-SCO based on Vaidya’s plane cutting method. Thus, our results provide a complete characterization
of the accuracy-communication-privacy trade-off for DP-SCO in the distributed setting.
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1 Introduction
We consider the problem of distributed stochastic convex optimization where M clients, with the aid of a
central server, aim to collaboratively minimize a convex function of the form

L(x) = Ez∼P [`(x; z)] (1)

using their local datasets consisting of N i.i.d. samples from the distribution P. Here x ∈ X denotes the
decision variable where X is a convex, compact set and `(x; z) denotes the loss at point x using the datum
z. We study this problem under the additional constraint of ensuring differential privacy [Dwork et al.,
2006] of the local datasets at each client. This problem arises in numerous settings and represents a typical
scenario for Federated Learning (FL) [McMahan et al., 2017], which has emerged as the de facto approach
for collaboratively training machine learning models using a large number of devices coordinated through a
central server [Kairouz et al., 2021, Wang et al., 2021].

Designing efficient algorithms for differentially private distributed stochastic convex optimization, also
referred to as distributed DP-SCO, requires striking a careful balance between the primary objective of
minimizing the optimization error and two competing desiderata — communication cost and privacy.

Communication cost. There is a natural tension between the accuracy and the communication cost of
a distributed learning algorithm, as achieving a lower optimization error entails the clients sharing more
information, which results in higher communication costs. Communication between the participating clients
and the coordinating server is well-known to be the primary bottleneck in distributed learning, particularly
in the scenario where clients have bandwidth constraints [Tang et al., 2020, Zhao et al., 2023]. The overall
communication cost of a distributed SCO algorithm consists of two parts — the frequency of communication
and the size of the message in each communication round. There has been a substantial effort towards designing
communication-efficient algorithms in both non-private and private settings, either by reducing the frequency
of communication [Gorbunov et al., 2021, Karimireddy et al., 2020, Khaled et al., 2020, Li et al., 2020, 2022a,
Liu et al., 2022, McMahan et al., 2017, Zhao et al., 2021], or by using compression/quantization strategies to
minimize the message sizes [Agarwal et al., 2018, Ding et al., 2021, Hönig et al., 2022, Jhunjhunwala et al.,
2021, Konečný et al., 2016, Li et al., 2022b, Suresh et al., 2017, Wang et al., 2020b, 2024, Zong et al., 2021].

Privacy. Often in various applications, the local data at participating agents contains sensitive information
that should remain private and not become publicly available during the learning process. It has been shown
that preventing the transfer of the actual data during the learning process is not sufficient to guarantee
privacy of the local data and can leak private information during the training process [Zhu et al., 2019]. Thus,
it is desirable to provide formal guarantees to protect the private data [Geyer et al., 2017, Kairouz et al.,
2021, Wang et al., 2021]. In this work, we consider sophisticated privacy preserving techniques like differential
privacy (DP) [Dwork et al., 2006] to ensure the privacy of the local data. In a seminal work, Abadi et al.
[2016] proposed the DP-SGD algorithm where they combined SGD with DP techniques to provide formal
guarantees on the privacy of the dataset for training deep networks. Since then, numerous optimization
algorithms have been proposed that ensure the privacy of the local dataset using DP. At a high level, DP
ensures the privacy of the local datasets by introducing uncertainty into the output of the algorithm, which
makes it difficult for an adversary to discern private information. This injection of additional uncertainty
results in a natural trade-off between privacy and the accuracy of differentially private algorithms.

Fundamental accuracy-communication-privacy trade-off. Existing studies largely focus on designing
algorithms that aim to balance accuracy with one of the two desiderata which provides only a partial picture of
the three-way trade-off among accuracy, communication, and privacy for the problem of distributed DP-SCO.
Moreover, there lack studies that characterize the converse region of this three-way trade-off, leaving the
question of the optimality of existing results open. In this work, we aim to study and characterize this
three-way trade-off from first principles to provide a fresh perspective and new insights into this fundamental
problem.
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1.1 Main results
We consider the problem of distributed stochastic convex optimization with M clients, each with a local
dataset of N points, under the constraint of (εDP, δDP) differential privacy (See Section 2 for the precise
definition). In this work, we provide a complete characterization of the accuracy-communication-privacy
trade-off for this problem. The accuracy of an optimization algorithm refers to the sub-optimality gap or
the excess risk and is measured as L(x̂)−minx∈X L(x), where x̂ denotes the output of the algorithm. We
summarize the main results of our work below.

• Lower bound on the accuracy-communication-privacy trade-off: We derive a novel lower bound on
the accuracy of a distributed SCO algorithm as a function of its communication cost. Specifically,

we establish that the error rate of any distributed SCO algorithm is at least Ω

(√
d2

MN ·CC

)
(ignoring

other terms), where CC is the communication cost of the algorithm, measured as the total number
of bits transmitted by each agent on average (See Section 2 for the precise definition) and d is the
dimension of the decision variable. This implies that any algorithm with order-optimal accuracy incurs
a communication cost of Ω(d2) bits. This is the first result that tightly characterizes the lower bound
of communication complexity for any distributed optimization algorithm for general convex functions.
When combined with existing lower bounds on the accuracy-privacy trade-off, the proposed bound
characterizes the converse region of the accuracy-communication-privacy trade-off. In particular, our
lower bound implies that the accuracy for any DP-SCO algorithm is at least Ω

(√
d2

MN ·min{CC,dNε2DP}

)
,

where CC is the communication cost of the algorithm and εDP is the differential privacy parameter. We
establish the lower bound by showing that solving a convex optimization problem is at least as hard as
solving d mean estimation problems. In contrast, existing lower bounds rely on the straightforward
reduction of convex optimization to estimation of an unknown vector in d dimensions. This is the first
result that establishes that convex optimization is significantly harder than mean estimation, tightening
existing lower bounds.

• Achieving the optimal accuracy-communication-privacy trade-off: We propose a new distributed DP-
SCO algorithm, called Charter, that achieves the optimal accuracy-communication-privacy trade-off
as dictated by the lower bound. In particular, we show that Charter is an (εDP, δDP) differentially
private algorithm that achieves an excess risk of Õ

(
1√
MN

+
√
d√

MNεDP

)
and incurs a communication cost

of Õ(d2).1 To the best of our knowledge, this is the first algorithm to achieve optimal accuracy for the
problem of distributed DP-SCO. This is also the first algorithm to achieve order-optimal communication
cost even in the non-private setting. Our proposed algorithm, Charter, departs from the family of
gradient descent methods and builds upon the classical plane cutting methods [Anstreicher, 1997, Vaidya,
1996]. This paradigm shift is the key piece of the puzzle that allows us to achieve the optimal three-way
trade-off, particularly along the dimension of communication complexity. The primary observation
here is that the gradient descent family adopts an optimization framework that is married to the
function landscape. The over-reliance on the function landscape requires more frequent communication
to counter the noisy updates, particularly when the landscape is flatter. On the other hand, our
plane-cutting-based method adopts a geometric perspective akin to binary search methods which allows
for constant progress independent of the function landscape thereby reducing the need for frequent
communication.

1.2 Related work
DP-ERM. The problem of empirical risk minimization, or ERM for short, aims to minimize the population
loss L(x) by minimizing the sample loss function L̂(x) = 1

N

∑N
n=1 `(x; zn) for a given dataset D = {zn}Nn=1.

The problem of DP-ERM has been extensively studied in the centralized setting and the upper and lower
bounds on the accuracy of DP-ERM are well-known [Bassily et al., 2014, Chaudhuri and Monteleoni, 2008,
Chaudhuri et al., 2011, Iyengar et al., 2019, Jain et al., 2012, Ullman, 2015, Wang et al., 2017]. The problem
of DP-ERM has also received significant attention in the distributed setting [Ding et al., 2021, Huang et al.,

1Here, Õ(·) denotes the order up to logarithmic factors.
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2015, Jayaraman et al., 2018, Li et al., 2022b, Murata and Suzuki, 2023, Phuong and Phong, 2022, Triastcyn
et al., 2021, Wang et al., 2020b, Zhang et al., 2020]. However, solutions of ERM are known to result in
poor generalization. In particular, it has been shown that solutions of ERM lead to a sub-optimal error of
Ω(
√
d/N) for the problem of SCO, across a large class of functions [Feldman, 2016]. Consequently, these

results are necessarily sub-optimal for the problem of DP-SCO.

DP-SCO. The gap between DP-ERM and DP-SCO was first addressed in the centralized setting by Bassily
et al. [2019], where the authors propose a new algorithm that leverages the uniform stability of SGD [Bousquet
and Elisseeff, 2002] and achieves the order-optimal accuracy of O

(
1√
N

+
√
d

NεDP

)
for the problem of SCO.

Since then, there have been a series of studies [Arora et al., 2022, Asi et al., 2021, Bassily and Sun, 2023,
Bassily et al., 2021, Choquette-Choo et al., 2024, Feldman et al., 2020, Han et al., 2022, Kulkarni et al.,
2021, Liu and Asi, 2024, Song et al., 2021, Wang et al., 2020a, 2023] that further analyze the problem of
DP-SCO and propose efficient algorithms with optimal performance for a wide range of scenarios in the
centralized setting. However, these results do not have an analogous version for the distributed setting. In
the non-private setting, the problem of distributed SCO has been extensively studied numerous algorithms
have been proposed that achieve the order-optimal accuracy of O

(
1/
√
MN

)
[Khaled et al., 2020, Reisizadeh

et al., 2020, Woodworth et al., 2020a,b].

Communication-efficient algorithms. As mentioned earlier, there is an extensive line of work that
focuses on designing communication-efficient algorithms both in non-private and private (DP-ERM) settings.
The best-known bound on the communication complexity of distributed SCO algorithms is O(d

√
MN) [Had-

dadpour et al., 2021, Reisizadeh et al., 2020].
There is a line of work that studies lower bounds on communication complexity for various distributed

learning problems like mean estimation, distribution estimation, and linear bandits [Barnes et al., 2020b,
Braverman et al., 2016, Duchi et al., 2014, Salgia and Zhao, 2023]. For the problem of convex optimiza-
tion, Korhonen and Alistarh [2021] derive a lower bound of Ω(d) by a reduction to mean estimation. Tsitsiklis
and Luo [1987] derive a lower bound of Ω(d) and they conjecture a lower bound of Ω(d2). They also partially
prove their conjecture for a restricted class of communication models. Vempala et al. [2020] also derive a
lower bound of Ω(d2) for the problem of linear regression in the non-stochastic setting where each client only
has access to a partial set of features. For the gradient descent family of algorithms without acceleration,
a lower bound of Ω(d

√
MN) on the communication complexity was shown by Arjevani and Shamir [2015],

Huang et al. [2022], Woodworth et al. [2018]. Similar results for distributed learning over general networks for
the gradient descent family of algorithms under the span assumption were obtained in Scaman et al. [2017,
2019]. In this work, we establish a lower bound of Ω(d2) for the general stochastic convex optimization that
holds for all algorithms. Our bound improves upon the best-known bound of Ω(d) and also resolves the
conjecture in Tsitsiklis and Luo [1987]. Arjevani and Shamir [2015] also derived a Ω(d2) lower bound for the
class of algorithms that perform empirical risk minimization of quadratic functions with a single round of
communication, where analogous result for a more general class of algorithms that allow for multiple rounds
of communication and operate over general convex functions was left as an open question. The proposed
lower bound in this work also addresses this open question.

Notation: The notations f(x) = O(g(x)) and f(x) . g(x) both imply that the relation f(x) ≤ Cg(x) holds
for all x for some constant C > 0, independent of x. Similarly, f(x) = Ω(g(x)) and f(x) & g(x) both imply
that the relation f(x) ≥ cg(x) holds for all x for some constant c > 0, independent of x. We use Õ(·) and
Ω̃(·) to denote the corresponding relations above up to logarithmic factors. For n ∈ N, we use the shorthand
[n] := {1, 2, . . . , n}. For any event E , we use Ec to denote its complement. For any two vectors v, w ∈ Rd,
〈v, w〉 denotes the standard inner product and ‖v‖2 =

√
〈v, v〉 denotes the `2-norm of vector v.

2 Problem Formulation
Stochastic convex optimization. We consider a distributed learning setup which consists of a single
central server and M clients. Each client m ∈ {1, 2, . . . ,M} has access to a local dataset Dm = {zm,n}Nn=1 ∈
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ZN consisting of N i.i.d. data samples from a distribution Pm that takes values in a set Z. The objective of
the clients is to collaboratively minimize the function:

min
x∈X
L(x) :=

1

M

M∑
m=1

Ez∼Pm [`(x, z)] , (2)

over an input domain X using their local datasets Dm. Here, X ⊂ Rd is a convex, compact set, and
` : X × Z → R denotes the loss function of interest. Let R := sup{‖x− y‖2 | x, y ∈ X} denote the diameter
of the set X . Before moving forward, we outline below some definitions and assumptions that are commonly
used in the SCO literature.

Definition 1. A function f is called L-Lipschitz over X if for all x, x′ ∈ X , ‖f(x)− f(x′)‖2 ≤ L‖x− x′‖2.
Definition 2. Let f be a convex function over a domain X ⊂ Rd. The subgradient of f at a point x ∈ X ,
denoted by ∂f(x), is given by

∂f(x) = {c ∈ Rd : f(y)− f(x) ≥ c>(y − x), ∀y ∈ X}.

Assumption 1. The population loss function L(x) is convex. For all x ∈ X and c ∈ ∂L(x), ‖c‖2 ≤ 1.

Let ∂`(x; z) denote the noisy estimate of the sub-gradient at x evaluated using the data point z. We
would like to point out that we slightly abuse the notation here for ease of presentation; ∂`(x; z) does not
necessarily correspond to a subgradient of ` as it is not assumed to be a convex function.

Assumption 2. For all m ∈ {1, 2, . . . ,M} and x ∈ X , and z ∈ Pm, `(x; z) is σ2
f -sub-Gaussian random

variable and ∂`(x; z) is a σ2
g-sub-Gaussian random vector such that E[∂`(x; z)] ∈ ∂L(x). This implies

that for all v ∈ Rd with ‖v‖2 ≤ 1 and λ ∈ R, E[exp(λ 〈v, ∂`(x; z)− Ez[∂`(x; z)]〉)] ≤ exp
(
λ2σ2

g/2d
)
and

E[exp(λ(`(x; z) − Ez[`(x; z)]))] ≤ exp(λ2σ2
f/2). Consequently, for all m and all x ∈ X , Ez∼Pm

[‖∂`(x; z) −
E[∂`(x; z)]‖2] ≤ σ2

g .

Assumptions 1 and 2 are imposed on the behavior of the population loss function and the distribution
of the samples, which is a relatively milder requirement than on the sample loss for each data point. The
assumption on the gradient norm in Assumption 1 can be relaxed to any L > 0 using an appropriate scaling.
For simplicity, we consider the case of L = 1. For simplicity of notation, throughout the rest of the paper, we
use ∂L(x) to denote an element of the set ∂L(x).

Accuracy. Let x̂A denote the output of an algorithm A when run on a loss function L. The excess risk of
the algorithm A on L is given as

ER(A ;L) = L(x̂A )−min
x∈X
L(x). (3)

We measure the performance of an algorithm A using ER(A ), where

ER(A ) := sup
L∈F

E[ER(A ;L)] (4)

denotes the worst-case expected excess risk over the functions in F , the family of convex, 1-Lipschitz
functions. Here, the expectation is taken over the randomness in the datasets {Dm}Mm=1 and the algorithm
A . For a prescribed error δErr ∈ (0, 1), we analogously define ER(A ; δErr) which corresponds to a bound on
supL∈F ER(A ;L) that holds with probability 1− δErr .

Communication cost. We adopt the commonly used communication model where the clients can commu-
nicate only via the server. Each client can upload messages to the server which the server can broadcast
to all other clients. This is commonly referred to as the blackboard model of communication [Barnes et al.,
2020a, Braverman et al., 2016]. The communication cost of an algorithm A is measured as

CC(A ) =
1

M

M∑
m=1

Cm(A ), (5)

where Cm(A ) denotes the number of bits uploaded by client m during a run of algorithm A . We focus only
on the upload communication costs in this work, as often they are the communication bottleneck.

5



Differential privacy. To formally define differentially private algorithms, we use the following notion of
indistinguishability.

Definition 3. For a given ε > 0 and δ ∈ (0, 1), two distributions P and Q with a common support are said
to be (ε, δ) indistinguishable (denoted as P ∼(ε,δ) Q) if the following relation holds for all events O in the
probability space:

e−ε(P (O)− δ) ≤ Q(O) ≤ eεP (O) + δ.

Let {Dm,D′m}Mm=1 be a collection of pairs of neighboring datasets such that for all m ∈ {1, 2, . . . ,M},
Dm and D′m differ on at most one data point. We refer to such datasets as neighboring datasets. We call
an algorithm A to be (ε, δ) differentially private [Dwork et al., 2006], if for all collections of neighboring
datasets {Dm,D′m}Mm=1, we have A ({Dm}Mm=1) ∼(ε,δ) A ({D′m}Mm=1), where the probability is taken over the
randomness in A .

3 Lower Bound
In this section, we investigate the converse region of the accuracy-communication-privacy trade-off. The
following theorem characterizes the lower bound on the worst-case accuracy (i.e., the excess population risk)
of any distributed DP-SCO algorithm as a function of communication complexity and privacy guarantees.

Theorem 1. Consider the distributed SCO problem outlined in Eqn. (2) over a domain with diameter R,
where the underlying data distributions satisfy Assumption 2. The excess risk of any (εDP, δDP) differentially
private algorithm A for the problem of distributed SCO satisfies

ER(A ) & R ·max

min


√
σ2
g

N
,

√
σ2
gd

2

MNCC(A )
,

1√
d

 , min

{√
σ2
g

MN
,

1√
d

}
,

√
d√

MNεDP

 .

The proof is deferred to Appendix A. The above theorem provides a lower bound on the accuracy of any
differentially private algorithm that solves the DP-SCO problem as a function of its communication cost
and privacy parameter. This is the first information-theoretic, algorithm-independent lower bound on the
accuracy-communication trade-off of a distributed SCO algorithm, both in non-private and private settings.
Several comments on the theorem are in order.

Accuracy-Communication trade-off. An immediate corollary of the above theorem is a lower bound
on the accuracy-communication trade-off in the non-private setting, i.e., εDP =∞ with N = Ω(σ2

gd), which
reads (up to scaling of R and σ2

g)

ER(A ) & max

{
min

{
1√
N
,

√
d2

MNCC(A )

}
,

1√
MN

}
.

Our lower bound also exhibits the well-known inverse relation between accuracy and communication that has
been derived for other distributed learning problems [Braverman et al., 2016, Duchi et al., 2014]. Moreover,
it tightens the existing lower bound from Ω(d) to Ω(d2). No algorithm A will achieve the excess risk
ER(A ) . 1√

MN
— the optimal rate in the centralized setting — unless the communication cost satisfies

CC(A ) & d2.

This reflects our intuitive belief about the inherent hardness of general convex optimization compared to
other problems like mean estimation. We would like to emphasize that this result holds only for general
convex functions and not strongly convex functions. For the case of strongly convex functions, the Ω(d)
bound is tight, as shown by matching upper bounds [Haddadpour et al., 2019, Reisizadeh et al., 2020, Salgia
et al., 2024, Spiridonoff et al., 2020].
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Comparison with existing SGD-based lower bounds. Several existing studies [Arjevani and Shamir,
2015, Woodworth et al., 2018, 2021] have tightly characterized the communication complexity of the gradient
descent family of algorithms. In particular, Woodworth et al. [2021] show that in order to achieve an accuracy
of Θ(1/

√
MN), SGD and accelerated SGD require Θ(

√
MN) and Θ((MN)1/4) rounds of communication

respectively, where in each round each agent transmits a d-dimensional vector to the server. These results are
not directly comparable with those obtained above as they only hold for smooth functions, i.e., gradient is
also a Lipschitz function. On the other hand, the lower bound derived in this work allows for non-smooth
and even non-differentiable functions. Moreover, the lower bounds on gradient descent algorithms [Arjevani
and Shamir, 2015, Woodworth et al., 2021], where the bounds are derived using the optimization dynamics,
only hold in the regime d = Ω̃((MN)5/4). The lower bound in Theorem 1 is algorithm agnostic and is based
on achieving statistical efficiency using information-theoretic tools. As is typical of statistical bounds, the
above theorem results in non-trivial bounds in the data-rich regime, i.e., MN & d. While a thoroughly fair
comparison is not possible between our results and existing ones, the lower bound in Theorem 1 suggests that
(non-accelerated) SGD-based algorithms that are commonly used in real-world applications incur sub-optimal
communication costs in the regime

√
MN & d.

Privacy-Communication trade-off. The above theorem suggests that up to an extent, privacy and
communication work in tandem with each other, i.e., reducing communication allows to one achieve stronger
privacy guarantees and higher privacy requirements allow for reduced communication costs. Such a behavior
echoes a similar result obtained in Chen et al. [2020, 2024] for the case of distributed mean estimation.
This trade-off between privacy and communication for DP-SCO, however, is evident only in the very high
privacy regime. Specifically, note that the privacy term will be larger than the communication term only
when εDP = Ω(1/

√
Nd). Consequently, in the very-high privacy regime, i.e., εDP = Ω(1/

√
Nd), the privacy

requirements allow for communication costs that scale as o(d2). However, for typical use cases, i.e., εDP = Θ(1),
this part of the trade-off is not relevant.

High-level proof idea. We establish our lower bound by considering the behavior of any algorithm on a
specifically chosen convex function. In particular, we consider a function of the form maxi=1,...,d{a>i x− bi}
for appropriately chosen vectors {ai}di=1 and scalars {bi}di=1. Similar constructions that take the form of
a maximum over linear functions have been used in previous studies to establish other lower bounds for
convex optimization [Feldman, 2016, Nemirovskii and Yudin, 1983]. We establish the bound using a two-step
reduction: (i) we first show that optimizing this function is equivalent to learning at least Ω(d) vectors from
the set {ai}di=1; (ii) we then show that learning these vectors is equivalent to solving Ω(d) mean estimation
problems. We arrive at the final bound by combining these observations with existing bounds on the mean
estimation problem [Braverman et al., 2016, Duchi et al., 2014]. We would like to point out that while the
current bound is derived only for 1-Lipschitz functions, the analysis can be extended in a straightforward
manner to allow for L-Lipschitz functions. In such a case, the privacy related term in the lower bound in
Theorem 1 gets scaled by a factor of L, while the rest remain as is.

4 Algorithm
In this section, we explore the achievability frontier of the accuracy-communication-privacy trade-off. One of
the key challenges in designing an optimal algorithm is to bridge the existing sub-optimality gap along the
communication complexity frontier. In order to address this challenge, we revisit one of the classic convex
optimization approaches — Vaidya’s plane cutting method [Vaidya, 1996].

Plane cutting methods. The philosophy of plane-cutting methods is based on the fundamental definition
of convex functions. In particular, we know that the gradient of a convex function f satisfies the relation
0 ≥ f(x?)−f(x) ≥ 〈∂f(x), x? − x〉, where x? ∈ arg minx f(x). This implies the gradient of a convex function
allows us to construct a separating hyperplane to identify which half of the domain contains the minimizer
— a key observation exploited in plane-cutting methods. In each iteration, they obtain the gradient at a
carefully chosen point, which allows them to eliminate a constant fraction of the domain. Thus in O(d log(N))
iterations, they can arrive within a radius of 1/

√
N around the minimizer.
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Algorithm design. The above key property of plane-cutting methods allows us to bridge the communication
sub-optimality gap in distributed SCO. Specifically, we build upon the plane-cutting methods by replacing
the deterministic gradients with an estimate computed by the clients. This plane-cutting-based framework
allows us to transform the original SCO problem into estimating the gradient at Õ(d) points. Note that
this is precisely the reduction that characterizes the lower bound on the communication complexity, thereby
resulting in an order-optimal communication complexity.

While the plane cutting approach allows us to achieve the optimal communication complexity, we lose
the uniform stability of SGD based approaches which has been shown to be crucial to achieve the optimal
accuracy-privacy trade-off. Thus, to address the accuracy-privacy trade-off, we carefully design our gradient
estimation routine to guarantee both privacy and generalization.

Next, we first provide an overview of the plane-cutting method used in this work followed by a description
of our proposed algorithm, Charter.2

4.1 Vaidya’s Plane Cutting Method
Vaidya’s Plane Cutting method is a classical convex optimization algorithm proposed by Vaidya [1996] to
minimize a convex function f(x) over a given convex, compact set K. We first introduce some notation and
then provide a general description of the algorithm.

Let P = {x ∈ Rd : Ax ≥ b} be a bounded d-dimensional polyhedron, where A ∈ Rp×d and b ∈ Rp. The
volumetric barrier of the set P is defined as

V (x) :=
1

2
log(det(H(x))), where H(x) =

p∑
i=1

aia
>
i

(a>i x− bi)2
.

Here, a>i is the ith row of the matrix A and det(B) denotes the determinant of the matrix B. The minimizer
of the function V (x) in the interior of P is referred to as the volumetric center of the set P . Lastly, for all
i ∈ {1, 2, . . . , p}, we define

σi(x) :=
a>i (H(x))−1ai

(a>i x− bi)2
.

Vaidya’s method proceeds by generating a sequence of pairs (Ak, bk) ∈ Rpk×d × Rpk such that the
corresponding polyhedrons contain the solution of the problem, i.e., minimizer of the function f . Here pk
denotes the number of constraints used to describe the polyhedron constructed during the kth iteration. The
initial polyhedron (A0, b0) is taken to be a unit hypercube. For simplicity, we assume that K corresponds to
this hypercube. The algorithm can be easily modified to the case where (A0, b0) is a bounding hypercube
of the set K. Vaidya’s method also uses two hyperparameters η, γ ∈ (0, 1) which are numerical constants
independent of problem parameters. The parameter γ is used to control the total number of constraints in
any given iteration by eliminating constraints that are less important. The parameter η, together with γ,
determines the rate of progress in each iteration.

At the beginning of each iteration k ≥ 0, the learner determines the approximate volumetric center xk
and calculates {σi(xk)}pki=1. The next polyhedron characterized by the pair (Ak+1, bk+1) is obtained from the
current result by either adding or removing a constraint. In particular,

• if, σi(xk) = min1≤j≤pk σj(xk) < γ, then (Ak+1, bk+1) is obtained by eliminating the ith row from
(Ak, bk);

• otherwise, the algorithm first determines a βk ∈ R, such that

c>k (H(xk))−1ck
(c>k x− βk)2

=
1

2

√
ηγ,

where ck ∈ −∂f(xk) (which is the subgradient of f at xk) and then adds the constraint (c>k , βk) to
(Ak, bk) to obtain (Ak+1, bk+1).

2The algorithm is named Charter because it is based on using private planes for the plane-cutting method.
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Vaidya’s method has been studied in great detail since it was proposed by Vaidya. We refer the reader
to Anstreicher [1997, 1998], Jiang et al. [2020], Lee et al. [2015], Ye [1996] and references therein for additional
details about the implementation and hyperparameter choices. Vaidya’s method has also been studied for
non-private, stochastic convex optimzation in the centralized setting [Feldman et al., 2021, Gladin et al.,
2021, 2022, Mehrotra, 2000]. We extend results in these studies to a distributed setting with differential
privacy. Also, Charter offers an improved statistical complexity over these existing studies.

4.2 The Charter algorithm
The proposed algorithm builds upon the classical plane cutting methods, while incorporating the elements
of stochasticity and privacy. The algorithm consists of two stages, the learning stage and the verification
stage. Before the start of the algorithm, each client splits their dataset into two parts, namely D(1)

m and D(2)
m

consisting of 2N/3 and N/3 samples respectively.3

The learning stage. The first stage of the algorithm generates a sequence of iterates {x0, x1, . . . , xK}
using K iterations of the Vaidya’s method, where K is a parameter of the algorithm. In the kth iteration, the
cutting plane is constructed using an estimate of ∂L(xk−1) which is computed collaboratively by the clients.

In order to collaboratively estimate the gradient at a given point x, each client m first computes

∂̂L
NonPriv,b
m (x) :=

3K

N

∑
z∈D(1,k)

m

clip(∂`(x; z);G0) · 1{z /∈ ∪k−1
j=1D

(1,j)
m }, (6)

which is an estimate of ∂L(x) based on the local data at the client m. Here D(1,k)
m is a subset of size N/3K4

drawn randomly from the set D(1)
m during the kth iteration. The clip is the standard clipping function, where

clip(y,G) = y ·min{1, G/‖y‖2}. Note that, in order to ensure that the estimated gradient is an independent
sample of ∂L(x), we only use the samples that have not been seen before, as denoted by the indicator function
1{·}. This is crucial to guarantee generalization. This, however, introduces a bias in the estimate (denoted
by the superscript b), which we correct for in a later step. The non-private estimate is then privatized using
the Gaussian mechanism to obtain,

∂̂L
Priv,b
m (x) := ∂̂L

NonPriv,b
m (x) +N (0, σ2

0Id). (7)

After privatizing, we debias the gradient estimate by dividing the privatized estimate by 3KTk,m/N , to obtain

∂̂L
Priv,u
m (x) :=

N

3KTk,m
· ∂̂L

Priv,b
m (x). (8)

Here Tk,m = |D(1,k)
m \

⋃k−1
j=1 D

(1,j)
m | is the number of unseen elements in D(1,k)

m . We use this two step procedure to
estimate the gradient to ensure both privacy and generalization. Specifically, in order to ensure generalization,
we need to ensure that we use an independent estimate of ∂L(x) in each iteration. A straightforward way to
guarantee that is to randomly sample from the subset of samples not seen so far. However, this does not
allow us leverage privacy amplification guarantees through subsampling as the randomness in the algorithm
becomes dependent across different calls to the dataset. Thus, to address this issue we always sample from the
entire dataset, which helps us obtain optimal privacy dependence through subsampling and composition [Balle
et al., 2018, Dwork et al., 2015, Kairouz et al., 2015, Steinke, 2022]. To obtain generalization, we drop the
previously seen samples in constructing our estimate to ensure independence of the samples. We carefully
choose our batch sizes to ensure that 3KTk,m/N = Θ(1) holds with high probability for all iterations so that
the utility of the algorithm worsens by no more than a constant factor when we debias the gradient after
privatization. We would like to point out that Tk,m is independent of the actual value of the samples. As a
result, the debiasing step is effectively a post-processing step and thus maintains the privacy of the estimate.
Lastly, we quantize the privatized estimate to obtain

∂̂Lm(x) := Q(∂̂L
Priv,u
m (x);D0, J0). (9)

3Without loss of generality, we assume N is divisible by 3.
4The batch size can be set to dN/3Ke to ensure it is an integer. We ignore the divisibility issue for the ease of presentation.
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Here, Q is the standard stochastic quantization routine [Suresh et al., 2017] that separately clips each
coordinate to within the interval [−D0, D0] and quantizes it using J0 bits. Specifically, the quantizer first
splits the interval [−D0, D0] into 2J0 − 1 intervals of equal length where −D0 = r1 < r2 . . . < r2J0 = D0

correspond to end points of the intervals. Each coordinate of input vector w is then separately quantized
as follows. The value of the p-th coordinate, Q(w)[p], is set to be rjp−1 with probability rjp−w[p]

rjp−rjp−1
and to

rjp with the remaining probability, where jp := min{j : rj < w[p] ≤ rj+1}. It is straightforward to note that
each coordinate of Q(w) can be represented using J0 bits and has an error of at most 2D0 · 2−J0 .

Finally, each client transmits the quantized version ∂̂Lm(x) to the server, where it evaluates

∂̂L(x) =
1

M

M∑
m=1

∂̂Lm(x) (10)

and sends it back to the clients to be used in the Vaidya’s plane cutting method.

The verification stage. In the second stage, each client uses their local dataset D(2)
m to estimate the value

of L(x) for all the K + 1 iterates, {x0, x1, . . . , xK}, generated during the learning stage. The values are
computed using a similar three step procedure as used in the learning stage, i.e., estimation, privatization
and quantization. In particular, for each x ∈ {x0, x1, . . . , xK}, each agent computes

L̂NonPriv
m (x) :=

3

N

∑
z∈D(2)

m

`(x; z) · 1{|`(x; z)| ≤ G1}, (11)

L̂Priv
m (x) := L̂NonPriv

m (x) +N (0, σ2
1), (12)

L̂m(x) := Q(L̂Priv
m (x);D1, J1). (13)

The local estimates {L̂m(xk)}Kk=0 are sent to the server, where they are averaged, and the index

k? := arg min
k

1

M

M∑
m=1

L̂m(xk) (14)

is returned by the server. The output of the algorithm is set to xk? . A pseudocode of the algorithm is
presented in Algorithm 1.

4.3 Setting the parameters
The desired performance of the algorithm is obtained by carefully choosing the parameters in both stages.
Let εDP > 0 and δDP ∈ (0, 1) denote the privacy parameters and let δErr ∈ (0, 1). We follow the following
choices of parameters.

• The number of iterations is set to K :=
⌈
(4d/γ) log

(
d
√
MN
γσg

)⌉
, where γ is the parameter of Vaidya’s

method.

• The clipping radii are set to G0 := 1 + σg
√

2 log(4MN) and G1 := R+ σf
√

2 log(4MN).

• The privacy noise parameters are set to σ2
0 :=

1080G2
0 log2(2.5/δDP)K

N2ε2DP
and σ2

1 :=
40G2

1 log2(2.5K/δDP)K

N2ε2DP
.

• The quantization parameters are set to D0 := G0 + σ0

√
32 log

(
40MKd
δErr

)
, D1 := G1 + σ1

√
2 log

(
16MK
δErr

)
,

J0 :=
⌈
log2

(
2D0NεDP√
d+σgεDP

√
N

)⌉
and J1 :=

⌈
log2

(
2D1NεDP

R
√
d+σfεDP

√
N

)⌉
.

10



Algorithm 1: Charter: At client m
1: Input: Initial point x0

2: Divide the local dataset into D(1)
m and D(2)

m

3: // Set the parameters as described in Sec. 4.3
4: //Learning Stage
5: for k = 0, 1, . . . ,K do
6: Sample a subset D(1,k)

m of size N/3K uniformly at random from Dm
7: Compute the estimate ∂̂L

NonPriv,b
m (xk) using Eqn. (6)

8: Compute ∂̂L
Priv,b
m (xk) using Eqn. (7)

9: Compute ∂̂L
Priv,u
m (xk) using Eqn. (8)

10: Quantize the current estimate using Eqn. (9) to obtain ∂̂Lm(xk)

11: Transmit ∂̂Lm(xk) to the server and receive ∂̂L(xk)

12: Use Vaidya’s Method with ∂̂L(xk) to compute xk+1

13: end for
14: // Verification Stage
15: for k = 0, 1, . . . ,K do
16: Evaluate L̂m(xk) using Eqns. (11), (12) and (13)
17: end for
18: Transmit {L̂m(xk)}Kk=0 to the server and receive k?
19: return xk?

4.4 Performance guarantees
The following theorem characterizes the performance of the proposed algorithm.

Theorem 2. Assume that Assumptions 1 and 2 hold and the domain X is a hypercube. If Charter is run
with the choice of parameters described in Section 4.3 with N = Ω(d log(KM)) samples at each agent, then
for any given privacy parameters εDP ∈ (0, 1.5/

√
K) and δDP ∈ (0, 1), and error probability δErr ∈ (0, 1),

• Charter is (εDP, δDP) differentially private;

• The error rate of Charter satisfies

ER(Charter ; δErr) = Õ

(
Rσg + σf√

MN
+ (R(1 + σg) + σf ) ·

√
d

NεDP

√
M

)
;

• The communication cost of Charter satisfies

CC(Charter) = Kd(J0 + J1) = Õ(d2).

A proof of the above theorem can be found in Appendix B. For the case of general L-Lipschitz functions,
the term (1 + σg) gets updated to (L+ σg). A few implications of the theorem are in order.

Optimal Accuracy-Communication-Privacy Trade-off. As shown by the above theorem, Charter
is differentially private, achieves the optimal accuracy, including linear speedup w.r.t. the number of clients,
and order-optimal communication complexity (for εDP ≥

√
d/N) as dictated by the lower bound derived in

the previous section. Thus, Charter is the first algorithm to achieve order-optimal performance on all the
three fronts for distributed, differentially private stochastic optimization of general convex functions. Together
with our lower bound, it provides tight characterization of the frontier for εDP ≤ 1.5√

K
. This constraint on

the privacy parameter is a consequence of using privacy amplification by subsampling without replacement
which holds only for εDP < 1 [Balle et al., 2018],. We believe this can be resolved by utilizing a different
privacy amplification scheme. We leave the extension to future work. We would also like to point out that we
assume X to be a hypercube only for convenience. The result extends immediately to general convex bodies
by appropriately incorporating the change in Vaidya’s method.
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Beyond the three-way trade-off. In addition to achieving optimal performance along all the three
desiderata, Charter also possesses several other desirable properties. Theorem 2 holds for general, convex,
Lipschitz functions without any assumption on smoothness of the function, as is required by numerous existing
studies. Moreover, in terms of gradient complexity, Charter requires only O(N) gradient computations,5
which improves upon the current state of the art for distributed algorithms [Murata and Suzuki, 2023] and
matches that in the single agent setting [Choquette-Choo et al., 2024]. Furthermore, note that we do not
require the data distribution to be identical for all the clients. For each point xk, we use an unbiased estimate
of the gradient based on data from all the clients. As a result, the gradient estimated at the server is always
an unbiased estimate of the true gradient of L(x), even when the client distributions are different. Thus,
Charter also lends itself to scenarios with heterogeneous data distribution. Lastly, Charter also allows
seamless integration with client sampling. In particular, if at each communication round only a s ∈ (0, 1)
fraction of clients are available, Charter offers a similar error rate guarantee with M replaced with sM .

5 Discussions and Future Work
Our approach presents a departure from the existing SGD family of algorithms and adopts a different
philosophical outlook toward the optimization problem. Specifically, SGD adopts a “function landscape”
based optimization approach, where it moves down the the function landscape until it reaches the bottom
of the valley, or equivalently the minimum value. On the other hand, Charter adopts a more geometric
perspective to the optimization problem where the objective is to eliminate regions of the domain that do not
contain the minimizer, reminiscent of the classic bisection algorithms in one dimension [Frazier et al., 2019,
Vakili et al., 2019]. While both approaches offer similar accuracy and privacy performances, the key difference
is reflected in their communication complexities. The “function landscape” based approach is inherently tied
to the steepness of the function valley. When the valley is wide, over reliance on the local steps taken by
the agents precludes the algorithm from determining a useful descent direction, resulting in a bias (also
referred to as the client drift) that leads to a sub-optimal performance. In order to remedy this and prevent
excessive reliance on local steps, SGD-based algorithms need to communicate frequently, which results in high
communication complexity. On the other hand, the geometric perspective to optimization avoids this pitfall
and can eliminate sub-optimal regions at a constant rate, thereby requiring less frequent communication. A
similar conclusion in the context of adapting to function regularity was noted in Vakili et al. [2019].

While this geometric perspective offers an improved communication complexity, it comes at the cost of
increased computation complexity. Specifically, Vaidya’s method has a computation complexity of O(d3+grad),
where grad denotes the overall computational complexity of evaluating all the gradients [Jiang et al., 2020].
This order of scaling prevents the application of our proposed approach to high-dimensional problems. Given
the inherent necessity of adopting a geometric perspective to achieve optimal communication complexity,
this suggests that the three-way trade-off is likely a four-way trade-off with computational complexity as
the fourth axis. An interesting future direction is to explore if and how computational complexity poses a
bottleneck in achieving the optimal accuracy-communication-privacy trade-off.

Another interesting direction is to iron out the small sub-optimality region for the communication cost in
the high-privacy regime. We believe this can be remedied using more sophisticated quantization schemes
that combine privacy and quantization [Chen et al., 2024]. The proposed scheme in Chen et al. [2024] uses
at most a single bit for each dimension. However, in our setting it might be necessary to use multiple bits
to represent the values in each dimension which precludes a direct adaptation of that approach. Designing
quantization schemes that allow for multiple-bit representation while ensuring privacy is another direction
worth exploring.
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A Proof of Theorem 1
In order to establish the lower bound, we focus on bounding the accuracy as a function of the communication
cost without the constraint on privacy. The proof consists of three main steps.

• Constructing the “hard” instance: We first construct a function of interest on which we analyze the
performance of a distributed SCO algorithm. This is a typical step in establishing lower bounds, where
the function of interest is chosen to reflect the inherent hardness of the problem.

• Reduction to mean estimation: In the second step, we show that optimizing the above function is at least
as hard as solving Ω(d) mean estimation problems. This step allows us to reduce the original convex
optimization problem to a set of simpler problems for which we understand the accuracy communication
trade-off.

• Establishing the final bound: The final bound is then established by combining the above reduction
with techniques developed for the mean estimation problem.

A.1 Constructing the instance of interest
Let {a1, a2, . . . , ad} be any orthonormal basis of Rd. Let b = (b1, b2, . . . , bd) ∈ {−1, 1}d. Throughout the
proof, we set X = B(1), the unit ball in Rd centered at the origin. For all i ∈ {1, 2, . . . , d}, we define the
following function:

fi(x) =

∣∣∣∣a>i x− bi√
d

∣∣∣∣ .
The results in the lower bound can be extended immediately to a ball of radius R/2 by replacing bi with
Rbi/2 throughout the proof. For simplicity of notation we present the proof with R = 2.

We will consider the following objective function for the analysis:

f(x) = α · max
i=1,2,...,d

fi(x), (15)

where α ∈ (0, 1] is a parameter, whose value is chosen later. Note that {fi(x)}di=1 is a collection of convex,
1-Lipschitz functions. Since taking the maximum operation preserves this property, f(x) is also a convex,
1-Lipschitz function. Let F ′ denote the class of functions of the above form corresponding to different choices
of the orthonormal basis {a1, a2, . . . , ad} and the vector b.

It is straightforward to note that f(x) ≥ 0 for all x ∈ X and f(x) has a unique minimizer x? with
f(x?) = 0 where

x? :=
1√
d

d∑
i=1

aibi. (16)

We consider the following model for the subgradient observations. In particular, the subgradient of any
randomly drawn data point z is distributed as

∂f(x; z) ∼ α · ai(x) · si(x)(x) +N (0, (σ2/d) · Id), (17)

where for all j ∈ {1, 2, . . . , d}, sj(x) is defined as:

sj(x) :=

{
+1 if a>j x−

bj√
d
≥ 0,

−1 otherwise,
(18)

and i(x) is given by:

i(x) := min {j ∈ {1, 2, . . . , d} | f(x) = fj(x)}. (19)
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In other words, sj(x) determines the sign of the a>j x−
bj√
d
and i(x) is the smallest index from the set of the

functions that achieve the maximum value at x. It is straightforward to note that this distribution satisfies
Assumption 2 with σg = σ. Let A denote the class of algorithms that can optimize functions in F ′ using
observations of the form (17).

For analytical convenience, we adopt the framework of having an oracle for the noisy gradients. Specifically,
the algorithm is allowed N queries to an oracle O at each agent. Each query to the oracle O reveals a noisy
gradient at the queried point x that follows the same distribution as in (17). Thus, querying an oracle is
equivalent to computing the gradient at a new data point.

The benefit of the oracle framework is that it allows us to consider a more powerful oracle for the
subgradient. Specifically, we consider an oracle O ′ which when queried at a point x reveals the tuple

O ′(x) = (α · ai(x) +N (0, (σ2/d) · Id), si(x)(x)),

i.e., it separately provides the gradient and the sign information. Clearly, O ′ is a more informative oracle.
Consequently, if A and A′ denote the class of algorithms that can optimize functions in F ′ using observations
from oracles O and O ′ respectively, then A ⊆ A′. For the remainder of the analysis, we focus on the
algorithms in the class A′.

A.2 Reduction to mean estimation
In this part, we show that any algorithm A ∈ A′ that achieves a small optimization error, needs to solve at
least Ω(d) mean estimation problems. We establish this reduction in four steps.

Step 1: Low optimization error is equivalent to learning b. For any A = [a1, a2, . . . , ad] and b, a
given algorithm A and all j ∈ {1, 2, . . . , d}, define

pj(A ;A,b) = Pr
(
sgn(a>j x̂A ) = bj

)
, (20)

where x̂A denotes the output of A when run on the function corresponding to (A,b) and sgn(·) is the sign
function. Here the probability is taken over the randomness in A and noise distribution. If (A′,b′) is an
instance such that for some index i, pi(A ;A′,b′) < 5/6, then for the function f corresponding to (A′,b′),

E[ER(A ; f)] = E[f(x̂A )] ≥ E[αfi(x̂A )]

≥ E
[
α

∣∣∣∣a>i x̂A −
bi√
d

∣∣∣∣ ∣∣∣∣ sgn(a>i x̂A ) 6= bi

]
· Pr(sgn(a>i x̂A ) 6= bi) >

α

6
√
d
.

For the first equality we use the fact that the minimum value of f is 0. Thus, for any algorithm A

sup
f∈F ′

E[ER(A , f)] ≤ α

6
√
d

=⇒ max
j

sup
(A,b)

pj(A ;A,b) ≥ 5

6
. (21)

In other words, if A achieves a small excess risk for all functions in F ′, then it must correctly learn all the
bi’s with probability at least 5/6.

Step 2: Learning bj’s is equivalent to finding a point in Xj. An algorithm can estimate bj ’s only
through issuing appropriate queries to the oracle O ′. For all i ∈ {1, 2, . . . , d}, we define Xi as

Xi :=

x ∈ X
∣∣∣∣
⋂
j<i

{fi(x) > fj(x)}

 ∩
⋂
j≥i

{fi(x) ≥ fj(x)}

 ∩{|a>i x| ≤ 1√
d

} . (22)

Note that whenever an algorithm queries a point x ∈ Xi, the oracle returns si(x) = −bi. Moreover, if the
queried point x /∈ Xi, the value returned by the oracle is either −bj for j 6= i (when x does not satisfy one of
the first two conditions of being in Xi) or a fixed value in {−1,+1} given by sgn(a>i x), which is independent
of the value of bi (when x does not satisfy the third condition of being in Xi). Thus, in both cases, the
output of the oracle is uncorrelated with bi. Hence, querying a point x /∈ Xi yields no information about bi.
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Consequently, an algorithm can learn bi only if it can determine a point x ∈ Xi. Moreover, since si(x) is
noiseless, it is also sufficient to determine such an x ∈ Xi.

Hence, in order for an algorithm to estimate bi, it needs to build an estimator for a point x ∈ Xi. Let
ϕ be an estimator for determining a point x ∈ Xi such that Pr(ϕ ∈ Xi) < 2/3. Here, we slightly abuse
notation and use ϕ to also denote the output of estimator ϕ. If b̂i(ϕ) is an estimator of bi that uses ϕ, then
supb Pr(̂bi(ϕ) 6= bi) ≥ supb Pr(̂bi(ϕ) 6= bi|ϕ /∈ Xi) Pr(ϕ /∈ Xi) > 1

2 ·
1
3 = 1

6 . Here, we used the observation that
the output of the oracle at a point x /∈ Xi is uncorrelated with bi and hence cannot be better than a random
guess. Thus, to correctly determine all bi’s with probability 5/6, an algorithm A needs to determine a set of
points (x̃1, x̃2, . . . , x̃d) such that

Pr

(
d⋂
i=1

{x̃i ∈ Xi}

)
≥ 2

3
. (23)

Step 3: Hardness of finding a point in Xi. In this step, we characterize the hardness of finding a point
w ∈ Xi for some fixed i ∈ {1, 2, . . . , d}. To characterize the hardness, we make use of the reduction outlined
in the following lemma, whose proof is deferred to Appendix A.4.

Lemma 1. Let

X ′i :=

x ∈ X
∣∣∣∣
⋂
j<i

{〈aibi, x〉 < 〈ajbj , x〉}

 ∩
⋂
j≥i

{〈aibi, x〉 ≤ 〈ajbj , x〉}

 ∩{| 〈aibi, x〉 | ≤ 1√
d

}
(24)

for all i ∈ [d]. It follows {w ∈ Xi} =⇒ {w ∈ X ′i}.

In other words, finding a point w ∈ Xi is at least as hard as finding a point w ∈ X ′i . Consequently, any
set of points {x̃1, x̃2, . . . , x̃d} that satisfy (23) must also satisfy

Pr

(
d⋂
i=1

{x̃i ∈ X ′i}

)
≥ 2

3
. (25)

Moreover, note that by definition, the sets {X ′i}di=1 are disjoint and thus the points {x̃1, x̃2, . . . , x̃d} need to
be distinct.

For the rest of the proof, we focus on characterizing the hardness of finding a set of points {x̃1, x̃2, . . . , x̃d}
satisfying Eqn. (25). We claim that any routine M that determines a set of points satisfying Eqn. (25) can
also determine a set of vectors (y1, y2, . . . , yd′) such that 〈vj , yj〉 > 0 holds for all j ≤ d′ with probability 2/3
for some (d− 1)/2 ≤ d′ ≤ d and {v1, v2, . . . , vd′} ⊆ {a1b1, a2b2, . . . , adbd}. To prove this claim, we define

Xsol :=
{

(w1, w2, . . . , wd) ∈ X d | wj ∈ X ′j ∀ j ∈ {1, 2, . . . , d}
}

(26)

to be the set of all possible solutions. For all (w1, w2, . . . , wd) ∈ Xsol define,

n+(w1, w2, . . . , wd) := |{j | 〈ajbj , wj〉 ≥ 0}|; n−(w1, w2, . . . , wd) := |{j | 〈ajbj , wj〉 < 0}|. (27)

Lastly, let

X+
sol := {(w1, w2, . . . , wd) ∈ Xsol | n+(w1, w2, . . . , wd) > d/2} , (28)

X−sol := {(w1, w2, . . . , wd) ∈ Xsol | n−(w1, w2, . . . , wd) ≥ d/2} . (29)

It is straightforward to note that X+
sol and X

−
sol form a partition of Xsol. Thus, M can determine an element

of Xsol with probability 2/3 only if it can either find an element in X+
sol with probability 2/3 or find an

element in X−sol with probability 2/3. Let us consider the two possible cases.

• Case (i): M finds a point in X−sol. By definition of X−sol, we know that there exists a set of indices
{j1, j2, . . . , jd′} with d′ ≥ d/2 for which 〈ajrbjr , x̃jr 〉 < 0 holds for all r ∈ [d′]. If we choose {v1, . . . , vd}
such that vr = ajrbjr , then (y1, y2, . . . , yd′) = (−x̃j1 ,−x̃j2 , . . . ,−x̃jd′ ) is the required set of vectors.
Note that finding a point x̃ is statistically equivalent to finding a point −x̃.
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• Case (ii): M finds a point in X+
sol. By definition of X+

sol, we know that there exists a set of indices
{j1, j2, . . . , jd′′} with d′′ > d/2 for which 〈ajrbjr , x̃jr 〉 ≥ 0 holds for all r ∈ [d′′]. WLOG, we assume
that j1 < j2 < · · · < jd′′ . Note that from the definition of X ′i , we can conclude that

〈
ajrbjr , x̃jr−1

〉
>

0 holds for all r = 2, 3, . . . , d′′. Thus, M determines the required collection (y1, y2, . . . , yd′) =
(x̃j1 , x̃j2 , . . . , x̃jd′′−1

) corresponding to the subset {v1, v2, . . . , vd′} = {aj2bj2 , aj3bj3 , . . . , ajd′′ bjd′′} with
d′ = d′′ − 1 > d/2− 1.

On combining the cases, we arrive at the statement. Consequently, we can conclude that determining
a solution {x̃1, x̃2, . . . , x̃d} satisfying (25) is at least as hard as finding a set of points (y1, y2, . . . , yd′) such
that 〈vj , yj〉 > 0 holds for all j ≤ d′ with probability 2/3 for some (d− 1)/2 ≤ d′ ≤ d and {v1, v2, . . . , vd′} ⊆
{a1b1, a2b2, . . . , adbd}.

Step 4: Establishing the equivalence to mean estimation. Consider the problem of estimating a
vector y such that 〈µ, y〉 > 0 w.p. 2/3, using samples of the form N (µ, (σ2/d)Id), where µ is an unknown
vector. We claim that this problem is at least as hard as solving the Gaussian mean estimation problem to
within an error of C‖µ‖22 for some numerical constant C > 0.

To establish this claim, note that under the aforementioned model, the problem is at least as hard as
finding µ̂, an estimate of µ based on the samples, satisfying 〈µ, µ̂〉 > 0 w.p. 2/3. Let Z = µ− µ̂ denote the
estimation error and u = µ/‖µ‖2 denote a unit vector in the direction of µ. Note that under this model, Z is
independent of µ. We have,

〈µ, µ̂〉 > 0 =⇒ 〈µ, µ̂− µ〉 > −‖µ‖22 =⇒ 〈u, Z〉 < ‖µ‖.

Consequently, any estimator µ̂ that ensures 〈µ, µ̂〉 > 0 w.p. 2/3 for all choices of u must ensure supu 〈u, Z〉 <
‖µ‖ holds w.p. 2/3, or equivalently, ‖Z‖ ≤ ‖µ‖ with probability at least 2/3. This is equivalent to solving
the Gaussian mean estimation problem such that ‖µ̂− µ‖2 ≤ ‖µ‖2 with probability at least 2/3.

Note that the problem faced by the learner, i.e., of identifying the set of vectors (y1, y2, . . . , yd′) corre-
sponding to {v1, v2, . . . , vd′} ⊆ {a1b1, a2b2, . . . , adbd}, is identical to the one outlined above. In particular, for
yj , µ = αvj , and the samples correspond to the queries to the oracle. As a result, the problem of identifying
the set of vectors (y1, y2, . . . , yd′) is equivalent to solving d′ = Θ(d) mean estimation problems to within an
error proportional to α, the norm of the mean vector.

A.3 Establishing the final bound
We can restate the problem of interest as follows. Let {θ1, . . . , θd′} be a collection of distinct vectors with
(unknown) norm α. Let A ′ME be any distributed mean estimation algorithm with M clients such that whose
communication cost matches that of our optimization algorithm A , i.e., CC(A ′ME) = CC(A ). For any vector
θj , each client can query the oracle to obtain an independent sample from N (θj , (σ

2/d)Id). Using a total of
N such samples at each agent, the algorithms need to determine a set of estimates {θ̂1, . . . , θ̂d′} such that
with probability at least 2/3,

max
j≤d′
‖θ̂j − θj‖2 ≤ ‖θ1‖22 = α2. (30)

For all j, let Nj and Bj denote the number of samples used and the number of bits transmitted by each
client respectively to estimate θj .6 Using the results for distributed mean estimation [Barnes et al., 2020b,
Braverman et al., 2016, Duchi et al., 2014], we can conclude that

‖θ̂j − θj‖2 ≥ c0 ·min

{
σ2d

dNj
,max

{
σ2d2

dMNjBj
,
σ2d

dMNj

}}
≥ c0 ·min

{
σ2

Nj
,max

{
σ2d

MNjBj
,
σ2

MNj

}}
, (31)

holds for each j ≤ d′ w.p. at least 1/3 where c0 > 0 is a numerical constant. Define J1 := {j : Nj > 3N/d′}
and J2 := {j : Bj > 3CC(A ′ME)/d′}. It is straightforward to note that |J1| ≤ d′/3 and |J2| ≤ d′/3.
Consequently, |J c1 ∩ J c2 | = d′ − |J1 ∪ J2| ≥ d′ − |J1| − |J2| ≥ d′/3 > 0. This implies that there exists an

6For simplicity of exposition, we assume that the values Nj and Bj are same across all clients. This idea can be extended to
the general case with different values at different clients using the sequence of arguments outlined in Duchi et al. [2014].

22



index j′ such that Nj′ ≤ 3N/d′ and Bj′ ≤ 3CC(A ′ME)/d′}. Using this choice of j′ along with (31) and the
relations d′ ≥ (d− 1)/2 and CC(A ′ME) = CC(A ), we can conclude that

max
j≤d′
‖θ̂j − θj‖2 ≥ c1 ·min

{
σ2d

N
,max

{
σ2d3

MNCC(A )
,
σ2d

MN

}}
(32)

holds with probability at least 1/3 for some numerical constant c1 > 0.
Let us consider the scenario where

α2 := min

{
c1
2
·min

{
σ2d

N
,max

{
σ2d3

MNCC(A )
,
σ2d

MN

}}
, 1

}
. (33)

For this choice of α, based on Eqn. (32) we can conclude that A cannot solve the mean estimation problems
to the required level of precision. As elaborated in the previous step, this implies that A cannot identify the
set of points {x̃1, x̃2, . . . , x̃d} with the required confidence and hence

ER(A ) = sup
f∈F

ER(A ; f) ≥ sup
f∈F ′

ER(A ; f)

≥ α

6
√
d
& min

{
min

{√
σ2

N
,max

{√
σ2d2

MNCC(A )
,

√
σ2

MN

}}
,

1√
d

}
. (34)

As mentioned at the beginning of the proof, the above analysis can be easily extended to a domain with
diameter R by replacing bi with Rbi/2 in the definition of the functions fi. In a such a case, the corresponding
relation for Eqn. (21) would read as

sup
f∈F ′

E[ER(A , f)] ≤ Rα

12
√
d

=⇒ max
j

sup
(A,b)

pj(A ;A,b) ≥ 5

6
. (35)

Consequently, Eqn. (36) would be updated as

ER(A ) = ≥ Rα

12
√
d
& Rmin

{
min

{√
σ2

N
,max

{√
σ2d2

MNCC(A )
,

√
σ2

MN

}}
,

1√
d

}
. (36)

The statistical term and the privacy term in the statement of Theorem 1 follow from the standard lower
bounds established in the literature [Agarwal et al., 2009, Bassily et al., 2014, Levy et al., 2021]. Specifically,
Theorem 1 from Agarwal et al. [2009] states that the error rate of any convex optimization algorithm A with
a total of MN queries to a (sub)gradient oracle corresponding to a 1-Lipschitz function satisfies

ER(A ) ≥ c2 min

{
R ·
√

σ2

MN
,
R√
d

}
. (37)

To obtain the lower bound corresponding to the private estimation, note that the problem considered in
this work is at least as hard as stochastic convex optimization in a centralized setting with MN samples
out of which M samples can change in neighboring datasets (akin to user-level privacy). Thus, using the
corresponding lower bounds from Bassily et al. [2014], Levy et al. [2021], we can conclude that

ER(A ) ≥ c3 ·
R
√
d√

MNεDP

. (38)

On combining the results in Eqn. (36), (37) and (38), we arrive at the final result.

Extension to L-Lipschitz functions. The above analysis can be easily extended to accommodate L-
Lipschitz functions. In particular, for the hard instance, we replace f(x) with Lf(x) and carry out the same
series of steps. As a result, Eqn. (21) gets modified to

sup
f∈F ′

E[ER(A , f)] ≤ RLα

12
√
d

=⇒ max
j

sup
(A,b)

pj(A ;A,b) ≥ 5

6
. (39)
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Moreover, since the gradients scale by a factor of L, the condition in Eqn. (30) changes to

max
j≤d′
‖θ̂j − θj‖2 ≤ ‖θ1‖22 = L2α2 (40)

and the corresponding choice of α needs to be updated to

α2 :=
1

L2
min

{
c1
2
·min

{
σ2d

N
,max

{
σ2d3

MNCC(A )
,
σ2d

MN

}}
, 1

}
. (41)

In the light of Eqn. (39), the above choice of α results in a lower bound identical to Eqn. (36). Due to a
similar flavour of analysis, the relation in Eqn. (37) also does not get affected by the choice of L. However,
the change in lipschitz constant results in a change of sensitivity in the gradient estimation procedures. As a
result, Eqn. (38) exhibits a linear dependence with L for L-Lipschitz functions.

A.4 Proof of Lemma 1
Throughout the proof, we fix a vector w ∈ Xi. For simplicity of presentation, we use the shorthand

αj := 〈ajbj , w〉

for all j ∈ [d]. Using this shorthand, we can rewrite the condition w ∈ Xi as

{w ∈ Xi} =

⋂
j<i

{∣∣∣∣ 1√
d
− αi

∣∣∣∣ > ∣∣∣∣ 1√
d
− αj

∣∣∣∣}
 ∩

⋂
j≥i

{∣∣∣∣ 1√
d
− αi

∣∣∣∣ ≥ ∣∣∣∣ 1√
d
− αj

∣∣∣∣}
 ∩{|αi| ≤ 1√

d

}
.

To establish the statement of the lemma, we fix a value of j and define the following events:

E0 := E1 ∩ E2, (42a)

E1 :=

{∣∣∣∣ 1√
d
− αi

∣∣∣∣ > ∣∣∣∣ 1√
d
− αj

∣∣∣∣} , (42b)

E2 :=

{
|αi| ≤

1√
d

}
, (42c)

E3 := {|αj | < |αi|}, (42d)
E4 := {αi < 0}, (42e)
E5 := {αj > 0}. (42f)

Let us first analyze the condition for j < i. Given E2 ∩ E3 ∩ Ec4 , we have,∣∣∣∣ 1√
d
− αi

∣∣∣∣ (a)
=

1√
d
− αi

(b)
=

1√
d
− |αi|

(c)

≤ 1√
d
− |αj | ≤

∣∣∣∣ 1√
d
− |αj |

∣∣∣∣ (d)

≤
∣∣∣∣ 1√
d
− αj

∣∣∣∣ , (43)

where (a), (b) and (c) are a consequence of E2, Ec4 and E3 respectively, and (d) follows from triangle inequality.
As a result, E1 ∩ E2 ∩ E3 ∩ Ec4 = ∅ which implies E1 ∩ E2 ∩ E3 = E1 ∩ E2 ∩ E3 ∩ E4. Similarly, given E2 ∩ Ec3 ∩ Ec5 ,
we have, ∣∣∣∣ 1√

d
− αi

∣∣∣∣ (a)
=

1√
d
− αi ≤

1√
d

+ |αi|
(b)

≤ 1√
d

+ |αj |
(c)

≤
∣∣∣∣ 1√
d
− αj

∣∣∣∣ , (44)

where (a), (b) and (c) are a consequence of E2, Ec3 and Ec5 respectively. As a result, E1 ∩ E2 ∩ Ec3 ∩ Ec5 = ∅ and
hence, E1 ∩ E2 ∩ Ec3 = E1 ∩ E2 ∩ Ec3 ∩ E5. Using these two relations, we can conclude that

E0 = E1 ∩ E2
= (E1 ∩ E2 ∩ E3) ∪ (E1 ∩ E2 ∩ Ec3)

= (E1 ∩ E2 ∩ E3 ∩ E4) ∪ (E1 ∩ E2 ∩ Ec3 ∩ E5)
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⊆ E2 ∩ ((E3 ∩ E4) ∪ (Ec3 ∩ E5)) ∩ {αi 6= αj}
⊆ E2 ∩ {αi < αj},

where in the fourth step the condition {αi 6= αj} is a consequence of E1 and the last step follows by noting
((E3 ∩ E4) ∪ (Ec3 ∩ E5)) ∩ {αi 6= αj} = {αi < αj}. By a very similar sequence of arguments, we can also show
that for all j > i {∣∣∣∣ 1√

d
− αi

∣∣∣∣ ≥ ∣∣∣∣ 1√
d
− αj

∣∣∣∣} ∩{|αi| ≤ 1√
d

}
⊆
{
|αi| ≤

1√
d

}
∩ {αi ≤ αj}.

Note that the only difference in this case is we allow αi = αj . On combining the two cases, we can conclude
that w ∈ Xi =⇒ w ∈ X ′i , where X ′i is defined in Eqn. (24).

B Proof of Theorem 2
We separately establish the accuracy, privacy and communication complexity guarantees of Charter.

Communication Cost. The bound on communication cost is straightforward. Note that in the learning
stage, Charter quantizes each gradient such that it can be expressed in d·J0 bits (J0 bits for each coordinate).
Since each agent transmits K such gradients, one for each of the K iterations, the communication cost during
the learning phase is KdJ0 bits. During the verification phase, each client transmits K+ 1 scalars, where each
scalar is expressed using J1 bits. Thus, the communication cost during the verification stage is (K + 1)J1.
On combining the two and plugging in the values from Section 4.3, we obtain,

CC(Charter) = KdJ0 + (K + 1)J1

≤ C1 ·
(
d2 log(dMN) · log

(
2D0NεDP√
d+ εDP

√
N

)
+ d log(dMN) · log

(
2D1NεDP√
d+ εDP

√
N

))
= Õ(d2),

as required. Here C1 > 0 is a numerical constant.

Privacy. To establish the privacy guarantees, note that it is sufficient to establish that both stages of the
algorithm are (εDP, δDP) differentially private as they use distinct subsets of D. Since the analysis is identical
for all the clients, we drop the subscript m for notational simplicity. We begin with stating some useful
lemmas followed by the proof.

Definition 4. Let f : ZN → Rk. The `2 sensitivity of f is defined as

∆2,f := sup
D,D′
‖f(D)− f(D′)‖2,

where D,D′ ⊂ ZN are neighboring datasets.

Lemma 2 (Gaussian Mechanism [Dwork et al., 2006]). Let f : ZN → Rk obeying Definition 4 and Y ∈ Rk
be a random vector each of whose entries is an i.i.d. random variable drawn according to zero mean Gaussian
with variance 2 log(5/(4δ))∆2

2,f

ε2 . The algorithm

A(D) = f(D) + Y

is (ε, δ)-differentially private.

Lemma 3 (Amplification by subsampling [Balle et al., 2018]). For ε, δ ∈ (0, 1), let A : Zk → Θ be an
(ε, δ)-differentially private algorithm. For N > k and a dataset S ⊂ ZN , let SWOR be a dataset of size k
obtained by randomly sampling points from S without replacement. Then A′ obtained via A′(S) = A(SWOR)
is a

(
(e− 1)kεN ,

kδ
N

)
-differentially private algorithm.
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Lemma 4 (Advanced Composition Theorem [Dwork et al., 2015, Kairouz et al., 2015]). For any ε > 0, δ ∈
[0, 1] and δ̃ ∈ [0, 1], the class of (ε, δ)-differentially private mechanisms satisfies (ε̃δ̃, 1 − (1 − δ)k(1 − δ̃))-
differentially privacy under k-fold adaptive composition for

ε̃δ̃ := min

kε, k(eε − 1)ε

(eε + 1)
+ ε

√√√√2k log

(
min

{
e+

√
kε2

δ̃
,

1

δ̃

}) .

We begin with the main proof starting with the privacy guarantees of the learning stage. Note that

the `2 sensitivity of ∂̂L
(NonPriv,b)

is 6KG0/N . Thus, using the privacy guarantees of Gaussian Mechanism

(Lemma 2), we can conclude that for all iterations k, ∂̂L
(Priv,b)

(xk) is (ε0, δ0) private with respect to D(1,k),
where

ε0 := εDP ·

√
K

15 log(2.5/δDP)
; δ0 :=

δDP

2
. (45)

Using Lemma 3 and the condition εDP ≤ 1√
K
, we can conclude that ∂̂L

(Priv,b)
(xk) (ε1, δ1) private with respect

to D(1), where

ε1 :=
(e− 1)εDP

2
·

√
1

15K log(2.5/δDP)
; δ1 :=

δDP

2K
. (46)

Lastly, using Lemma 4 with δ̃ = δDP/2, we can conclude that Charter is (εDP, δDP) differentially private
during the learning stage.

For the verification stage, note that for all k, L̂(xk) is (ε2, δ2) private, where

ε2 := εDP ·

√
9

20K log(2.5/δDP)
; δ2 :=

δDP

2K
. (47)

The final privacy guarantee of the verification stage then follows by again invoking Lemma 4 with δ̃ = δDP/2.

Accuracy. We establish the utility guarantees of Charter in four steps. In the first step, we establish
that the loss estimates obtained at the end of the verification stage are close to the true values by bounding
the estimation error during the verification stage. In the second step, we use these bounds to relate the excess
risk of the algorithm to that of the minimum among the iterates. In the third step, we show that the iterates
generated by the algorithm are such that there exists at least one iterate with sufficiently small excess risk.
In the last step, we combine the results to obtain the final bound.

Step 1: Bounding the estimation error. In the verification stage, we have the following relation for all
k ∈ {0, 1, 2, . . . ,K}

L̂(xk)− L(xk)

=
1

M

M∑
m=1

(L̂m(xk)− L̂Priv
m (xk))︸ ︷︷ ︸

:=L1

+
1

M

M∑
m=1

(L̂Priv
m (xk)− L̂NonPriv

m (xk))︸ ︷︷ ︸
:=L2

+
1

M

M∑
m=1

(L̂NonPriv
m (xk)− L(xk))︸ ︷︷ ︸

:=L3

. (48)

We separately bound each of the three terms on the RHS.

• Bounding L1: We use the following lemma that provides concentration guarantees for clipped sub-
Gaussian random variables to obtain a bound on L1.
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Lemma 5. (Lemma B.1 from Salgia and Zhao [2023]) Let X1, X2, . . . , Xn be a collection of i.i.d.
σ2-sub-Gaussian random variables with mean µ. For all i, define Yi = Xi1{|x| ≤ B}, where B ≥
|µ|+ σ

√
2 log(4n). Then, with probability 1− δ,∣∣∣∣∣ 1n

n∑
i=1

Yi − µ

∣∣∣∣∣ ≤ σ
√

2

n
log

(
4

δ

)
.

Note that the prescribed choice of G1 satisfies the condition in the above lemma. On invoking the
above lemma along with the choice of G1, we can conclude that

|L1| ≤ σf

√
6

MN
log

(
32(K + 1)

δErr

)
(49)

holds for xk with probability 1− δErr/(8(K + 1)). Moreover, on taking a union bound over all k, we can
conclude that the above relation holds for all k with probability 1− δErr/8.

• Bounding L2: The term L2 corresponds to the error induced by the privatization noise. Since
privatization just involves the addition of Gaussian noise, we can use the concentration of Gaussian
random variables to bound L2. Thus,

|L2| ≤ σ1

√
2

M
log

(
16(K + 1)

δErr

)
. (50)

holds with probability 1 − δErr/8(K + 1). Upon again invoking the union bound argument, we can
conclude that the above relation holds for all k with probability 1− δErr/8.

• Bounding L3: On using the prescribed choice of D1 along with the concentration of Gaussian random
variables, we obtain that |L̂Priv

m (xk))| ≤ D1 holds for all m, k with probability 1− δErr/8. Moreover, in
the stochastic quantization routine, the quantization noise is bounded and hence sub-Gaussian with
parameter 4D2

1 · 4−J1 . Consequently, the following relation holds for all k with probability 1− 2δErr/8:

|L3| ≤ 2D1 · 2−J1
√

2

M
log

(
16(K + 1)

δErr

)
. (51)

On combining the relations in (49), and (50), (51) and plugging them into (48), we obtain that

|L̂(xk)− L(xk)|

≤ σf

√
6

MN
log

(
32(K + 1)

δErr

)
+ σ1

√
2

M
log

(
16(K + 1)

δErr

)
+ 2D1 · 2−J1

√
2

M
log

(
16(K + 1)

δErr

)
(52)

holds with probability 1− δErr/2.

Step 2: Relating the excess risks. Let k? be as defined in (14) and k† be

k† := arg min
k

L(xk). (53)

Then,

L(xk?) ≤ L̂(xk?) + ζ ≤ L̂(xk†) + ζ ≤ L(xk†) + 2ζ, (54)

where ζ corresponds to the expression on the RHS in (52).
This implies that the excess risk of the point output by the algorithm is at most an additive factor larger

than that of the point with the smallest excess risk in {x0, x1, . . . , xK+1}. Thus, it is sufficient for Charter
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to ensure that at least one iterate obtained during the learning stage has a small excess risk. We analyze the
performance of the learning stage in the step to establish the existence of such a point.

Step 3: Existence of an iterate with small excess risk. Our analysis in this step builds upon the
analysis of Vaidya’s method [Anstreicher, 1997, Vaidya, 1996]. Let xc be the center of X and X0 be the set
given by

X0 =

{
xc ±

R

2
√
d
· e1, xc ±

R

2
√
d
· e2, . . . , xc ±

R

2
√
d
· ed
}
, (55)

where {e1, e2, . . . , ed} denote the canonical basis of Rd. In other words, X0 denote the vertices of an `1-ball
of radius R

2
√
d
, centered at xc. Note that X0 ⊂ X . Let x? be any fixed minimizer of the function f in X and

X1 be the set given by

X1 := (1− ω)x? + ωX0, (56)

where ω = σmax√
MN

. Thus, conv(X1) is an `1-ball of radius Rσmax

2
√
dMN

, centered at x? + ω(xc − x?). Here conv(Y)

denotes the convex hull of the set Y. Using convexity of X and the relation X0 ⊂ X , we can conclude that
X1 ⊂ X . Let x1 ∈ X1 and x0 be the corresponding point in X0. Thus,

‖x1 − x?‖2 = ω‖x0 − x?‖2 ≤ ωR =
Rσmax√
MN

. (57)

We claim that there exists an iteration k′ ∈ {0, 2, . . . ,K} such that X1 ⊂ Pk′ and X1 6⊂ Pk′+1, where Pk
denotes the polyhedron (Ak, bk) constructed during Vaidya’s method. In other words, during the iteration k′,
one of the points in X1 is eliminated. We defer the proof of the claim to the end of the section.

We show that xk′ is the required point that has a small excess risk. Firstly, note that a point is eliminated
in Vaidya’s method only when a constraint is added. Secondly, recall that in the kth iteration, we add the
constraint c>k x ≥ βk, where ck = −∂̂L(xk) and βk ≤ c>k xk. This implies all points eliminated during the kth

iteration satisfy c>k x < βk ≤ c>k xk. Thus, if a point x ∈ X1 is eliminated in iteration k′, then x satisfies〈
−∂̂L(xk′), x− xk′

〉
< 0 =⇒

〈
∂̂L(xk′), x− xk′

〉
> 0. (58)

Consequently,

L(xk′) < L(xk′) +
〈
∂̂L(xk′), x− xk′

〉
< L(xk′) + 〈∂L(xk′), x− xk′〉+

〈
∂̂L(xk′)− ∂L(xk′), x− xk′

〉
< L(x) +

〈
∂̂L(xk′)− ∂L(xk′), x− xk′

〉
< L(x?) +

Rσmax√
MN

+
〈
∂̂L(xk′)− ∂L(xk′), x− xk′

〉
, (59)

where the first line follows from (58), the third line from the convexity of L and the fourth line from (57) and
1-Lipschitzness of L (Assumption 1). Thus, if the error

〈
∂̂L(xk′)− ∂L(xk′), x− xk′

〉
is small, the excess

risk at k′ is also small.
To establish this result, we first state a relation that will be useful for the analysis. We claim that

1

4
≤ Tk,m ·

3K

N
≤ 1 (60)

holds for all clients m and iterations k with probability 1 − δErr/10 as long as N = Ω(d log(MK)). We
defer the proof of the claim to the end of the section. Moreover, we carry out the remainder of the analysis
conditioned on this event.
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We establish that
〈
∂̂L(xk)− ∂L(xk), x− xk

〉
is small for all iterations k which immediately yields the

bound for iteration k′. We use a similar modus operandi as used in Step 1. Consider the kth iteration and
any fixed x ∈ X1. We have,

〈
∂̂L(xk)− ∂L(xk), x− xk

〉
=

1

M

M∑
m=1

〈
N

3KTk,m
∂̂L

NonPriv,b
m (xk)− ∂L(xk), x− xk

〉
︸ ︷︷ ︸

:=W1

+
1

M

M∑
m=1

N

3KTk,m
·
〈
∂̂L

Priv,b
m (xk)− ∂̂L

NonPriv,b
m (xk), x− xk

〉
︸ ︷︷ ︸

:=W2

+
1

M

M∑
m=1

〈
∂̂Lm(xk)− ∂̂L

Priv,u
m (xk), x− xk

〉
︸ ︷︷ ︸

:=W3

. (61)

Similar to Step 1, we separately bound each of the three terms on the RHS of Eq. (61).

• Bounding W1: To bound W1, note that

N

3KTk,m
∂̂L

NonPriv,b
m (xk) =

1

Tk,m

∑
z∈D(1,k)

m

clip(∂`(xk; z);G0) · 1{z /∈ ∪k−1
j=1D

(1,j)
m },

is an estimate of ∂L(xk) using Tk,m independent (clipped) samples. If v denotes the unit vector along
x− xk, then using the sub-Gaussianity of the samples (Assumption 2), we know that 〈∂`(x; z), v〉 is a
sub-Gaussian random variable with parameter σ2

g/d. Moreover, the choice of G0 satisfies the condition
in Lemma 5 for the random variable 〈`(x; z), v〉. Thus, using Lemma 5, we can conclude that

|W1| = ‖x− xk‖2 ·

∣∣∣∣∣ 1

M

M∑
m=1

〈
N

3KTk,m
∂̂L

NonPriv,b
m (xk)− ∂L(xk), v

〉∣∣∣∣∣
≤ Rσg

√√√√log

(
80d(K + 1)

δErr

)
· 2

M2

M∑
m=1

1

Tk,m

≤ Rσg

√
24K

dMN
· log

(
80d(K + 1)

δErr

)
, (62)

holds with probability 1− δErr/(20d(K+ 1)). Here, the last line follows using (60). Using a union bound
we obtain that the above relation holds for all k with probability 1− δErr/(20d).

• Bounding W2: Note that N
3KTk,m

·
〈
∂̂L

Priv,b
m (xk)− ∂̂L

NonPriv,b
m (xk), x− xk

〉
is a Gaussian random

variable with variance
(

N
3KTk,m

)2

R2σ2
0 ≤ 16R2σ2

0 where the inequality follows from the bound in
Eqn. (60). Consequently, for all k,

|W2| ≤ 4Rσ0 ·

√
2

M
log

(
40d(K + 1)

δErr

)
(63)

holds with probability 1− δErr/(20d).

• Bounding W3: Lastly, to bound W3, we use the same approach as used for L3. For the choice D0 and
in light of Eqn. (60), we can conclude that the event E = {‖∂̂L

Priv,u
m (xk)‖∞ ≤ D0 ∀m, k} holds with

probability 1− δErr/10. Since each coordinate of the quantized vector is an independent sub-Gaussian
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random variable with parameter 4D2
0 · 4−J0 ,

〈
∂̂Lm(xk)− ∂̂L

Priv,u
m (xk), x− xk

〉
is a sub-Gaussian

random variable with parameter 4D2
0 ·4−J0 · ‖x−xk‖2. Using the concentration of sub-Gaussian random

variables and a union bound argument, we can conclude that, conditioned on E ,

|W3| ≤ 2D0 · 2−J0 ·R ·

√
2

M
log

(
40d(K + 1)

δErr

)
(64)

holds for all k with probability 1− δErr/(20d). Here, we used the relation ‖x− xk‖ ≤ R.

Thus, the relations (61), (64), (63), and (62) taken together along with a union bound over x ∈ X1 imply
that

|
〈
∂̂L(xk)− ∂L(xk), x− xk

〉
| ≤ 2D0 · 2−J0 ·R ·

√
2

M
log

(
40d(K + 1)

δErr

)
+ 4Rσ0 ·

√
2

M
log

(
40d(K + 1)

δErr

)

+Rσg

√
24K

dMN
· log

(
80d(K + 1)

δErr

)
(65)

holds for all k ∈ {0, 1, . . . ,K}, m ∈ {1, 2, . . . ,M} and x ∈ X1 with probability 1− 3δErr/10.

Step 4: Putting it together. On combining (52), (54), (59), and (65), plugging in the prescribed parameter
values from Section 4.3 and accounting for the conditioning on the E and Eqn. (60) , we obtain that

L(xk?)− L(x?)

≤ C1(Rσg + σf )

√
logN

MN
· log

(
d2 log(MN)

δErr

)
+ C2R

′
√
d log(MN)

NεDP
log

(
d log(MN)

δDP

)√
log

(
d2 log(MN)

δErr

)
(66)

holds with probability 1− δErr for some constants C1, C2 that are independent of all problem parameters and
R′ = R(1 + σg) + σf .

Proving the claim (60). To establish this result, firstly note that we sample (uniformly at random) N/3K
points for K rounds from a dataset of size 2N/3. Thus, for all rounds, the number of previously seen data
points are at most N/3, which is half the dataset. To lower bound the value of Tk,m, we obtain an upper
bound on T̃k,m = N

3K − Tk,m, i.e., the number of points in the set that have been seen previously by the
algorithm. Using Hoeffding’s inequality, which also holds for sampling without replacement [Bardenet and
Maillard, 2015, Hoeffding, 1994], we can conclude that with probability 1− δErr/(10M(K + 1)),

T̃k,m ≤
N

3K
· 3Nk,m

2N
+

√
N

6K
log

(
10M(K + 1)

δErr

)
, (67)

where Nk,m denotes the number of samples that have been seen before iteration k at client m. As shown
above, Nk,m ≤ N/3 for all k,m with probability 1. Thus, if N ≥ 24K log

(
10M(K+1)

δErr

)
, then,

T̃k,m ≤
N

3K
·

(
1

2
+

√
3K

2N
log

(
10M(K + 1)

δErr

))
≤ N

3K
·

(
1

2
+

√
1

16

)
≤ 3

4
· N

3K
. (68)

On taking union bound over k and m, we can conclude that

Tk,m ≥
1

4
· N

3K
(69)

holds for all k ∈ {0, 1, . . . ,K} and m ∈ {1, 2, . . . ,M} with probability 1− δErr/10. The upper bound on Tk,m
follows directly by definition.
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Proving that x ∈ X1 is eliminated. We establish this claim using contradiction. Specifically, if we
assume X1 ⊂ Pk for all k ≤ K, then Pk contains an `1 ball of radius ωR

2
√
d
for all k ≤ K. This is because Pk is

a convex set and if X1 ⊂ Pk, then the convex hull of X1, which is an `1 ball, also lies in Pk. If for all k ≤ K,
Pk contains an `1 ball of radius ωR

2
√
d
, then for all k ≤ K

log(vol(Pk)) ≥ d log

(
ωR√
d

)
− log(d!) ≥ d log

(
Rσg

d
√
dMN

)
. (70)

The RHS is the logarithm of the volume of an `1 ball of radius ωR
2
√
d
, where d! denotes the factorial of d. On

the other hand, Vaidya [1996] shows that the volume of the polyhedron after kth iteration of Vaidya’s method
is given by

log(vol(Pk)) ≤ d log

(
2d

γ

)
− V 0 − γk

2
, (71)

where γ is the parameter of Vaidya’s algorithm and V 0 is the initial volumetric barrier. Since we start with a
hypercube, its volumetric center is the same as the geometric center of the hypercube. Consequently, the
volumetric barrier of a cube of side b is given by

Vcube =
d

2
log

(
8

b2

)
. (72)

Since the diameter of X is R, the initial volumetric barrier is given by

V 0 =
d

2
log

(
8d

R2

)
. (73)

On plugging the above relation into (71) along with the value of K, we obtain,

log(vol(PK)) ≤ d log

(
2d

γ

)
− d

2
log

(
8d

R2

)
− γ

2
· 4d

γ
log

(
d
√
MN

γσg

)

≤ d log

(
2d

γ
· R√

8d
· γσg
d2MN

)
≤ d log

(
Rσg

dMN
√

2d

)
.

This results in a contradiction with the lower bound on the volume of PK from (70). This implies that
X1 6⊂ PK and hence some x ∈ X1 was eliminated during the algorithm.
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