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Recent successes in RL

At last — a computer program that
can beat achampion Go player pase 454

ALL SYSTEMS 9‘0

SONGBIRDS SAFEGUARD WHEN GENES
ALA CARTE TRANSPARENCY ~ GOT ‘SELFISH"

RL holds great promise in the next era of artificial intelligence.



Sample efficiency

Collecting data samples might be expensive or time-consuming due to
the enormous state and action space
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Sample efficiency

Collecting data samples might be expensive or time-consuming due to
the enormous state and action space

L

~ ———.

clinical trials autonomous driving online ads

Calls for design of sample-efficient RL algorithms!



Robustness to sim-to-real gap

The experienced environment can be perturbed from the training one due
to sim-to-real gaps, noise, and generalization.

Real World Simulated

Uncertainty Sim-to-real gaps Generalization



Robustness to sim-to-real gap

The experienced environment can be perturbed from the training one due
to sim-to-real gaps, noise, and generalization.

Real World Simulated

Uncertainty Sim-to-real gaps Generalization

Calls for robust RL algorithms!



Statistical thinking in RL: non-asymptotic analysis

]

IYTIRITITIY An Analysis of Temporal-Difference Learning
PROGRAMMING with Function Approximation

finite-time &
finite-sample analysis

asymptotic
analysis

Reinforcement Learning:
Theory and Algorithms

Alekh Agarwal  NanJiang ~ Sham M. Kakade ~ Wen Sun

December 9, 2020

Non-asymptotic analyses are key to understand statistical efficiency in
modern RL. J




Recent advances in statistical RL

The playground: Markov decision processes



Backgrounds: Markov decision processes



Markov decision process (MDP)
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Markov decision process (MDP)
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Markov decision process (MDP)
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| next state
St4+1 ™~ P('|3t,at)

e S: state space e A: action space
® r(s,a) € [0,1]: immediate reward

e 7(-]s): policy (or action selection rule)

® P(|s,a): transition probabilities
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Value function
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Value function of policy 7:
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Q-function of policy
(o)
Z'ytr(st,at) | so = 5,00 = (z]

V(s,a) eSxA: Q7(s,a):=E

t=0

® ~ € [0,1) is the discount factor; ﬁ is effective horizon
® Expectation is w.r.t. the sampled trajectory under 7



Searching for the optimal policy

Reinforcement
Learning

:-—a ent —_— Dynamic Programming
I' ------ and Optimal Control

L_

Goal: find the optimal policy 7* that maximize V7 (s)

*

® optimal value / Q function: V* := VT Q* =QT

® optimal policy 7*(s) = argmax,c 4 @*(s,a)



RL meets distributional robustness:
towards minimax-optimal sample complexity

Laixi Shi Gen Li Yuxin Chen Yuting Wei Matthieu Geist
Caltech CUHK UPenn UPenn Cohere

“The Curious Price of Distributional Robustness in Reinforcement Learning with a
Generative Model,” arXiv:2305.16589. Short version at NeurlPS 2023.



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment =+ Test environment
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Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment =+ Test environment

Sim2Real Gap: Can we learn optimal policies that are robust to
model perturbations? J
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)y ={P: p(P,P°) <o}
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)y={P: p(P,P°) <o}
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)y={P: p(P,P°) <o}

- P S RN us(r°)

® Examples of p: f-divergence (TV, x2, KL...)

12



Robust value/Q function

action
state s N
------- oo =1 noonoonmon o
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Robust value/Q function of policy 7:
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Measures the worst-case performance of the policy in the uncertainty set.



Distributionally robust MDP

Find the policy ™ that maximizes V'™ l

(lyengar. '05, Nilim and El Ghaoui. '05)

14



Distributionally robust MDP

Robust MDP J

Find the policy ™ that maximizes V™%

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™ 9 satisfy

Q7 (s,a) =r(s,a) +y inf (Ps,a, V*7),
Psa€Uo(P2,)

V*7(s) = max Q*7(s,a)
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Distributionally robust MDP

Robust MDP
Find the policy ™ that maximizes V™%

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™ 9 satisfy

Q7 (s,a) =r(s,a) +y inf (Ps,a, V*7),
Psa€Uo(P2,)

V*7(s) = max Q*7(s,a)
Distributionally robust value iteration (DRVI):

Q(s,a) < r(s,a) +7 inf (Ps.a, V),
Py €U (P2 )

where V (s) = max, Q(s,a).

14



Learning distributionally robust MDPs

arbitra ry

(s,a)

Nowminal Transition
kernel
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Learning distributionally robust MDPs

arbitra ry

(s,a)

Nowminal Transition
kernel

Goal of robust RL: given D := {(s;,a;, s.)}Y, from the nominal
environment PP, find an e-optimal robust policy 7 obeying

Vre V%,U <e

— in a sample-efficient manner
15



Model-based RL: empirical MDP + planning

— Azar et al., 2013, Agarwal et al., 2019

( empirical \

nominal MDP
H E N
| |
[ | | I |
. N - .
H B B planning T
] H B oracle
[ | [ |
[ | | B e.g. policy iteration
H EH R
| [ |
empirical T

\_ nominal P° /

Planning by distributionally robust value iteration (DRVI):

~ ~

Q(s,a) + r(s,a) +~ inf  (Psq, V),
Py €U (Pe )

where ‘7(5) = max, @(s,a).
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Duality for scalability

Dual problem can be solved efficiently (w.r.t. a scalar) J

(lyengar. '05, Nilim and El Ghaoui. '05)

TV uncertainty: divergence function p = total variation

-~

Q(s,a) + r(s,a)

/\E[minS \A/(s),maxs \7(9)

where [V]x(s) := A if V(s) > A, otherwise [V]x(s) = V(s).
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Duality for scalability

Dual problem can be solved efficiently (w.r.t. a scalar) J

(lyengar. '05, Nilim and El Ghaoui. '05)

TV uncertainty: divergence function p = total variation

-~

Q(s,a) + r(s,a)

/\E[minS \A/(s),maxs \7(9)]
where [V]x(s) := A if V(s) > X, otherwise [V]x(s) = V().
x? uncertainty: divergence function p = x?

@(s7 a) + r(s,a)

e = g, (7))

)\E[mins V (s),maxg \7(5)]
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A curious question

empirical MDP

Learn the optimal policy of
Pl the nominal MDP?

\~* Learn the robust policy
around the nominal MDP?

18



A curious question

. N . Learn the optimal policy of
.. . = /¢" the nominal MDP?
’/

- - »”’ i
HE B &
H H N @

"o ®-
~, -
. ] - \\* Learn the robust policy
. - around the nominal MDP?
empirical MDP

Robustness-statistical trade-off? Is there a statistical premium that
one needs to pay in quest of additional robustness? J




Prior art: TV uncertainty

Sample complexity 4

S2A I Upper bound
(1 — 7)452 [Panaganti and Kalathil]

SA Standard MDPs
upper & minimax lower bound

SA
T

SA(1—7)
e

® Large gaps between existing upper and lower bounds

® Unclear benchmarking with standard MDP

19



Prior art: %2 uncertainty

'
Sample complexity
Upper bound 5?Ao

S2A [Panaganti and Kalathil] (IT—=7)%e?
(1 =)t

SA Standard MDPs
m N i N upper & minimax lower bound =

Lower bound [Yang et al.]
(1 =7)e? 1 1 1 >
o1-7 0(1)  0(/1-)

® Large gaps between existing upper and lower bounds

® Unclear benchmarking with standard MDP



Our theorem under TV uncertainty

Theorem (Shi et al., 2023)

Assume the uncertainty set is measured via the TV distance with radius
o € [0,1). For sufficiently small e > 0, DRVI outputs a policy 7 that
satisfies V*7 — V™7 < € with sample complexity at most

o ((1 —)? mi:{ll - %0}62)

ignoring logarithmic factors. In addition, no algorithm can succeed if the
sample size is below

. ((1 - 7)2m£§1 - %0}62> '

® Establish the minimax optimality of DRVI for RMDP under the TV
uncertainty set over the full range of o.

21



When the uncertainty set is TV

Sample complexity 1

S24 : Upper bz;undl -
T Na 9 Panaganti and Kalathi
T=ye
SA | &Sta.nufard I\IADPs p—
—a upper & minimax lower boun
(=)=
Upper & minimax lower bound
SA (this work)
172 ]
SA(1—7) Lower bound [Yang et al.]
g2 l_y
0 1
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When the uncertainty set is TV

Sample complexity 1

S2A Upper bound
m [Panaganti and Kalathil]
SA &Sta!-lc.iard I\IADPs p—
upper & minimax lower boun
(1 —7)3e?

Upper & minimax lower bound

SA (this work)
T ]
SA(1—7) Lower bound [Yang et al.]
g2 T Ly
0 1 9

RMDPs are easier to learn than standard MDPs.




Our theorem under x? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x? divergence with radius
o € [0,00). For sufficiently small e > 0, DRVI outputs a policy  that
satisfies V*7 — V™9 < € with sample complexity at most

6<SA(1+U))

(1 —)te?

ignoring logarithmic factors.
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Our theorem under x? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x? divergence with radius
o € [0,00). For sufficiently small e > 0, DRVI outputs a policy  that
satisfies V*7 — V™9 < € with sample complexity at most

5<SA(1+0))

(1 —)te?

ignoring logarithmic factors.

Theorem (Lower bound, Shi et al., 2023)

In addition, no algorithm succeeds when the sample size is below

Q min{17(1767§i4(1+0)4}62 ) otherwise

23



When the uncertainty set is x> divergence

Sample complexity 4 )
Upper bound S? Ao
S2A [Panaganti and Kalathil] (1 —)te?
Lower bound
(1 — 7)452 (this work)
Upper bound SAa
(this work) (1 —7y)te?
SA E
(1—=m)te?
SAc SAc
T+ )" 2
SA Standard MDPs
(1- 7)382 T "7 === “ upper & minimax lower bound =
SA
1-%%
SA _ Lower bound [Yang et al.]
(1—7)e? 1 1 1

O(1—7)

o) o(/1-) 7
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When the uncertainty set is x> divergence

Sample complexity 4 )
Upper bound S? Ao
(

S2A [Panaganti and Kalathil] 1—7)te?
Lower bound
(1 — 7)452 (this work)
Upper bound SAa
(this work) (1 —7y)te?
SA E
(1—=m)te?
SAc SAc
(T=m'1+o)* &2
SA Standard MDPs
(1- 7)382 T "7 === “ upper & minimax lower bound =
SA
(1 =7)%%
SA _ Lower bound [Yang et al.]
(1—7)e? 1 1 1 :
0 o

O(l—v) o)  0O@1/(1-9)

RMDPs can be harder to learn than standard MDPs.




Summary

sample complexity sample complexity
Upper bound A0
/ =
4 per bound 52 Aa . [Panaganti and Kalathil] =)t ——
e [Panaganti and Kalathil] (1 — )t (this work)
Upper bound _Sdo
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sS4 a0
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&2 e
1 a 0 . . . (o
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Summary

sample complexity Sample complexity )
) Upper bound s '\‘ﬂ
T
P ] Upper bound S2A | Panagantiand Kalathi) =) —
e [Panaganti and Kalathil] (1 =7)e? (this work)
Upper bound %
(this work) -
s4 Standard MDPs sa 4
T e upper & minimax lower bound =~~~ -
Sar sS40
T=raror =
Upper & minimax lower bound
sS4 ] (thizpvork) sA Standard MDPs
(1—n)2%e2 Tz T 77777717 upper & minimax lower bound "~
'
SA(1—7) ' Lower bound [Yang et al] _s4a ] Lower bound [Yang et al]
SR il I 1 . (1 =7)e? i i 1
0 o(1-4) o 1

o(l-7) 0@  O(/(1-7)

The statistical price of robustness varies: the choice of uncertainty sets
matters. J

Future work:

® Function approximation and multi-agent settings.



Distributional robustness meets offline RL

Laixi Shi
CMU—Caltech



Offline/Batch RL

® Having stored tons of history data

® Collecting new data might be expensive or time-consuming

N THECOMING INAUTONOMOUS VEHICLES

P Yy® s
8 L
= SR Besek o
” a S MTONGHOLSVEROES
1% < | N o 1l
5 N & b
) =

medical records data of self-driving clicking times of ads
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Offline/Batch RL

® Having stored tons of history data

® Collecting new data might be expensive or time-consuming

N THECOMING INAUTONOMOUS VEHICLES

e I 2
- e oy o
’ ﬂ 71 \/§! A i b
medical records data of self-driving clicking times of ads
Can we learn optimal policies that are robust to model
perturbations from historical data? J

27



Distributionally robust offline RL

(s,a) ~d° 8
b'f‘t“ . Nowinal Transition
arpitrary! '?.CYML
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Distributionally robust offline RL

(5,a) ~ d°

b'f‘t“ . Nowinal Transition
arpitrary! '?.CYML

Goal of robust offline RL: given D := {(s;,a;, s.)}}L, from the
nominal environment PP, find an e-optimal robust policy T obeying
V*(p) =V (p) < e

— in a sample-efficient manner

28



Challenges of offline RL

Partial coverage of state-action space:

Fae”

uniform coverage over entire space
(sufficiently explored)
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Challenges of offline RL

Partial coverage of state-action space:

P o A
7 Practically, N
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/ historical dataset D N
l\
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[~ m
\ 2
e , Oo,
~ N e T S
partial coverage

uniform coverage over entire space .
(inadequately explored)

(sufficiently explored)
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Challenges of offline RL

Partial coverage of state-action space:
o % \\\\ 7 Practically, \\\

A A

historical dataset D N

/ \
/ o0
-\ samples cover all (s,a) & all policies, ,
P AN

55 \
2 ] \
~ / P
| \ Y, / s
W o A \ ! T2
e T2 yi AN ,
| a S N N

s

partial coverage

uniform coverage over entire space .
(inadequately explored)

(sufficiently explored)

Distribution shift:
distribution(D) # target distribution under 7*

29



Prior art under full coverage

N%NG:.MW .
o A
-
Itz L \\GOQ
LS b
. %me.\ a8
mmwb\m//N

sample
complexity

30



Prior art under full coverage

sample
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J

Questions: Can we improve the sample efficiency and allow
partial coverage?

30



How to quantify the compounded distribution shift?

Robust single-policy concentrability coefficient

min{d™" " (s,a), 1}
max
(s,a,P)ESXx AXU(P®) d°(s,a)
occupancy distribution of (m*, P € U(P?))
occupancy distribution of D -

* —
rob "

dﬂ',P

where is the state-action occupation density of w under P.
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How to quantify the compounded distribution shift?

Robust single-policy concentrability coefficient

min{d™" " (s,a), 1}
max
(s,a,P)ESXx AXU(P®) d°(s,a)
occupancy distribution of (m*, P € U(P?))
occupancy distribution of D -

* —
rob "

dﬂ',P

where is the state-action occupation density of w under P.

® captures distributional shift due to /
behavior policy and environment. {

e O, < A under full coverage.

31



Challenges in the sample-starved regime

- m =
|
| |
H
H N
H N
H
I..I
|
truth: .. . D
P RISIAIXIS empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|A|!

Issue: poor value estimates under partial and poor coverage. )

32



Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited
— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

without

—
pessimism _l_
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Pessimism in the face of uncertainty

Penalize value estimate of (s, a) pairs that were poorly visited
(Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

W|thout
Pessimism. :.: L with
pessumlsm

Distributionally robust value iteration (DRVI) with lower
confidence bound (LCB):

@(s,a) < max {r(s,a) +v  inf PV — b(s,a; V , 0},
Peus(Pe,) \—/—-/
uncertainty penalty

where V(s) = max, Q(s, a).

Key novelty: design the penalty term to capture the variability in robust
RL.

33



Sample complexity of DRVI-LCB

Theorem (Shi and Chi’22)

For any uncertainty level ¢ > 0 and small enough ¢, DRVI-LCB outputs
an e-optimal policy with high prob., with sample complexity at most

S 5Ch,
O (ri—me)

where P, is the smallest positive state transition probability of the
nominal kernel visited by the optimal robust policy 7*.

34



Sample complexity of DRVI-LCB

Theorem (Shi and Chi’22)

For any uncertainty level ¢ > 0 and small enough ¢, DRVI-LCB outputs
an e-optimal policy with high prob., with sample complexity at most

S 5Ch,
O (ri—me)

where P, is the smallest positive state transition probability of the
nominal kernel visited by the optimal robust policy 7*.

® scales linearly with respect to S

e reflects the impact of distribution shift of offline dataset (C},) and
also model shift level (o)



Minimax lower bound

Theorem (Shi and Chi’22)
Suppose that = > e®, S >log (1= ) C*

rob

>8/S, o= log— and
€< W, there exists some MDP and batch dataset such that no
algorithm succeeds if the sample size is below

~ S
Q rob )
(o)




Minimax lower bound

Theorem (Shi and Chi’22)
Suppose that = > e®, S >log (1= ) C*

rob

>8/S, o= log— and
€< W, there exists some MDP and batch dataset such that no
algorithm succeeds if the sample size is below

~ S
Q rob )
(o)

® the first lower bound for robust MDP with KL divergence

® Establishes the near minimax-optimality of DRVI-LCB up to factors
of 1/(1—7)

35



Compare to prior art under full coverage
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Compare to prior art under full coverage
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Our DRVI-LCB method is near minimax-optimal!
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Numerical experiments

Gambler's problem: a gambler bets on a sequence of coin flips, winning
the stake with heads and losing with tails. Starting from some initial
balance, the game ends when the gambler’s balance either reaches 50 or
0, or the total number of bets H is hit.

DRVI-LCB DRVI-LCB

— — DRVI —~ 012 — DRVI
U 020 2

S 5 0.10
W (3

S o1 > o0.08

J\ ,L 0.06

& o0 ™

NS S 004

> 0.05 £

’> > 0.02

0.00 0.00
0 10 20 30 40 50 10? 10°
Index of states Sample size N
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Numerical experiments

Gambler's problem: a gambler bets on a sequence of coin flips, winning
the stake with heads and losing with tails. Starting from some initial
balance, the game ends when the gambler’s balance either reaches 50 or
0, or the total number of bets H is hit.

DRVI-LCB DRVI-LCB
— —— DRVI — 0.12 —— DRVI
U 020 2
S 5 0.10
W (3
S o1 > o0.08
I ,L 0.06
T/T 0.10 (7
NS S 004
’> 005 .> 0.02
0.00 0.00
0 10 20 30 40 50 10? 10°
Index of states Sample size N
Pessimism improves the sample efficiency in robust offline RL! J
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Concluding remarks



Concluding remarks

FIRST-ORDER METHODS

> action IN OpTiMizATION
m———— ') agent —_—
Reinforcement |\ Dynamic Programming 1 |
Learning and Optimal Control H
I, |
---- ILE reWaI’d Amir Beck
i-—€==1 environment —_

inext state

Understanding non-asymptotic performances of robust RL algorithms
sheds light to their empirical successes (and failures)! J
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Thanks!

® The Curious Price of Distributional Robustness in Reinforcement Learning with a
Generative Model, arXiv:2305.16589; short version at NeurlPS 2023.

® Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity, arXiv:2208.05767.
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