Solving Corrupted Quadratic Equations, Provably

Yuejie Chi

Electrical and Computer Engineering

The Ohio State University

University of Michigan
November 2016
Data science

New imaging/sensing modalities allow us to probe the nature in unprecedented manners:

but also with a lot of new (and exciting) challenges due to the unconventional manner these data are obtained.
Subspace retrieval using intensity measurements only

- We wish to estimate a subspace \(U \in \mathbb{R}^{n \times r} \) by interrogating it with vectors \(\{a_i\}_{i=1}^m \) and forming backprojections;

\[
\|U^T a_i\|^2 = a_i^T (UU^T) a_i, \quad i = 1, \ldots, m.
\]

Intensity measurements are much easier to implement by an energy detector for high-frequency and wide-band (THz) applications.
Subspace retrieval using intensity measurements only

- We wish to estimate a subspace \(U \in \mathbb{R}^{n \times r} \) by interrogating it with vectors \(\{a_i\}_{i=1}^m \) and forming backprojections;

- We only observe the intensity of the backprojections, namely,

\[
y_i = \|U^T a_i\|_2^2 = a_i^T (UU^T) a_i, \quad i = 1, \ldots, m.
\]

They are quadratic with respect to \(U \).
We wish to estimate a subspace $U \in \mathbb{R}^{n \times r}$ by interrogating it with vectors $\{a_i\}_{i=1}^m$ and forming backprojections;

$$U^T a_i a_j U^T a_j a_i$$

We only observe the intensity of the backprojections, namely,

$$y_i = \|U^T a_i\|_2^2 = a_i^T (UU^T) a_i, \quad i = 1, \ldots, m.$$

They are quadratic with respect to U.

Intensity measurements are much easier to implement by an energy detector for high-frequency and wide-band (THz) applications.
Phase retrieval

How to recover structure of a sample from its diffraction pattern?

- In the important special case of \(r = 1 \), it becomes equivalent to phase retrieval*, namely, recover \(x \in \mathbb{R}^n / \mathbb{C}^n \) from

\[
y_i = |\mathcal{F}\{x\}|^2,
\]

where \(\mathcal{F} \) is Fourier transform,

Phase retrieval

How to recover structure of a sample from its diffraction pattern?

• In the important special case of $r = 1$, it becomes equivalent to phase retrieval*, namely, recover $\mathbf{x} \in \mathbb{R}^n / \mathbb{C}^n$ from

$$y_i = |\mathcal{F}\{\mathbf{x}\}|^2,$$

where \mathcal{F} is Fourier transform,

This has wide applications in X-ray crystallography, electron microscopy and coherent diffractive imaging, and leads to winning of Nobel prize (e.g. discovery of double helix structure).

Covariance sketching for streaming data

Multivariate streaming data: a new data snapshot $x_t \in \mathbb{C}^n / \mathbb{R}^n$ is generated by the sensor platform at each time t;
Multivariate streaming data: a new data snapshot $x_t \in \mathbb{C}^n / \mathbb{R}^n$ is generated by the sensor platform at each time t;

- **high-dimensional**: the number of variables, n, is large;
- **real-time**: data processed “on the fly”;
- **decentralized**: data collected at decentralized locations;
- **resource-constrained**: cannot store and transmit all data;
Covariance sketching

Observation: Fortunately, inference requires only statistics of the data stream, not the stream itself; we can “sketch”/compress the data at the hope of directly recovering its statistics!
Covariance sketching

Observation: Fortunately, inference requires only statistics of the data stream, not the stream itself; we can “sketch”/compress the data at the hope of directly recovering its statistics!

Approach: distributed data sketching and aggregation to recover the covariance structure or principal components.

- access each data sample via quadratic (energy) sketches;
- aggregate the sketches into linear observations of the covariance matrix.
Quadratic sampling

How to sketch a high-dimensional data stream in order to recover its covariance matrix?

\[z_t = |\langle a_t, x_t \rangle|^2, \]

- sketching complexity is linear in length of \(x_t \);

network traffic

hyperspectral imagery
Quadratic sampling

How to sketch a high-dimensional data stream in order to recover its covariance matrix?

- To meet resource constraints, we would like to sample in a single pass on the fly: a single quadratic sketch of x_t:

$$z_t = |\langle a_t, x_t \rangle|^2,$$

which reduces the dim. of each x_t to merely a scalar.

- sketching complexity is linear in length of x_t;
Quadratic sampling for covariance sketching

- Consider a data stream possible distributively observed at \(m \) sensors, each with a sketching vector \(\mathbf{a}_i \in \mathbb{R}^n \), \(i = 1, \ldots, m \):

\[
\langle \mathbf{a}_i, \mathbf{x}_{\ell}^{(t)} \rangle^2 \quad \text{and} \quad y_{i,T} = \frac{1}{T} \sum_{t=1}^{T} \left| \langle \mathbf{a}_i, \mathbf{x}_{\ell}^{(t)} \rangle \right|^2 \rightarrow \mathbf{a}_i^T \mathbf{Xa}_i,
\]

where \(\mathbf{X} = \mathbb{E} [\mathbf{x}\mathbf{x}^T] \) is the covariance matrix.
Quadratic sampling for covariance sketching

- Consider a data stream possible distributively observed at m sensors, each with a sketching vector $a_i \in \mathbb{R}^n$, $i = 1, \ldots, m$:

 \[
 x_1 \ x_2 \ x_3 \ \ldots \ldots \ \ldots \ldots \ x_t
 \]

- Sketch a substream indexed by $\{\ell_i^t\}_{t=1}^T$ with $|\langle a_i, x_{\ell_i^t} \rangle|^2$ and compute the average:

 \[
 y_{i,T} = \frac{1}{T} \sum_{t=1}^T \left| \langle a_i, x_{\ell_i^t} \rangle \right|^2 = a_i^T \left(\frac{1}{T} \sum_{t=1}^T x_{\ell_i^t} x_{\ell_i^t}^T \right) a_i
 \]

 \[
 \overset{T \to \infty}{\longrightarrow} a_i^T \mathbf{X} a_i,
 \]

 where $\mathbf{X} = \mathbb{E}[xx^T]$ is the covariance matrix.
Low-rank covariance estimation

- More generally, quadratic samplers produce the following:

\[y_i = a_i^T X a_i + \eta_i, \quad i = 1, \ldots, m; \]

where \(\eta \) is an additive noise.

- linear in the covariance matrix \(X \)!
Low-rank covariance estimation

- More generally, quadratic samplers produce the following:

\[y_i = a_i^T X a_i + \eta_i, \quad i = 1, \ldots, m; \]

where \(\eta \) is an additive noise.
 - **linear in the covariance matrix** \(X \)!

- **Low-rank covariance matrix**: Many high-dimensional data lie in a low-dimensional subspace, when a small number of components accounts for most of the variability in the data.

\[X = U U^T = \begin{pmatrix} u_1 & \ldots & u_r \end{pmatrix} \]

- This yields the *subspace retrieval* problem.
Two sides of the same coin: We can recover

- either $X = UU^T \in \mathbb{R}^{n \times n}$ (when r is possibly unknown) or
- the subspace $U \in \mathbb{R}^{n \times r}$ (when r is known);

| measurements | X | U
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_i = a_i^T X a_i$</td>
<td>$y_i = |U^T a_i|_2^2$</td>
<td></td>
</tr>
<tr>
<td>loss</td>
<td>linear</td>
<td>quadratic</td>
</tr>
<tr>
<td>prior</td>
<td>X is low-rank</td>
<td>-</td>
</tr>
<tr>
<td>dim. of unknowns</td>
<td>n^2</td>
<td>nr</td>
</tr>
<tr>
<td>optimization</td>
<td>convex</td>
<td>nonconvex</td>
</tr>
</tbody>
</table>
Reconstruction?

Two sides of the same coin: We can recover

- either \(X = UU^T \in \mathbb{R}^{n \times n} \) (when \(r \) is possibly unknown) or
- the subspace \(U \in \mathbb{R}^{n \times r} \) (when \(r \) is known);

<table>
<thead>
<tr>
<th></th>
<th>(X)</th>
<th>(U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurements</td>
<td>(y_i = a_i^T X a_i)</td>
<td>(y_i = |U^T a_i|_2^2)</td>
</tr>
<tr>
<td>loss</td>
<td>linear</td>
<td>quadratic</td>
</tr>
<tr>
<td>prior</td>
<td>(X) is low-rank</td>
<td>-</td>
</tr>
<tr>
<td>dim. of unkowns</td>
<td>(n^2)</td>
<td>(nr)</td>
</tr>
<tr>
<td>optimization</td>
<td>convex</td>
<td>nonconvex</td>
</tr>
</tbody>
</table>

We will discuss both convex (for reconstructing \(X \)) and nonconvex methods (for reconstructing \(U \)), possibly with additional corruptions in the measurements.
Low-rank covariance estimation via convex relaxation

- We would like to seek the covariance matrix satisfying the observations with the minimal rank:

\[\hat{X} = \arg\min_{M \succeq 0} \text{rank}(M) \quad \text{s.t.} \quad y_i = a_i^T M a_i, \ i = 1, \ldots, m. \]
Low-rank covariance estimation via convex relaxation

- We would like to seek the covariance matrix satisfying the observations with the minimal rank:

\[\hat{X} = \arg\min_{M \succeq 0} \text{rank}(M) \quad \text{s.t.} \quad y_i = a_i^T M a_i, \ i = 1, \ldots, m. \]

- However this is non-convex and NP-hard. Therefore, we replace it by a convex relaxation which is the trace minimization, over all PSD matrices compatible with the measurements:

\[\hat{X} = \arg\min_{M \succeq 0} \text{Tr}(M) \quad \text{s.t.} \quad y_i = a_i^T M a_i, \ i = 1, \ldots, m. \]
Low-rank covariance estimation via convex relaxation

• We would like to seek the covariance matrix satisfying the observations with the minimal rank:

\[\hat{X} = \arg\min_{M \succeq 0} \text{rank}(M) \quad \text{s.t.} \quad y_i = a_i^T M a_i, \ i = 1, \ldots, m. \]

• However this is non-convex and NP-hard. Therefore, we replace it by a convex relaxation which is the trace minimization, over all PSD matrices compatible with the measurements:

\[\hat{X} = \arg\min_{M \succeq 0} \text{Tr}(M) \quad \text{s.t.} \quad y_i = a_i^T M a_i, \ i = 1, \ldots, m. \]

• Additionally, if \(X \) is Toeplitz, solve:

\[\hat{X} = \arg\min_{M \succeq 0, \text{Toeplitz}} \text{Tr}(M) \quad \text{s.t.} \quad y_i = a_i^T M a_i, \ i = 1, \ldots, m. \]
Near-optimal recovery via convex programming

Theorem (Chen, C. and Goldsmith)

Assuming a_i's are composed of i.i.d. Gaussian entries, with high probability, the solution \hat{X} exactly recovers all rank-r matrices X, provided that

$$m \gtrsim nr.$$

If there exists additional Toeplitz constraint, then similar guarantee holds provided

$$m \gtrsim r \text{polylog} n.$$

- **Exact recovery** with $m = O(nr)$;
- **Robust** against approximate low-rankness and bounded noise.
- **Under Toeplitz constraint:**

![Information Theoretic Limit](image)
Kaczmarz method for solving quadratic equations

- Goal: reduce the memory and computational cost by directly estimating $U \in \mathbb{R}^{n \times r}$.
Kaczmarz method for solving quadratic equations

- Goal: reduce the memory and computational cost by directly estimating $U \in \mathbb{R}^{n \times r}$.
- The **Kaczmarz method** is a fast iterative algorithm for solving overdetermined linear system.
Kaczmarz method for solving quadratic equations

- Goal: reduce the memory and computational cost by directly estimating $U \in \mathbb{R}^{n \times r}$.
- The **Kaczmarz method** is a fast iterative algorithm for solving overdetermined linear system.

Kaczmarz method for solving quadratic equations

- Extend Kaczmarz method by, at each iteration, project the current estimate to the closest signal that satisfies a (quadratic) constraint:†

\[
U_k = \arg \min_{V} \| U_{k-1} - V \|_F^2, \quad V: \| V^T a_{\ell(k)} \|_2^2 = y_{\ell(k)}
\]

Kaczmarz method for solving quadratic equations

- Extend Kaczmarz method by, at each iteration, project the current estimate to the closest signal that satisfies a (quadratic) constraint:†

\[
U_k = \arg\min_{V} \| U_{k-1} - V \|_F^2, \quad V: \| V^T a_{\ell(k)} \|_2^2 = y_{\ell(k)}
\]

which can be solved in **closed form** via a **rank-one** update:

\[
U_k = \left[I - \left(\frac{\| U_{k-1}^T a_{\ell(k)} \|_2^2 - \sqrt{y_{\ell(k)}}}{\| U_{k-1}^T a_{\ell(k)} \|_2} \right) \frac{a_{\ell(k)} a_{\ell(k)}^T}{\| a_{\ell(k)} \|_2^2} \right] U_{k-1}.
\]

Kaczmarz method for solving quadratic equations

- Extend Kaczmarz method by, at each iteration, project the current estimate to the closest signal that satisfies a (quadratic) constraint:†

\[
U_k = \arg\min_{V: \|V^T a_{\ell(k)}\|_2^2 = y_{\ell(k)}} \|U_{k-1} - V\|_F^2,
\]

which can be solved in closed form via a rank-one update:

\[
U_k = \left[I - \left(\frac{\|U_{k-1}^T a_{\ell(k)}\|_2^2}{\|U_{k-1}^T a_{\ell(k)}\|_2} - \sqrt{y_{\ell(k)}} \right) \frac{a_{\ell(k)} a_{\ell(k)}^T}{\|a_{\ell(k)}\|_2^2} \right] U_{k-1}.
\]

- The solution is equivalent to

\[
\min_{s: \|s\|_2^2 = 1} \arg\min_{V: \|V^T a_{\ell(k)}\|_2^2 = s \sqrt{y_{\ell(k)}}} \|U_{k-1} - V\|_F^2
\]

which corresponds to projecting the current estimate to the hyperplane with the phase that minimizes the projection.

Performanc e Guarantee of Kaczmarz Method

Consider the phase retrieval case.

Theorem (Zhang, C., Liang)

Assume \(\alpha_i \)'s are generated with i.i.d. Gaussian entries, there exist some universal constants \(\rho > 0 \) such that if \(m \gtrsim n \), then with high probability, randomized Kaczmarz update rule yields

\[
\mathbb{E}_{\xi_t} \left[\text{dist}^2 (z^{(t+1)}, x) \right] \leq \left(1 - \frac{\rho}{n} \right) \text{dist}^2 (z^{(t)}, x)
\]

where \(z^{(0)} \) is initialized via the spectral method.

- This establishes linear convergence rate *in expectation*, despite the nonlinearity!
- We can obtain similar guarantees for the block Kaczmarz method which is further accelerated.

![Graph showing NMSE (dB) vs. Number of iterations for different values of \(r \).](image)
What about outliers?

- Outliers happen with
 - sensor failures, malicious attacks, ...
 - For covariance sketching, insufficiently aggregated sketches can be regarded as an outlier;

\[y_i = a^T X a_i + \eta_i + w_i, \quad i = 1, \ldots, m, \]

- Goal: develop algorithms that are oblivious to outliers, and statistically and computationally efficient.
 - small sample size: hopefully \(m \) is linear in \(n \);
 - large fraction of outliers: hopefully \(s \) is a small constant;
 - low computational complexity and easy to implement.
What about outliers?

- Outliers happen with
 - sensor failures, malicious attacks, ...
 - For covariance sketching, insufficiently aggregated sketches can be regarded as an outlier;

- We’re interested when the measurements are corrupted by both sparse outliers and bounded noise:

 \[y_i = \alpha_i^T X \alpha_i + \eta_i + w_i, \quad i = 1, \ldots, m, \]

 where \(X = UU^T \), \(\| \eta \|_0 \leq sm \) and \(w \) is a dense bounded noise.
What about outliers?

- Outliers happen with
 - sensor failures, malicious attacks, ...
 - For covariance sketching, insufficiently aggregated sketches can be regarded as an outlier;

- We’re interested when the measurements are corrupted by both sparse outliers and bounded noise:

\[y_i = a_i^T X a_i + \eta_i + w_i, \quad i = 1, \ldots, m, \]

where \(X = UU^T \), \(\|\eta\|_0 \leq sm \) and \(w \) is a dense bounded noise.

- Goal: develop algorithms that are oblivious to outliers, and statistically and computationally efficient.
 - small sample size: hopefully \(m \) is linear in \(n \);
 - large fraction of outliers: hopefully \(s \) is a small constant;
 - low computational complexity and easy to implement.
Outlier-robust recovery by convex programming

- To motivate, ideally one would like to look for low-rank matrices that maintain outlier sparsity:

\[\hat{X} = \text{argmin} \text{cardinality}(\text{outliers}), \quad \text{s.t.} \quad \text{rank}(M) = r \]

- Parameter-free formulation without trace minimization or tuning parameters;
- No prior information is required for the matrix rank, corruption level or bounded noise level.
Outlier-robust recovery by convex programming

• To motivate, ideally one would like to look for low-rank matrices that maintain outlier sparsity:

\[
\hat{X} = \arg\min_{M \succeq 0} \text{cardinality}(\text{outliers}), \quad \text{s.t.} \quad \text{rank}(M) = r
\]

• By *relaxing* the objective function to the ℓ_1-norm minimization, and *dropping* the rank constraint, we propose to solve

\[
\hat{X} = \arg\min_{M \succeq 0} \sum_{i=1}^{m} |y_i - a_i^T M a_i|
\]
Outlier-robust recovery by convex programming

To motivate, ideally one would like to look for low-rank matrices that maintain outlier sparsity:

\[\hat{X} = \operatorname{argmin}_{M \succeq 0} \text{cardinality}(\text{outliers}), \quad \text{s.t. } \operatorname{rank}(M) = r \]

By \textit{relaxing} the objective function to the ℓ_1-norm minimization, and \textit{dropping} the rank constraint, we propose to solve

\[\hat{X} = \operatorname{argmin}_{M \succeq 0} \sum_{i=1}^{m} \left| y_i - a_i^T M a_i \right| \]

- Parameter-free formulation without trace minimization or tuning parameters;
- No prior information is required for the matrix rank, corruption level or bounded noise level.
Suppose that $\|w\|_1 \leq \epsilon$. Assume the support of η is selected uniformly at random with the signs of η are generated from a symmetric Bernoulli distribution. Then as long as $m \gtrsim nr^2$, $s \lesssim 1/r$, the solution to the proposed algorithm satisfies

$$\|\hat{X} - X\|_F \lesssim \frac{r\epsilon}{m}$$

with high probability.

- Exact recovery when $w = 0$ as long as $m \gtrsim nr^2$ and $s \lesssim 1/r$.
- When $r = 1$ recovers a previous result for the phase retrieval case‡;
- RHS is phase transition for m vs r with 5% corruptions.

‡P. Hand, “Phaselift is robust to a constant fraction of arbitrary errors”.

[Graph showing percent of outliers vs rank for different values of m and s]
Robust recovery of Toeplitz PSD Matrices

If X is additionally Toeplitz, this can be incorporated:

$$\hat{X} = \arg\min_{M \succeq 0, \text{Toeplitz}} \sum_{i=1}^{m} |y_i - a_i^T M a_i|.$$

Figure: Phase transitions of low-rank Toeplitz PSD matrix recovery w.r.t. the number of measurements and the rank with 5% of measurements corrupted by standard Gaussian variables, when $n = 64$.
Non-convex approach based on factored model

Can we reduce the computational complexity?

- Recall $X = UU^T$ where $U \in \mathbb{R}^{n \times r}$, one can directly recover U by attempting:

$$\hat{U} = \arg\min_{U \in \mathbb{R}^{n \times r}} \ell(U) := \arg\min_{U \in \mathbb{R}^{n \times r}} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i; U)$$
Non-convex approach based on factored model

Can we reduce the computational complexity?

- Recall $\mathbf{X} = \mathbf{U}\mathbf{U}^T$ where $\mathbf{U} \in \mathbb{R}^{n \times r}$, one can directly recover \mathbf{U} by attempting:

 $$
 \hat{\mathbf{U}} = \arg\min_{\mathbf{U} \in \mathbb{R}^{n \times r}} \ell(\mathbf{U}) := \arg\min_{\mathbf{U} \in \mathbb{R}^{n \times r}} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i; \mathbf{U})
 $$

 for some loss function $\ell(y_i, \mathbf{U})$:

 - quadratic loss of power: $\ell(\mathbf{U}; y_i) = \left(y_i - \|\mathbf{U}^T \mathbf{a}_i\|_2^2 \right)^2$
 - quadratic loss of amplitude: $\ell(\mathbf{U}; y_i) = \left(\sqrt{y_i} - \|\mathbf{U}^T \mathbf{a}_i\|_2 \right)^2$
 - Poisson loss: $\ell(\mathbf{U}; y_i) = \|\mathbf{U}^T \mathbf{a}_i\|_2^2 - y_i \log \|\mathbf{U}^T \mathbf{a}_i\|_2^2$
Non-convex approach based on factored model

Can we reduce the computational complexity?

- Recall \(X = U U^T \) where \(U \in \mathbb{R}^{n \times r} \), one can directly recover \(U \) by attempting:

\[
\hat{U} = \arg\min_{U \in \mathbb{R}^{n \times r}} \ell(U) := \arg\min_{U \in \mathbb{R}^{n \times r}} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i; U)
\]

for some loss function \(\ell(y_i, U) \):

- quadratic loss of power: \(\ell(U; y_i) = (y_i - \|U^T a_i\|_2^2)^2 \)
- quadratic loss of amplitude: \(\ell(U; y_i) = (\sqrt{y_i} - \|U^T a_i\|_2)^2 \)
- Poisson loss: \(\ell(U; y_i) = \|U^T a_i\|_2^2 - y_i \log \|U^T a_i\|_2 \)

- What are the challenges?
 - \(\ell(U) \) can be non-convex and non-smooth.
 - With outliers, we want the loss to sum over only clean samples.
Non-convex phase retrieval

Exciting developments (without outliers) – all following the same recipe (for the phase retrieval or rank-1 case):

\[\hat{z} = \arg\min_{z \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i; z) \]

- Initialize \(z^{(0)} \) via the (truncated) spectral method to land in the neighborhood of the ground truth;
- Iterative update using (truncated) gradient descent;

\[\text{Figure credit: Yuxin Chen.} \]
Non-convex phase retrieval

Provable near-optimal performance for Gaussian measurement model:

- Statistically: $m = O(n)$ near-optimal sample complexity
- Computationally: linear convergence with near-linear run time
Non-convex phase retrieval

Provable near-optimal performance for Gaussian measurement model:

- Statistically: $m = O(n)$ near-optimal sample complexity
- Computationally: linear convergence with near-linear run time

Non-convex phase retrieval with outliers

In the presence of *arbitrary outliers*, **existing approaches fail**:

- **Spectral initialization would fail**: the eigenvector of Y can be arbitrarily perturbed

 $$Y = \frac{1}{m} \sum_{i=1}^{m} y_i a_i a_i^T$$

 or

 $$Y = \frac{1}{m} \sum_{i=1}^{m} y_i a_i a_i^T 1\{|y_i| \leq \alpha_y \cdot \text{mean}\{y_i\}\}$$

 \[\text{WF}\]

 \[\text{TWF}\]

 \[\text{with some details hiding}\]
Non-convex phase retrieval with outliers

In the presence of arbitrary outliers, existing approaches fail:

- **Spectral initialization would fail:** the eigenvector of Y can be arbitrarily perturbed

 \[
 Y = \frac{1}{m} \sum_{i=1}^{m} y_i a_i a_i^T \quad \text{or} \quad Y = \frac{1}{m} \sum_{i=1}^{m} y_i a_i a_i^T \mathbb{1}_{\{|y_i| \leq \alpha \cdot \text{mean}(\{|y_i|\})\}}.
 \]

 - **WF**
 - **TWF**

- **Gradient descent would fail:** the search direction can be arbitrarily perturbed

 \[
 z^{(t+1)} = z^{(t)} - \frac{\mu}{\|z^{(0)}\|^2} \sum_{i \in \mathcal{T}_t} \nabla \ell(z^{(t)}; y_i)
 \]

 where $\mathcal{T}_t = \{1, \ldots, m\}$ for WF and

 - $\mathcal{T}_t = \left\{ i : |y_i - |a_i^T z^{(t)}|^2| \leq \alpha_h \cdot \text{mean}(\{|y_i - |a_i^T z^{(t)}|^2|\}) \right\}$ for TWF.

with some details hiding
Robust phase retrieval via median-truncation

Need better strategy to eliminate outliers!

Key approach: “median-truncation”
• well-known in robust statistics to be outlier-resilient;
• little appearance in high-dimensional estimation;
Robust phase retrieval via median-truncation

Need better strategy to eliminate outliers!

Key approach: “median-truncation”
- well-known in robust statistics to be outlier-resilient;
- little appearance in high-dimensional estimation;

Median is more stable than mean and top-k truncation (which truncates a fixed amount of samples) for various levels of outliers.

- no outliers
- small outlier magnitudes
- large outlier magnitudes
Median-Truncated Wirtinger Flow (median-TWF)

We adopt the Poisson loss function (other loss functions work too) and the Gaussian measurement model.

- **Median-truncated spectral initialization:** Set $z^{(0)} := \lambda_0 \tilde{z}$ where
 - **Direction estimation:** \tilde{z} is the leading eigenvector of
 \[
 Y = \frac{1}{m} \sum_{i=1}^{m} y_i a_i a_i^T \mathbb{1}_{\{|y_i| \leq 9/0.455 \cdot \text{median}(\{y_i\})\}}.
 \]
 - **Norm estimation:** $\lambda_0 = \sqrt{\text{median}(\{y_i\})/0.455}$
 \[
 y_i = |a_i^T x|^2 \sim \chi_1^2 \quad \text{and} \quad \mathbb{E}[\text{median}(\chi_1^2)] = 0.455
 \]
Median-Truncated Wirtinger Flow (median-TWF)

We adopt the Poisson loss function (other loss functions work too) and the Gaussian measurement model.

- **Median-truncated spectral initialization:** Set \(z^{(0)} := \lambda_0 \tilde{z} \) where
 - Direction estimation: \(\tilde{z} \) is the leading eigenvector of
 \[
 Y = \frac{1}{m} \sum_{i=1}^{m} y_i a_i a_i^T 1_{\{|y_i| \leq 9/0.455 \cdot \text{median}\{\{y_i\}\}}.
 \]
 - Norm estimation: \(\lambda_0 = \sqrt{\text{median}\{\{y_i\}\}/0.455} \)
 \[
 y_i = |a_i^T x|^2 \sim \chi_1^2 \quad \text{and} \quad \mathbb{E}[\text{median}(\chi_1^2)] = 0.455
 \]
- As long as \(m = O(n \log n) \) and \(s = O(1) \), the initialization is provably close to the ground truth:
 \[
 \text{dist}(z^{(0)}, x) \leq \frac{1}{10} \|x\|,
 \]
 where \(\text{dist}(z^{(0)}, x) = \min\{\|z^{(0)} + x\|, \|z^{(0)} - x\|\} \).
Median-Truncated Wirtinger Flow (median-TWF)

- Median-truncated gradient descent:

\[
\begin{align*}
 z^{(t+1)} &= z^{(t)} - \frac{2\mu}{m} \sum_{i \in E_1 \cap E_2} \frac{|a_i^T z^{(t)}|^2 - y_i}{a_i^T z^{(t)}} a_i,
\end{align*}
\]

where

\[E_1 = \left\{ i : 0.3 \leq \frac{|a_i^T z^{(t)}|}{\|z^{(t)}\|} \leq 5 \right\}, \quad E_2 = \left\{ i : r_i^{(t)} \leq 12 \frac{|a_i^T z^{(t)}|}{\|z^{(t)}\|} \cdot \text{median}(\{r_i^{(t)}\}) \right\}, \]

with \[r_i^{(t)} = |y_i - (a_i^T z^{(t)})^2|. \]
Median-Truncated Wirtinger Flow (median-TWF)

- Median-truncated gradient descent:

\[
\begin{align*}
 z^{(t+1)} &= z^{(t)} - \frac{2\mu}{m} \sum_{i \in E_1 \cap E_2} \frac{|a_i^T z^{(t)}|^2 - y_i}{a_i^T z^{(t)}} a_i,
\end{align*}
\]

where

\[
E_1 = \left\{ i : 0.3 \leq \left| \frac{a_i^T z^{(t)}}{\|z^{(t)}\|} \right| \leq 5 \right\},
E_2 = \left\{ i : r_i^{(t)} \leq 12 \left| \frac{a_i^T z^{(t)}}{\|z^{(t)}\|} \right| \cdot \text{median}(\{r_i^{(t)}\}) \right\},
\]

with \(r_i^{(t)} = |y_i - (a_i^T z^{(t)})^2| \).

- As long as \(m = O(n \log n) \) and \(s = O(1) \), \(\nabla \ell_{tr}(z) \) satisfies the Regularity Condition \(\text{RC}(\mu, \lambda) \) for all \(z, h = z - x \):

\[
- \left\langle \frac{1}{m} \nabla \ell_{tr}(z), h \right\rangle \geq \mu \left\| \frac{1}{m} \nabla \ell_{tr}(z) \right\|^2 + \lambda \|h\|^2, \quad \|h\| \leq \frac{1}{10} \|z\|.
\]

which guarantees \(\text{dist}(z^{(t+1)}, x) \leq (1 - \mu \lambda) \text{dist}(z^{(t)}, x) \).
Theorem (Zhang, C. and Liang, 2016)

Assume $\|w\|_\infty \leq c_1 \|x\|^2$. Assume a_i’s are generated with i.i.d. Gaussian entries. If $m \gtrsim n \log n$ and $s \lesssim s_0$, then with high probability, median-TWF yields

$$\text{dist}(z^{(t)}, x) \lesssim \frac{\|w\|_\infty}{\|x\|} + (1 - \rho)^t \|x\|, \quad \forall t \in \mathbb{N}$$

simultaneously for all $x \in \mathbb{R}^n \setminus \{0\}$ for some $0 < \rho < 1$.

- **Exact recovery** when $\|w\| = 0$ with slight more samples ($m = O(n \log n)$) but a constant fraction of outliers $s = O(1)$.
- **Stable recovery** with additional bounded noise;
- Resist outliers **obliviously**: no prior knowledge of outliers.
- **First** non-asymptotic robust recovery guarantee using median: much more involved due to the nonlinearity of median.
Proof sketch - preparation

Definition (Generalized quantile function)

Let $0 < p < 1$. If F is a CDF, the generalized quantile function is

$$F^{-1}(p) = \inf \{ x \in \mathbb{R} : F(x) \geq p \}.$$

Denote $\theta_p(F) := F^{-1}(p)$ and $\theta_p(\{X_i\}) := \theta_p(\hat{F})$, where \hat{F} is the empirical distribution of the samples $\{X_i\}_{i=1}^m$.
Definition (Generalized quantile function)

Let $0 < p < 1$. If F is a CDF, the generalized quantile function is

$$F^{-1}(p) = \inf\{x \in \mathbb{R} : F(x) \geq p\}.$$

Denote $\theta_p(F) := F^{-1}(p)$ and $\theta_p(\{X_i\}) := \theta_p(\hat{F})$, where \hat{F} is the empirical distribution of the samples $\{X_i\}_{i=1}^m$.

![Diagram of the cumulative distribution function (CDF) with points p_1, p_2, p_3 on the y-axis and q_1, q_2, q_3 on the x-axis. The CDF curve increases from 0 to 1 as x increases.]
Proof sketch

Lemma (Concentration of sample quantile)

Assume \(\{X_i\}_{i=1}^m \) are i.i.d. drawn from some distribution \(F \). Under some minor assumptions, w.h.p.

\[
|\theta_p(\{X_i\}_{i=1}^m) - \theta_p(F)| < \epsilon
\]

Lemma (Sandwich median by quantiles of clean samples)

Consider clean samples \(\{\tilde{X}_i\}_{i=1}^m \) and contaminated samples \(\{X_i\}_{i=1}^m \).

Then

\[
\theta_{\frac{1}{2} - s}(\{\tilde{X}_i\}) \leq \theta_{\frac{1}{2}}(\{X_i\}) \leq \theta_{\frac{1}{2} + s}(\{\tilde{X}_i\}).
\]

Lemma (Concentration of median)

If \(m > c_0 n \log n \), then with probability at least \(1 - c_1 \exp(-c_2 m) \), there exist constants \(\beta \) and \(\beta' \) such that

\[
\beta \|z\| \|h\| \leq \text{median}(\{||a_i^T x||^2 - ||a_i^T z||^2\}_{i=1}^m) \leq \beta' \|z\| \|h\|,
\]

holds for all \(z, h := z - x \) satisfying \(\|h\| < 1/11 \|z\| \).
Numerical experiments with median-TWF

![Graphs showing success rate vs outliers fraction for different norms and TWF methods.]

(a) $\|\eta\|_\infty = 0.1\|x\|^2$

(b) $\|\eta\|_\infty = \|x\|^2$

(c) $\|\eta\|_\infty = 10\|x\|^2$

(d) $\|\eta\|_\infty = 100\|x\|^2$

Figure: Success rate of exact recovery with outliers for median-TWF, trimean-TWF, and TWF at different levels of outlier magnitudes.
Numerical experiments with median-TWF

Recovery with both dense noise and sparse outliers:

- With outliers, median-TWF achieve better accuracy than TWF.
- Moreover, median-TWF with outliers achieves almost the same accuracy of TWF without outliers.

![Relative error of median-TWF vs. TWF](image)

Figure: Relative error of median-TWF vs. TWF w.r.t. iteration when $s = 0.1$, $\|w\|_\infty = 0.01\|x\|^2$, and $\|\eta\|_\infty = \|w\|$.
Conclusions

We have discussed how to solve random quadratic systems of equations, possibly corrupted by a constant fraction of outliers, in a provable manner.

<table>
<thead>
<tr>
<th>measurements</th>
<th>$y_i = a_i^T X a_i$</th>
<th>$y_i = |U^T a_i|_2^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>loss</td>
<td>linear/cvx</td>
<td>quadratic/ncvx</td>
</tr>
<tr>
<td>without outliers</td>
<td>Semidefinite Prog.</td>
<td>Kaczmarz/SGD</td>
</tr>
<tr>
<td>with outliers</td>
<td>Semidefinite Prog.</td>
<td>median-TWF</td>
</tr>
</tbody>
</table>

- **The class of convex methods** are based on convex relaxation for low-rank matrix completion and sparse recovery. It is easier to design but the computational cost is high;
- **The class of non-convex methods** are based on iterative updates with careful initializations. The computational cost is low but the design is a bit of an art.
References

http://www.ece.osu.edu/~chi/
Acknowledgement

- My collaborators: Yuxin Chen (Stanford), Andrea Goldsmith (Stanford), Yuanxin Li (OSU), Huishuai Zhang (Syracuse), Yingbin Liang (Syracuse) and Yue M. Lu (Harvard).

- Research supported by NSF, AFOSR and ONR.