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Data science

New imaging/sensing modalities allow us to probe the nature in
unprecedented manners:

Radio&astronomy

healthcare

hyperspectral

Internet&traffic

seismic&imaging

microscopy

but also with a lot of new (and exciting) challenges due to the
unconventional manner these data are obtained.
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Subspace retrieval using intensity measurements only

• We wish to estimate a subspace U ∈ Rn×r by interrogating it with
vectors {ai}mi=1 and forming backprojections;

U

ai

kUT aikkUT ajk

aj

• We only observe the intensity of the backprojections, namely,

yi = ‖UTai‖22 = aTi (UU
T )ai, i = 1, . . . ,m.

They are quadratic with respect to U .

• Intensity measurements are much easier to implement by an energy
detector for high-frequency and wide-band (THz) applications.
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Phase retrieval

How to recover structure of a sample from its diffraction pattern?

Figure 1: A typical setup for structured illuminations in diffraction imaging using a phase mask.

Figure 2: A typical setup for structured illuminations in diffraction imaging using oblique illumina-
tions. The left image shows direct (on-axis) illumination and the right image corresponds to oblique
(off-axis) illumination.
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• In the important special case of r = 1, it becomes equivalent to
phase retrieval∗, namely, recover x ∈ Rn/Cn from

yi = |F{x}|2, where F is Fourier transform,

This has wide applications in X-ray crystallography, electron
microscopy and coherent diffractive imaging, and leads to winning of
Nobel prize (e.g. discovery of double helix structure).

∗Image credit: E. J. Candès, Y. C. Eldar, T. Strohmer and V. Voroninski, “Phase
retrieval via matrix completion,” SIAM J. on Imaging Sciences. 3
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Covariance sketching for streaming data

Multivariate streaming data: a new data snapshot xt ∈ Cn/Rn is
generated by the sensor platform at each time t;

Limited'Power'and'Storage'Unprecedented'Data'Rate'and'Volume'

• high-dimensional: the number of variables, n, is large;

• real-time: data processed “on the fly”;

• decentralized: data collected at decentralized locations;

• resource-constrained: cannot store and transmit all data;
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Covariance sketching

Observation: Fortunately, inference requires only statistics of the data
stream, not the stream itself; we can “sketch”/compress the data at the
hope of directly recovering its statistics!

Approach: distributed data sketching and aggregation to recover the
covariance structure or principal components.

• access each data sample via quadratic (energy) sketches;

• aggregate the sketches into linear observations of the covariance
matrix.
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Quadratic sampling

How to sketch a high-dimensional data stream in order to recover its
covariance matrix?

• To meet resource constraints, we would like to sample in a single
pass on the fly: a single quadratic sketch of xt:

zt = |〈at,xt〉|2,

which reduces the dim. of each xt to merely a scalar.

• sketching complexity is linear in length of xt;
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Quadratic sampling for covariance sketching

• Consider a data stream possible distributively observed at m sensors,
each with a sketching vector ai ∈ Rn, i = 1, . . . ,m:

• Sketch a substream indexed by {`it}Tt=1 with |〈ai,x`it〉|
2 and

compute the average:

yi,T =
1

T

T∑
t=1

∣∣∣〈ai,x`it〉∣∣∣2 = aTi

(
1

T

T∑
t=1

x`itx
T
`it

)
ai

T→∞−−−−→ aTi Xai,

where X = E[xxT ] is the covariance matrix.
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Low-rank covariance estimation
• More generally, quadratic samplers produce the following:

yi = a
T
i Xai + ηi, i = 1, . . . ,m;

where η is an additive noise.
• linear in the covariance matrix X!

• Low-rank covariance matrix: Many high-dimensional data lie in a
low-dimensional subspace, when a small number of components
accounts for most of the variability in the data.

X = UUT =

• This yields the subspace retrieval problem.
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Reconstruction?

Two sides of the same coin: We can recover

• either X = UUT ∈ Rn×n (when r is possibly unknown) or

• the subspace U ∈ Rn×r (when r is known);

X U

measurements yi = a
T
i Xai yi = ‖UTai‖22

loss linear quadratic
prior X is low-rank -

dim. of unknowns n2 nr
optimization convex nonconvex

We will discuss both convex (for reconstructing X) and nonconvex
methods (for reconstructing U), possibly with additional corruptions in
the measurements.

9



Reconstruction?

Two sides of the same coin: We can recover

• either X = UUT ∈ Rn×n (when r is possibly unknown) or

• the subspace U ∈ Rn×r (when r is known);

X U

measurements yi = a
T
i Xai yi = ‖UTai‖22

loss linear quadratic
prior X is low-rank -

dim. of unknowns n2 nr
optimization convex nonconvex

We will discuss both convex (for reconstructing X) and nonconvex
methods (for reconstructing U), possibly with additional corruptions in
the measurements.

9



Low-rank covariance estimation via convex relaxation

• We would like to seek the covariance matrix satisfying the
observations with the minimal rank:

X̂ = argmin
M�0

rank(M) s.t. yi = a
T
i Mai, i = 1, . . . ,m.

• However this is non-convex and NP-hard. Therefore, we replace it
by a convex relaxation which is the trace minimization, over all PSD
matrices compatible with the measurements:

X̂ = argmin
M�0

Tr(M) s.t. yi = a
T
i Mai, i = 1, . . . ,m.

• Additionally, if X is Toeplitz, solve:

X̂ = argmin
M�0,Toeplitz

Tr(M) s.t. yi = a
T
i Mai, i = 1, . . . ,m.
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Near-optimal recovery via convex programming

Theorem (Chen, C. and Goldsmith)

Assuming ai’s are composed of i.i.d. Gaussian entries, with high
probability, the solution X̂ exactly recovers all rank-r matrices X,
provided that

m & nr.

If there exists additional Toeplitz constraint, then similar guarantee holds
provided

m & rpolylogn.

• Exact recovery with m = O(nr);

• Robust against approximate low-rankness
and bounded noise.

• Under Toeplitz constraint:

11
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Kaczmarz method for solving quadratic equations

• Goal: reduce the memory and computational cost by directly
estimating U ∈ Rn×r.

• The Kaczmarz method is a fast iterative algorithm for solving
overdetermined linear system.

• Its randomized version [Strohmer and Vershynin] obtains linear rate
in expectation.
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Kaczmarz method for solving quadratic equations
• Extend Kaczmarz method by, at each iteration, project the current

estimate to the closest signal that satisfies a (quadratic) constraint:†

Uk = argmin
V :‖V Ta`(k)‖22=y`(k)

‖Uk−1 − V ‖2F ,

which can be solved in closed form via a rank-one update:

Uk =

[
I −

(
‖UT

k−1a`(k)‖2 −
√
y`(k)

‖UT
k−1a`(k)‖2

)
a`(k)a

T
`(k)

‖a`(k)‖22

]
Uk−1.

• The solution is equivalent to

min
s:‖s‖2=1

argmin
V :‖V Ta`(k)‖2=s

√
y`(k)

‖Uk−1 − V ‖2F

which corresponds to projecting the current estimate to the
hyperplane with the phase that minimizes the projection.

†Y. Chi and Y. M. Lu, Kaczmarz Method for Solving Quadratic Equations, IEEE
SPL 2016.
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Performance Guarantee of Kaczmarz Method

Consider the phase retrieval case.

Theorem (Zhang, C., Liang)

Assume ai’s are generated with i.i.d. Gaussian entries, there exist some
universal constants ρ > 0 such that if m & n, then with high probability,
randomized Kaczmarz update rule yields

Eit
[
dist2(z(t+1),x)

]
≤
(
1− ρ

n

)
dist2(z(t),x)

where z(0) is initialized via the spectral method.

• This establishes linear convergence rate
in expectation, despite the nonlinearity!

• We can obtain similar guarantees
for the block Kaczmarz method
which is further accelerated.
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What about outliers?

• Outliers happen with
• sensor failures, malicious attacks, ...
• For covariance sketching, insufficiently aggregated sketches can be

regarded as an outlier;

• We’re interested when the measurements are corrupted by both
sparse outliers and bounded noise:

yi = a
T
i Xai + ηi + wi, i = 1, . . . ,m,

where X = UUT , ‖η‖0 ≤ sm and w is a dense bounded noise.

• Goal: develop algorithms that are oblivious to outliers, and
statistically and computationally efficient.
• small sample size: hopefully m is linear in n;
• large fraction of outliers: hopefully s is a small constant;
• low computational complexity and easy to implement.
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Outlier-robust recovery by convex programming

• To motivate, ideally one would like to look for low-rank matrices
that maintain outlier sparsity:

X̂ = argmin
M�0

cardinality(outliers), s.t. rank(M) = r

• By relaxing the objective function to the `1-norm minimization, and
dropping the rank constraint, we propose to solve

X̂ = argmin
M�0

m∑
i=1

∣∣yi − aTi Mai
∣∣

• Parameter-free formulation without trace minimization or tuning
parameters;

• No prior information is required for the matrix rank, corruption level
or bounded noise level.
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Performance guarantee of convex programming

Theorem (Li, Sun and C., 2016)

Suppose that ‖w‖1 ≤ ε. Assume the support of η is selected uniformly
at random with the signs of η are generated from a symmetric Bernoulli
distribution. Then as long as m & nr2, s . 1/r, the solution to the
proposed algorithm satisfies∥∥∥X̂ −X∥∥∥

F
.
rε

m

with high probability.

• Exact recovery when w = 0 as long as
m & nr2 and s . 1/r.

• When r = 1 recovers a previous result
for the phase retrieval case‡;

• RHS is phase transition for m vs r with
5% corruptions.

‡P. Hand, “Phaselift is robust to a constant fraction of arbitrary errors”.
17
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Robust recovery of Toeplitz PSD Matrices
If X is additionally Toeplitz, this can be incorporated:

X̂ = argmin
M�0, Toeplitz

m∑
i=1

∣∣yi − aTi Mai
∣∣ .

Number of measurements (m)
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Figure : Phase transitions of low-rank Toeplitz PSD matrix recovery w.r.t. the
number of measurements and the rank with 5% of measurements corrupted by
standard Gaussian variables, when n = 64.
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Non-convex approach based on factored model

Can we reduce the computational complexity?

• Recall X = UUT where U ∈ Rn×r, one can directly recover U by
attempting:

Û = argmin
U∈Rn×r

`(U) := argmin
U∈Rn×r

1

m

m∑
i=1

`(yi;U)

for some loss function `(yi,U):

• quadratic loss of power: `(U ; yi) =
(
yi −

∥∥UTai

∥∥2
2

)2
• quadratic loss of amplitude: `(U ; yi) =

(√
yi −

∥∥UTai

∥∥
2

)2
• Poisson loss: `(U ; yi) = ‖UTai‖22 − yi log ‖UTai‖22

• What are the challenges?
• `(U) can be non-convex and non-smooth.
• With outliers, we want the loss to sum over only clean samples.
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Non-convex phase retrieval
Exciting developments (without outliers) – all following the same recipe
(for the phase retrieval or rank-1 case):

ẑ = argmin
z∈Rn

1

m

m∑
i=1

`(yi; z)

• Initialize z(0) via the (truncated) spectral method to land in the
neighborhood of the ground truth;

• Iterative update using (truncated) gradient descent;

§

§Figure credit: Yuxin Chen.
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Non-convex phase retrieval

Provable near-optimal performance for Gaussian measurement model:

• Statistically: m = O(n) near-optimal sample complexity

• Computationally: linear convergence with near-linear run time

Examples: Wirtinger Flow (WF) (Candès et.al. 2014), Truncated Wirtinger

Flow (TWF) (Chen and Candès 2015), Reshaped Wirtinger Flow (Zhang and

Liang 2016), Truncated Amplitude Flow (Wang, Giannakis and Eldar, 2016)
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Non-convex phase retrieval with outliers

In the presence of arbitrary outliers, existing approaches fail:

• Spectral initialization would fail: the eigenvector of Y can be
arbitrarily perturbed

Y =
1

m

m∑
i=1

yiaia
T
i︸ ︷︷ ︸

WF

or Y =
1

m

m∑
i=1

yiaia
T
i 1{|yi|≤αy·mean({yi})}︸ ︷︷ ︸

TWF

.

• Gradient descent would fail: the search direction can be arbitrarily
perturbed

z(t+1) = z(t) − µ

‖z(0)‖2
∑
i∈Tt

∇`(z(t); yi)

where Tt = {1, . . . ,m} for WF and

Tt =
{
i : |yi − |aTi z(t)|2| ≤ αh ·mean({|yi − |aTi z(t)|2|})

}
¶

for TWF.

¶with some details hiding
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Robust phase retrieval via median-truncation
Need better strategy to eliminate outliers!

Key approach: “median-truncation”

• well-known in robust statistics to be outlier-resilient;

• little appearance in high-dimensional estimation;

Median is more stable than mean and top-k truncation (which truncates
a fixed amount of samples) for various levels of outliers.
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Median-Truncated Wirtinger Flow (median-TWF)

We adopt the Poisson loss function (other loss functions work too) and
the Gaussian measurement model.

• Median-truncated spectral initialization: Set z(0) := λ0z̃ where
• Direction estimation: z̃ is the leading eigenvector of

Y =
1

m

m∑
i=1

yiaia
T
i 1{|yi|≤9/0.455·median({yi})}.

• Norm estimation: λ0 =
√

median({yi})/0.455

yi = |aT
i x|2 ∼ χ2

1 and E[median(χ2
1)] = 0.455

• As long as m = O(n log n) and s = O(1), the initialization is
provably close to the ground truth:

dist(z(0),x) ≤ 1

10
‖x‖,

where dist(z(0),x) = min{‖z(0) + x‖, ‖z(0) − x‖}.
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Median-Truncated Wirtinger Flow (median-TWF)

• Median-truncated gradient descent:

z(t+1) = z(t) − 2µ

m

∑
i∈E1∩E2

|aTi z(t)|2 − yi
aTi z

(t)
ai︸ ︷︷ ︸

∇`tr(z)

,

where

E1 =

{
i : 0.3 ≤ |a

T
i z

(t)|
‖z(t)‖

≤ 5

}
, E2 =

{
i : r

(t)
i ≤ 12

|aT
i z

(t)|
‖z(t)‖

·median({r(t)i })
}
,

with r
(t)
i = |yi − (aTi z

(t))2|.

• As long as m = O(n log n) and s = O(1), ∇`tr(z) satisfies the
Regularity Condition RC(µ, λ) for all z, h = z − x:

−
〈

1

m
∇`tr(z),h

〉
≥ µ

∥∥∥∥ 1

m
∇`tr(z)

∥∥∥∥2 + λ‖h‖2, ‖h‖ ≤ 1

10
‖z‖.

which guarantees dist(z(t+1),x) ≤ (1− µλ)dist(z(t),x).
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Performance guarantee of median-TWF

Theorem (Zhang, C. and Liang, 2016)

Assume ‖w‖∞ ≤ c1‖x‖2. Assume ai’s are generated with i.i.d. Gaussian
entries. If m & n log n and s . s0, then with high probability,
median-TWF yields

dist(z(t),x) .
‖w‖∞
‖x‖ + (1− ρ)t‖x‖, ∀t ∈ N

simultaneously for all x ∈ Rn\{0} for some 0 < ρ < 1.

• Exact recovery when ‖w‖ = 0 with slight more samples
(m = O(n log n)) but a constant fraction of outliers s = O(1).

• Stable recovery with additional bounded noise;

• Resist outliers obliviously: no prior knowledge of outliers.

• First non-asymptotic robust recovery guarantee using median: much
more involved due to the nonlinearity of median.
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Proof sketch - preparation

Definition (Generalized quantile function)

Let 0 < p < 1. If F is a CDF, the generalized quantile function is

F−1(p) = inf{x ∈ R : F (x) ≥ p}.

Denote θp(F ) := F−1(p) and θp({Xi}) := θp(F̂ ), where F̂ is the
empirical distribution of the samples {Xi}mi=1 .
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Proof sketch

Lemma (Concentration of sample quantile)

Assume {Xi}mi=1 are i.i.d. drawn from some distribution F . Under some
minor assumptions, w.h.p.

|θp({Xi}mi=1)− θp(F )| < ε

Lemma (Sandwich median by quantiles of clean samples)

Consider clean samples {X̃i}mi=1 and contaminated samples {Xi}mi=1.
Then

θ 1
2−s

({X̃i}) ≤ θ 1
2
({Xi}) ≤ θ 1

2+s
({X̃i}).

Lemma (Concentration of median)

If m > c0n log n, then with probability at least 1− c1 exp(−c2m), there
exist constants β and β′ such that

β‖z‖‖h‖ ≤ median(
{∣∣|aTi x|2 − |aTi z|2∣∣}mi=1

) ≤ β′‖z‖‖h‖,

holds for all z,h := z − x satisfying ‖h‖ < 1/11‖z‖.
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Numerical experiments with median-TWF
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(a) ‖η‖∞ = 0.1‖x‖2
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(b) ‖η‖∞ = ‖x‖2
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(c) ‖η‖∞ = 10‖x‖2
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(d) ‖η‖∞ = 100‖x‖2

Figure : Success rate of exact recovery with outliers for median-TWF,
trimean-TWF, and TWF at different levels of outlier magnitudes.
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Numerical experiments with median-TWF
Recovery with both dense noise and sparse outliers:
• With outliers, median-TWF achieve better accuracy than TWF.
• Moreover, median-TWF with outliers achieves almost the same

accuracy of TWF without outliers.

0 50 100 150
Iterations

10-4

10-3

10-2

10-1

100
R

el
at

iv
e 

er
ro

r
median-TWF with outliers
TWF with outliers
TWF without outliers

Figure : Relative error of median-TWF vs. TWF w.r.t. iteration when s = 0.1,
‖w‖∞ = 0.01‖x‖2, and ‖η‖∞ = ‖w‖.
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Conclusions

We have discussed how to solve random quadratic systems of equations,
possibly corrupted by a constant fraction of outliers, in a provable
manner.

X U

measurements yi = a
T
i Xai yi = ‖UTai‖22

loss linear/cvx quadratic/ncvx
without outliers Semidefinite Prog. Kaczmarz/SGD
with outliers Semidefinite Prog. median-TWF

• The class of convex methods are based on convex relaxation for
low-rank matrix completion and sparse recovery. It is easier to
design but the computational cost is high;

• The class of non-convex methods are based on iterative updates
with careful initializations. The computational cost is low but the
design is a bit of an art.

31



References

1. Exact and Stable Covariance Estimation from Quadratic Sampling via
Convex Programming, IEEE TIT 2015.

2. Low-Rank Positive Semidefinite Matrix Recovery from Corrupted
Rank-One Measurements, IEEE TSP 2016.

3. Provable Non-convex Phase Retrieval with Outliers: Median Truncated
Wirtinger Flow, ICML 2016.

4. Kaczmarz Method for Solving Quadratic Equations, IEEE SPL 2016.

5. Incremental Reshaped Wirtinger Flow and Its Connection to Kaczmarz
Method, NIPS 2016 Workshop on Nonconvex Optimization.

http://www.ece.osu.edu/~chi/

32

http://www.ece.osu.edu/~chi/


Acknowledgement

• My collaborators: Yuxin Chen (Stanford), Andrea Goldsmith
(Stanford), Yuanxin Li (OSU), Huishuai Zhang (Syracuse), Yingbin
Liang (Syracuse) and Yue M. Lu (Harvard).

• Research supported by NSF, AFOSR and ONR.

33


	Non-convex approach
	Conclusions

