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Abstract—We explore sub-Nyquist sampling strategies in a
bistatic MIMO radar with M transmit and N receive antennas
to reconstruct the sparse scatter scene with K � MN targets.
We develop a front-end with a matched filter bank at each
receive antenna and sample the branch output at random with
a total of L samples per pulse. Sparse recovery is then obtained
via enhanced matrix completion techniques that make no grid
assumptions over the target scene. We demonstrate that as
long as L is on the order of O(K log2(MN)), it is possible
to recover the target scene under a mild condition with high
probability, thus greatly reducing the sampling complexity from
the Nyquist rate MN samples per pulse. The performance
is numerically examined with comparison against compressive
sensing approaches. The framework can also be explored to
reduce the size of filter banks at the front-end.

I. INTRODUCTION

The challenge of radar imaging is to invert the locations
of targets unambiguously with high resolution from a lim-
ited number of samples of the scatter scene. Multiple-Input
Multiple-Output (MIMO) radar systems [1], unlike phased
array radars, enable simultaneous transmission of indepen-
dent waveforms across multiple antennas and potentially can
achieve better spatial resolution.

In this paper, we consider estimating the direction-of-arrival
(DOA) and the direction-of-departure (DOD) of each target
by processing a single pulse in a bistatic MIMO radar with
M transmit and N receive antennas in a nondispersive prop-
agation environment. The resolution depends on the degree
of freedom of the MIMO system, given as MN if the
antennas are arranged as a unitary linear array (ULA) with
half-wavelength equal spacing [2]. Conventional processing
based on matched filtering requires the number of samples,
or the size of the matched filter bank, to scale linearly with
MN , thus posing great challenge on energy consumption for
sampling as well as front-end hardware costs.

Pioneered by the work of Herman and Strohmer [3],
Compressive Sensing (CS) becomes an appealing technique
for radars to reduce sampling complexity or alternatively to
improve resolution by exploiting the sparsity of the scatter
scene. In particular, [4]–[6] explored random antenna arrays to
achieve the same high resolution of a fully implemented ULA
with a smaller array size in MIMO radars. In particular, [6]
showed that the product of the number of transmit and receive
antennas only needs to be on the order of O(K log2(MN)),
where K is the number of targets. In this framework, random
antenna array is necessary to obtain the desired isometry
properties of the sensing matrix. However, one caveat in most
existing literature is that the targets are approximated to lie

on a discretized grid, which is not satisfied by the physics of
scattering and may degenerate the performance severely [7].

In this paper, we assume a ULA is implemented at both the
transmitter and the receiver, however, we look to complexity
reduction by reducing the required number of samples per
pulse. We first develop a sampling front-end consisting of
a matched filter bank with respect to transmit waveforms at
each receive antenna, and then sample the output uniformly
at random at the pulse rate. Sparse recovery is performed via
convex optimization based on Enhanced Matrix Completion
(EMaC) [8], [9], which is recently proposed to recover multi-
dimensional frequency models by nuclear norm minimization
of a low-rank enhanced matrix pencil constructed from the
data. Under mild coherence conditions, the EMaC algorithm
succeeds with high probability with a random sample size of
O(K log2(MN)), which is much smaller than the Nyquist rate
MN samples per pulse, and comparable to the complexity of
random array schemes [6]. Finally, numerical examples are
provided with comparison against CS approaches.

The rest of the paper is organized as follows. Section II
presents the MIMO radar signal model, and proposes a novel
front-end with sub-Nyquist sampling of the output of the
matched filter bank. Section III discusses recovery strategies
using EMaC, along with its performance guarantee. Section IV
presents numerical simulations and we conclude in Section V.

II. MIMO RADAR MODEL AND FRONT-END

We consider a bistatic MIMO radar model with M transmit
antennas and N receive antennas, where the spacing between
antennas is λ/2, λ being the wavelength of the carrier signal.
Let T be the pulse repetition interval (PRI). Let sm(t) be
the narrow-band pulse waveform transmitted from the mth
transmit antenna, 1 ≤ m ≤ M , and sm(t)’s are orthogonal
across different antennas, i.e.

〈sm(t), sm′(t)〉 =

∫ T

0

sm(t)sm′(t)dt = δm,m′ . (1)

Assume there are K targets, where θk is the DOD, φk is
the DOA, βk is the fading coefficient, respectively, of the kth
target, 1 ≤ k ≤ K. In a single pulse model, assume there is
no clutter and all synchronizations are perfect, we can write
the received signal at the nth receive antenna as [2]

rn(t) =

K∑
k=1

M∑
m=1

βke
jπ(n−1) sin(φk)ejπ(m−1) sin(θk)sm(t) + wn(t),

(2)
where wn(t) is an additive white Gaussian noise with variance
σ2, i.e. E[wn(t)wn(t′)] = σ2δt,t′ .



A. Nyquist-Rate Sampling Front-end

At the nthe receive antenna, if we match filter the received
signal rn(t) with the transmitted waveform sm(t) from the
mth antenna, and sample the output at the pulse rate 1/T , the
sampled output can be written as

ym,n = 〈rn(t), sm(t)〉

=

K∑
k=1

M∑
m′=1

βke
jπ(n−1) sin(φk)ejπ(m′−1) sin(θk)·

〈sm′(t), sm(t)〉+ 〈wn(t), sm(t)〉

=

K∑
k=1

βke
jπ(n−1) sin(φk)ejπ(m−1) sin(θk) + zm,n, (3)

where zm,n = 〈wn(t), sm(t)〉, and (3) follows from (1). Write
all samples in a matrix form we obtain

Y = BΣAT + Z ∈ CM×N , (4)

where Y = [ym,n], Z = [zm,n], and Σ = diag[β1, . . . , βK ].
The matrices A = [a(θ1), . . . ,a(θK)] ∈ CM×K and B =
[b(φ1), . . . ,b(φK)] ∈ CN×K are the transmit steering matrix
and the receive steering matrix, respectively, where a(θi) is
given as

a(θi) = [1, ejπ sin(θi), . . . , ejπ(M−1) sin(θi)], (5)

and b(φi) is given as

b(φi) = [1, ejπ sin(φi), . . . , ejπ(N−1) sin(φi)]. (6)

We can confirm Z is additive Gaussian with i.i.d. entries by

E[zn,mzn′,m′ ] = E[〈wn(t), sm(t)〉〈wn′(t), sm′(t)〉]

= E
∫ T

0

∫ T

0

sm(t1)sm′(t2)wn(t1)wn′(t2)dt1dt2

=

∫ T

0

∫ T

0

sm(t1)sm′(t2)δn,n′δt1,t2σ
2dt1dt2

= σ2δn,n′δm,m′ .

It is then possible to recover the target parameters from Y
based on (4) using conventional spectrum estimation methods
such as ESPRIT [10]. As the product MN gets large, our
goal is to reduce the sampling complexity by only observing
a small set of entries of Y.

B. Sub-Nyquist Rate Sampling Front-End

At each receive antenna, we sample the output of each
branch of the matched filter bank at the pulse rate 1/T
uniformly at random, as in Figure 1, where δm,n = 1 if
ym,n is sampled, and δm,n = 0 if otherwise. Let Ω =
{(m,n)|δm,n = 1} denote the set of sampled branches, and
PΩ be the orthogonal projection onto the linear space of
matrices supported on Ω. Then, the set of samples can be given
as PΩ(Y), and the number of samples is given as L = |Ω|.

Our goal is thus to first recover the missing entries of Y
given the observation PΩ(Y). In general this problem is ill-
posed, but we will show that with the prior knowledge that the

number of targets K is small, the problem becomes tractable
as soon as L is on the order of O(K log2(MN)). Once the
whole matrix Y is recovered, we can assume conventional
approaches to estimate the target parameters.

Fig. 1. The proposed sampling front-end with a matched filter bank at each
receive antenna.

By writing (4) in a vector we have

y = (A⊗B)vec(Σ) + vec(Z) = (A⊗B)β + z, (7)

where y = vec(Y), z = vec(Z) and β = vec(Σ). If we
approximate A and B by a DFT basis or a DFT frame,
respectively as DM and DN , then y can be approximated
as a sparse vector in DM ⊗DN , and it is possible to recover
y by Basis Pursuit (BP) [11] or other CS recovery algorithms
from PΩ(Y) using (7). However, the grid assumption incurred
by assuming a prior basis may not be satisfied in practice and
cause severe performance degeneration as discussed in details
in [7].

III. ENHANCED MATRIX COMPLETION

In this paper, we consider the recently proposed Enhanced
Matrix Completion (EMaC) to recover the matrix Y without
any grid assumptions. For simplicity we focus on the noise-
free scenario. We assume K is much smaller than MN , i.e.
K �MN . However, K can be on the same scale as M or N ,
hence Y itself is not low-rank and it is not appropriate to apply
naive matrix completion [12] directly on PΩ(Y). However, the
harmonic structure of Y allows us to formulate an enhanced
matrix form where the low-rank structure is evident in a matrix
of ambient dimension Θ(MN).

For a given matrix Φ = [φl,k] ∈ CM×N , we first define
an enhanced form H(Φ) as a k1 × (M − k1 + 1) = k1 × k3

block Hankel matrix:

H(Φ) =


Φ0 Φ1 · · · ΦM−k1
Φ1 Φ2 · · · ΦM−k1+1

...
...

...
...

Φk1−1 Φk1 · · · ΦM−1

 , (8)

where each block is a k2 × (N − k2 + 1) = k2 × k4 Hankel
matrix defined as

Φl =


φl,0 φl,1 · · · φl,N−k2
φl,1 φl,2 · · · φl,N−k2+1

...
...

...
...

φl,k2−1 φl,k2 · · · φl,N−1

 .



for 0 ≤ l ≤M−1, k1 and k2 are called the pencil parameters.
If Φ = Y, from [9], the rank of H(Φ) is always upper
bounded as rank (H(Φ)) ≤ r. Further, if we choose the pencil
parameter as k1 = dM2 e and k2 = dN2 e, the size of H(Φ) is
on the scale of Θ(MN), hence H(Φ) is indeed low-rank as
hoped. We aim to find the enhanced matrix H(Φ) with the
smallest rank that satisfies the measurements, i.e.

min
Φ∈CM×N

rank(H(Φ)) subject to PΩ (Φ) = PΩ (Y) .

As proposed in [9], we seek to solve a convex relaxation
of the rank minimization problem, called Enhanced Matrix
Completion (EMaC):

min
Φ∈CM×N

‖H(Φ)‖∗ subject to PΩ (Φ) = PΩ (Y) .

To state the performance guarantee of EMaC, we first need
to define a proper notion of coherence. Denote ΩH(k, l) as the
set of locations in H(Φ) containing copies of φk,l, and Ak,l

to denote a basis matrix that extracts the average of all entries
in ΩH(k, l), i.e.

Ak,l(α, β) =

{
1√

|ΩH(k,l)|
if (α, β) ∈ ΩH(k, l),

0 otherwise.

We further define GL and GR as the K×K Gram matrices
as

GL(i1, i2) =
1

k1k2

1− ej2πk1(f1i1−f1i2 )

1− ej2π(f1i1−f1i2 )

1− ej2πk2(f2i1−f2i2 )

1− ej2π(f2i1−f2i2 )
,

GR(i1, i2) =
1

k3k4

1− ej2πk3(f1i1−f1i2 )

1− ej2π(f1i1−f1i2 )

1− ej2πk4(f2i1−f2i2 )

1− ej2π(f2i1−f2i2 )
,

with GL(i, i) = GR(i, i) = 1. The entries of GL and GR
can be obtained via sampling the two-dimensional Dirichlet
kernel. The coherence condition is defined as below.

Definition 1 (Incoherence). Let the SVD of H(Y) be
H(Y) = UΛV∗, then the coherence of Y is defined as the
smallest quantities such that

σmin (GL) ≥ 1

µ1
, σmin (GR) ≥ 1

µ1
; (9)

max
(k,l)∈[M ]×[N ]

|〈UV∗,Ak,l〉|2

|ΩH(k, l)|
≤ µ2K

(MN)2
; (10)

and ∀(k′, l′) ∈ [M ]× [N ]:∑
(k,l)∈[M ]×[N ]

∣∣∣〈UU∗Ak′,l′VV∗,
√

ΩH(k, l)Ak,l

〉∣∣∣2
≤ µ3K

MN
|ΩH(k′, l′)|. (11)

We denote condition (9) as the weak incoherence condition,
which only requires that the locations of targets are not too
close with respect to the Rayleigh limit, such that the smallest
eigenvalue of the Gram matrix is lower bounded. Conditions
(10) and (11) further depend on the SVD structure of the form
H(Y), which depends on both the locations and amplitudes
of the targets. We denote conditions (9), (10) and (11) as

the strong incoherence condition. It is expected that these
conditions are satisfied with high probability under a large
class of practical scenarios [9]. The performance guarantee of
EMaC presented in [9] is restated as follows.

Theorem 1. Let Ω the random location set of size L. If the
measurements are noiseless, then there exists a constant c > 0
such that
• under the strong incoherence condition, if

L > c1 max (µ1, µ2, µ3)K log2 (MN) ; (12)

• under the weak incoherence condition, if

L > c1µ
2
1K

2 log2(MN); (13)

then Y is the unique solution of EMaC with probability at
least 1− (MN)−2.

Theorem 1 indicates that as long as the number of samples
per pulse is greater than O(K log2(MN)), and the locations
of targets are not so close, it is with high probability that
recovery is successful with the EMaC algorithm. This means
that we can greatly reduce the power consumption in a MIMO
radar while achieving a high resolution.

IV. NUMERICAL EXAMPLES

We consider two sets of numerical examples. In the first
example, we assume M = 64 and N = 1, and the goal is to
estimate the DOA and the amplitudes of each target from a
randomly sampled L = 32 samples. The pencil parameter is
chosen as k1 = 32. We generate 4 different targets with two
that are closely located, and all of them are off the DFT grid, as
shown in Fig. 2 (a). Fig. 2 (d) shows that the EMaC procedure
perfectly estimates the true DOA in the noise-free scenario.
The actual DOAs are estimated via applying ESPRIT on the
recovered samples with an order estimate P = 8. We compare
with CS approaches using BP assuming a DFT basis in Fig. 2
(d) and BP assuming a DFT frame with an oversampling factor
of 4 in Fig. 2 (c), where both of them produce spurious targets
around the truth targets. Fig. 3 shows the estimates when SNR
is 20dB, where EMaC still obtains better performance than
CS approaches. Note that no denoising is performed on the
recovered Y before estimating the DOAs.

In the second example, we assume M = 8 and N = 8, and
the goal is to jointly estimate the DOA and DOD of each target
from L = 32 samples. The pencil parameters are chosen as
k1 = 4 and k2 = 4. We randomly generate 6 different targets
with the same amplitudes and random phases, and assume
the SNR is 20dB. We then attempt recovery via BP with an
oversampling factor of 4 in Fig. 4 (a), and via EMaC in Fig. 4
(b). We can see that EMaC produces less spurious targets
around the truth targets without a grid assumption.

V. CONCLUSIONS

We explore a sub-Nyquist sampling strategy in a bistatic
MIMO radar with M transmit and N receive antennas to
reconstruct the sparse scattering scene with K �MN targets.
We develop a front-end that subsamples the output of the
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Fig. 2. The actual DOA arranged on a unit circle in (a), along with BP without
oversampling in (b), with oversampling factor c = 4 in (c), with EMaC in
(d). The EMaC perfect recovers the DOA without any grid assumptions.
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Fig. 3. The actual DOA arranged on a unit circle in (a), along with BP
without oversampling in (b), with oversampling factor c = 4 in (c), with
EMaC in (d) when the SNR is 20dB.

matched filter bank at each receive antenna uniformly at
random with a total of L samples per pulse. Sparse recovery
is then obtained via EMaC that makes no grid assumptions
over the target scene. We demonstrate that as long as L =
O(K log2(MN)), it is possible to recover the target scene
under a mild condition, thus greatly reducing the amount
of power consumption. We note that the same framework
can also be applied to reduce the size of filter banks at the
front-end by only implementing the sampled branches. Future
work includes generalizing the current framework to process
multiple pulses to further estimate Doppler shifts.
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