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Abstract—Multiple-Input Multiple-Output (MIMO) systems
improve the throughput and reliability of wireless communica-
tions. Perfect Channel State Information (CSI) is needed at the
receiver to perform coherent detection and achieve the optimal
gain of the system. In fast fading and low SNR regimes, it is hard
or impossible to obtain perfect CSI, which leads the receiver
to operate without knowledge of the CSI and perform blind
detection. In reality CSI may be available to the receiver but
this CSI may be insufficient to support coherent detection. In this
paper, we fill the gap between coherent and blind detection by
considering a more realistic model where the receiver knows the
statistics of the channel, that is Channel Distribution Information
(CDI). We propose a new detection algorithm, called Regularized
Blind Detection (RBD), where coherent and blind detection can
be viewed as special cases in our model. The algorithm estimates
CDI from any training symbols that are available and maximizes
performance given the estimated CDI. Simulations demonstrate
significant improvement in performance over blind detection. Our
work can be viewed as a systematic exploration of space between
coherent and blind detection with a strong Bayesian statistic
flavor.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems [1], [2]

enable higher rate transmission on fading channels through

higher spectral efficiency while maintaining reliability through

spatial diversity. The use of space-time codes, introduced by

Tarokh et al. [3], [4], has further improved the reliability

of communication over fading channel by correlating signals

across different transmit antennas. However, from the perspec-

tive of Shannon capacity [5], [6], full realization of system

potential is heavily dependent on knowledge of Channel State

Information (CSI) both at the transmitter and the receiver.

To perform coherent detection, the channel is usually esti-

mated at the receiver through the transmission of a sufficiently

long training/pilot sequence.This system overhead reduces the

available data rate. Hassibi et al. [7] explored the value of

training by analyzing channel capacity when the channel statis-

tics are known and training is sufficient to obtain an estimate

of the CSI. In fast fading scenarios and low SNR regimes, it

requires more resources and bandwidth to acquire perfect CSI,

and it may be impractical to introduce the necessary overhead.

In this case, the transmitter will transmit few training/pilot

sequences (to resolve phase ambiguity), and the receiver will

perform blind detection with around 3dB SNR degradation in

performance. One of the most important approaches is joint

maximum likelihood data detection and channel estimation,

which has been extensively studied in [8]-[14]. The sphere

decoding algorithm [15] can be used to find the lattice point

in the signal constellation to minimize the target norm; in

particular, it is shown in [16] that for a wide range of SNR the

complexity of the sphere decoding algorithm is polynomial,

making it feasible in many applications.

In practice, requiring a choice between coherent and blind

detection is too restrictive. In systems where coherent detec-

tion is impractical, i.e. not enough resources can be allocated

to estimate exact CSI, it is usually possible, and much easier

to obtain partial knowledge of the channel information, for

example, the Channel Distribution Information (CDI). When

the channel is assumed to be Gaussian, it can be described

by its mean and covariance matrix. We provide a graceful

Bayesian approach to estimate CDI that does not require the

transmission of a minimum number of training symbols. Once

perfect CDI is assumed known at the receiver, we propose a

new detection algorithm based on a Bayesian framework for

joint data detection and channel estimation, called Regularized

Blind Detection (RBD), and we describe two RBD variants.

Conventional coherent and blind detection are special cases

of choosing the regularization parameter. Maximum likelihood

detection can be realized using a modified version of sphere

decoding, so the complexity is the same as blind detection. In

the simulation, our algorithm performs very close to coherent

detection in the low SNR regime, and still much better than

blind detection in the high SNR regime. Our work can be

viewed as a systematic exploration of space between coherent

and blind detection with a strong Bayesian statistic flavor. It is

worth mentioning that Bayesian detection is also considered

in [17] for interference cancellation in MIMO systems using

Alamouti signaling.

The paper is organized as follows. In Section II we describe

the MIMO model used in this paper and explain both coherent

and blind detection. In Section III we assume perfect CDI at

the receiver and present two variants of the RBD algorithm

within a Bayesian framework. In Section IV we analyze how to

extract CDI from training data within our Bayesian framework

and interpret the classical use of training data as selection

of regularization parameters. Section V provides numerical

results. Finally, Section VI draws the conclusion.

A note on notation: We use capital boldface to denote



matrices and vectors, and use ‖ · ‖F for the Frobenious norm.

For a matrix A, A† denotes its Penrose-Moore pseudo-inverse,

AH denotes its conjugate transpose, and Tr(A) denotes its

trace. I denotes the identity matrix.

II. SYSTEM MODEL

We consider a general MIMO wireless communication

system with Nt transmit antennas and Nr receive antennas in

a block fading channel model, where the channel is constant

over T consecutive blocks, after which it changes to an

independent constant for another T consecutive blocks. The

received signals Y ∈ C
Nr×T over T consecutive blocks at the

receiver is given by

Y = HX + N , (1)

where H ∈ C
Nr×Nt is the channel matrix, N is the additive

noise matrix with i.i.d. complex Gaussian random variable en-

tries, and X = {X1, X2, · · · , XT } ∈ C
Nt×T is the transmitted

symbol matrix with Xi, i = 1, · · · , T as one coding block

whose entries are taken from a signal constellation Λ such as

QPSK and QAM.

A. Coherent Detection

Coherent detection handles the case when H is perfectly

known at the receiver. The coherent maximum likelihood (ML)

decoding rule are given as

X̂ = argmin
X∈ΛKT

‖Y −HX‖2

F (2)

where ‖ · ‖F is the Frobenius norm and K is the number of

symbols in one coding block. Since the noise is independent

from one coding block to another, the decoding scheme in

equation (2) can be decomposed into single coding blocks as

X̂i = argmin
Xi∈ΛK

‖Yi −HXi‖2

F (3)

where Yi = HXi +Ni with Ni as the corresponding noise for

coding block i.

B. Blind Detection

Blind detection handles the case when H is unknown at the

receiver. In conventional blind detection, the decoding rule is

X̂ = argmin
X∈ΛKT ,H∈CNr×Nt

‖Y −HX‖2

F

= argmin
X∈ΛKT

{

min
H∈CNr×Nt

‖Y −HX‖2

F

}

. (4)

In equation (4), the inner minimization is a least square

problem given X , so the close form for the estimate Ĥ is

given by [14]

Ĥ = YXH [XXH ]−1. (5)

In the case of orthogonal codes where XiX
H
i = KI, equation

(5) can be reduced to

Ĥ =
1

KT
YXH . (6)

Substituting equation (6) into equation (4), we have

X̂ = argmin
X∈ΛKT

‖Y‖2

F − 1

KT
‖YXH‖2

F

= argmax
X∈ΛKT

Tr{YXHXYH}. (7)

Remark: Blind detection is actually not totally blind. In

order to solve the ambiguity, the first coding block is normally

assumed known. In another word, blind detection still requires

the use of limited piloting signals.

In both cases, sphere decoding [15] is a general technique

which can efficiently reduce the average computational com-

plexity of maximum likelihood decoding. Some other optimal

decoding algorithms (cf [18] etc) achieve low complexity by

taking advantage of coding structures. Note that introducing

correlation at the transmitter through space-time codes leads

to correlation at the receiver which is a form of CDI.

III. REGULARIZED BLIND DETECTION

In this section, we formulate the decoding problem in a

Bayesian probabilistic model, where we assume perfect CDI

(namely, the distribution and corresponding parameters of the

channel) is known at the receiver. In practice, the estimation

of CSI always involves uncertainty of the true value, so that it

is reasonable to assume that the true channel follows certain

distribution with the estimated CSI as the mean.

From the Bayesian statistical viewpoint, the coherent detec-

tion algorithm in equation (2) is equivalent to maximizing the

probability of receiving Y given channel H and data X with

known H, i.e.

X̂ = argmax
X∈ΛKT

Pr(Y|X ,H); (8)

similarly, the blind detection algorithm in equation (4) is

equivalent to maximizing the same probability given channel

H and data X without assuming any prior on H, which is

equivalent to

X̂ = argmax
X∈ΛKT

{

max
H∈CNr×Nt

Pr(Y|X ,H)

}

, (9)

where Pr(Y|X ,H) = Pr(HX +N ) ∼ N (HX , σ2
nI) is the pdf

of the noise matrix N .

When H is assumed to have a prior distribution, namely a

Gaussian prior on H, H ∼ N (Θ,ΣH), where Θ and ΣH are

assumed known, we propose two variations of algorithms for

data detection:

A. Joint ML estimation of channel and data

Joint maximum likelihood estimation of channel H and data

X with Gaussian prior on H is given by:

X̂ = argmax
X∈ΛKT

{

max
H∈CNr×Nt

Pr(Y|X ,H)Pr(H)

}

. (10)



With Pr(Y|H,X ) ∼ N (HX , σ2
nI), and H ∼ N (Θ,ΣH),

Pr(Y|X ,H)Pr(H) ∝ exp

{

− 1

2σ2
n

‖Y −HX‖2

F

}

· exp
{

− 1

2
(H−Θ)

H
Σ

−1

H (H− Θ)
}

.

(11)

Using the Cholesky decomposition Σ
−1

H = C
H
C, the mini-

mization problem in equation (10) is equivalent to the follow-

ing regularized estimation:

X̂ = argmin
X∈ΛKT

{

min
H∈CNr×Nt

‖Y −HX‖2

F + λ‖C(H− Θ)‖2

F

}

(12)

where ‖C(H−Θ)‖2
F is the regularization term and λ = σ2

n is

the regularization factor. This is the reason the new algorithm

is named by Regularized Blind Detection.

Rewriting the terms inside the bracket in equation (12) as

∥

∥

∥

∥

[

∆YH

0

]

−
[ XH

√
λC

]

∆HH

∥

∥

∥

∥

2

F

(13)

where ∆Y = Y −ΘX and ∆H = H−Θ. Then the channel

matrix that minimizes equation (12) is:

Ĥ = Θ + (Y − ΘX )XH(XXH + λΣ
−1

H )−1. (14)

Substituting this back into equation (12), we have the

detection rule for data X :

X̂ = argmin
X∈ΛKT

{

‖Y − ĤX‖2

F + λ‖C(Ĥ − Θ)‖2

F

}

(15)

= argmin
X∈ΛKT

Tr{(Y − ΘX )(I −XH(XXH + λΣ
−1

H )−1X )

· (Y − ΘX )H}. (16)

B. ML estimation of data

Maximum likelihood estimation of data X can be written

as:

X̂ = argmax
X∈ΛKT

∫

H

Pr(Y|X ,H)Pr(H)dH (17)

= argmax
X∈ΛKT

EHPr(Y|X ,H) (18)

= argmax
X∈ΛKT

Pr(Y|X ). (19)

When H ∼ N (Θ,ΣH), this is computable since

EHPr(Y|X ,H)

∝
∫

H

exp

{

− 1

2σ2
n

‖Y −HX‖2

F

}

· exp

{

−1

2
(H− Θ)

H
Σ

−1

H (H− Θ)

}

dH

∝|XXH + λΣ
−1

H |−1/2

· exp
{ 1

2λ
Tr{(YXH + λΣ

−1

H Θ)(XXH + λΣ
−1

H )−1

· (YXH + λΣ
−1

H Θ)H}
}

(20)

Taking the logarithm of the above formula, the ML estimate

is equivalent to

X̂ = argmax
X∈ΛKT

−1

2
log |XXH + λΣH|+

1

2λ
Tr

{

(YXH + λΣ
−1

H Θ)(XXH + λΣ
−1

H )−1

· (YXH + λΣ
−1

H Θ)H
}

. (21)

C. Special Case: Orthogonal Codes

As a special case, we consider the orthogonal codes

XXH = KT I and the channel covariance matrix ΣH = σ2

hI.

Let µ = λ/σ2

h = σ2
n/σ2

h; the first variation of the algorithm

in equation (16) can be simplified as

X̂ = argmax
X∈ΛKT

Tr
{

YXHXYH + µ
(

YXH
Θ

H + ΘXYH
)}

= argmax
X∈ΛKT

Tr
{

YXHXYH + 2µ<
[

YXH
Θ

H
]}

. (22)

Let W = Θ
H(YYH)−1Y , we have

X̂ = argmax
X∈ΛKT

Tr
{

(X + µW)(YHY)(X + µW)H
}

. (23)

Equation (23) can be further rewritten as

X̂ = argmin
X∈ΛKT

Tr
{

(X + µW)(ρI − YHY)(X + µW)H
}

(24)

where ρ is a real constant greater than all the eigenvalues of

YHY .

Note that YHY is positive semidefinite, therefore we can

perform Cholesky decomposition of (ρI − YHY) such that

B
H
B = ρI − YHY. (25)

Therefore, equation (24) can be reformulated as a standard

sphere decoding problem with a shift µW .

X̂ = argmin
X∈ΛKT

‖B(X + µW)H‖2

F . (26)

Similarly, the second variation of the algorithm in equation

(21) becomes

X̂ = argmax
X∈ΛKT

Tr
{

YXHXYH + µ
(

YXH
Θ

H + ΘXYH
)}

= argmin
X∈ΛKT

‖B(X + µW)H‖2

F . (27)

which coincides with the first variation of RBD. Notice that

the variance of the channel plays a role in choosing the shift

in sphere decoding.

IV. EXTRACTING CDI FROM LIMITED TRAINING

We now suppose some training bits are transmitted to obtain

partial information about the channel and we rewrite the

received signals Y over T consecutive blocks at the receiver

as

Y = [Yτ Yd] = H [Xτ Xd] + N (28)

where Xτ ∈ C
Nt×Tτ is the training symbol matrix, and Xd ∈

C
Nt×Td is the data symbol matrix; respectively Yτ ∈ C

Nt×Tτ

and Yd ∈ C
Nt×Td are the received symbol matrix.



A. Traditional Decoding Schemes with Training.

There are two baseline approaches to using training symbols

that do not make use of prior information about channel

statistics. The first scheme is to obtain the maximum likelihood

detection decoding rule using the formula below

X̂d = argmin
Xd∈ΛKTd

{

min
H∈CNr×Nt

‖Y −HX‖2

F

}

. (29)

This is equivalent to

X̂d = argmin
Xd∈ΛKTd

{

min
H∈CNr×Nt

‖Yd −HXd‖2

F + ‖Yτ −HXτ‖2

F

}

.

(30)

The second scheme is to first use the training symbols to

get an estimated CSI, where

Ĥ = argmin
H∈CNr×Nt

‖Yτ −HXτ‖2

F

= YτXH
τ (XτXH

τ )−1, (31)

then use Ĥ to decode Xd, i.e.

X̂d = argmin
Xd∈ΛKTd

‖Yd − ĤXd‖2

F . (32)

The least square channel estimation Ĥ from the training data

lies in the span of Yτ , therefore it is necessary to transmit

enough training symbols in order to get a reasonable estimate,

i.e. greater than the number of transmit antennas.

B. Unified Approach

It is possible to unify these two approaches by introducing

a penalty weight λ to the second training term in equation

(30), given as

X̂d = argmin
Xd∈ΛKTd

{

min
H∈CNr×Nt

‖Yd −HXd‖2

F + λ‖Yτ −HXτ‖2

F

}

,

(33)

then the first scheme is equivalent to choosing λ = 1, and the

second scheme is equivalent to the limit solution when λ goes

to +∞.

The general solution to equation (33) is essentially the

same as the regularized blind detection scheme discussed

earlier under certain parameterizations. In fact, in the special

case where the code is orthogonal and the channel vari-

ance matrix ΣH = σ2

hI is a scalar of identity matrix, let

Θ = YτXH
τ (XτXH

τ )−1 = YτXH
τ /KTτ , it can be restated

as equation (15).

C. Estimation of CDI through training symbols.

When taking advantage of the training data, the above

decoding schemes essentially only obtain a rough least-square

estimate of the CSI, and use it either with full confidence

(λ → +∞), or no confidence (λ = 1) without distinguishing

training symbols from data symbols. When there is limited

training available, the CSI can be very inaccurate. In fact

we shall demonstrate that it is more effective to use low-rate

training data over L blocks to estimate CDI and to then use

this estimate within our proposed RBD algorithms.

One way to estimate the mean Θ and variance ΣH of the

channel is via the following maximum likelihood estimation,

using available training symbols from L blocks (Yτ,i,Xτ,i),
i = 1, · · · , L:

Θ,ΣH = argmax
Θ̂,Σ̂H

L
∏

i=1

EHPr(Yτ,i,Xτ,i|H)

= argmax
Θ̂,Σ̂H

−1

2

L
∑

i=1

log |Xτ,iXH
τ,i + λΣ̂

−1

H |+

1

2λ

L
∑

i=1

Tr
{

(Yτ,iXH
τ,i + λΣ̂

−1

H Θ̂)(Xτ,iXH
τ,i + λΣ̂

−1

H )−1

· (Yτ,iXH
τ,i + λΣ̂

−1

H Θ̂)H − λΘ̂
H
Σ̂

−1

H Θ̂
}

. (34)

This can be further simplified in the special case when

Xτ,iXH
τ,i = KTτI and ΣH = σ2

hI as (let µ̂ = σ2
n/σ̂2

h):

Θ, σ2

h = argmax
Θ̂,σ̂2

h

−L

2
log |KTτ + µ̂|+

1

2λ

{

1

KTτ + µ̂

L
∑

i=1

‖Yτ,iXH
τ,i + µ̂Θ̂‖2

F − µ̂L‖Θ̂‖2

F

}

. (35)

The choice of Θ does not depend on µ, and is given as

Θ =
1

KTτL

L
∑

i=1

Yτ,iXH
τ,i. (36)

Plugging this back to equation (35), and setting its derivatives

with respect to µ̂ to zero, we obtain the maximum likelihood

estimate of σ2

h.

V. NUMERICAL RESULTS

In our simulation, we consider a wireless communication

system with two transmit antennas and a single receive an-

tenna which adopts Alamouti signaling [4]. We consider the

decoding of Alamouti signals during 3 consecutive coherent

code blocks (namely, 6 consecutive time slots). We assume

that the channel matrix H is complex Gaussian with mean

Θ = (1 + i, 1 + i)

and covariance matrix

ΣH =

(

0.08 0
0 0.08

)

.

Fig. 1 shows the comparison of different detection algo-

rithms. For blind detection, the phase ambiguity is assumed

to have been solved; for regularized blind detection, CDI is

assumed known at the receiver and for coherent detection, CSI

is assumed perfectly known at the receiver. The first variation

of the proposed RBD algorithm is used. In the simulation, our

algorithm performs very close to coherent detection in the low

SNR regime, and still much better than blind detection in the

high SNR regime.
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Fig. 1. Comparison of different detection algorithms with decoding block
length as 3 coding blocks.

VI. CONCLUSIONS

We have introduced and analyzed the performance of Reg-

ularized Blind Detection, a new algorithm that provides a

systematic way of interpolating between coherent and blind

detection. Significant performance benefits are possible in

environments where it may be impractical to obtain full CSI.

The algorithm requires knowledge of CDI at the receiver

and we have described how CDI may be estimated from any

available training symbols. Coherent and blind detection are

special cases within our Bayesian framework and it is CDI that

parameterizes the space in between. Simulations demonstrate

that our algorithm performs very close to coherent detection in

the low SNR regime, and still much better than blind detection

in the high SNR regime.
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