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as convex methods and methods using other loss functions).
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EE 101: Phasors!

A phasor is a complex number used to
represent a sinusoid.

x(t) = A cos(ωt+ φ),

m

A∠φ = Aejφ

Phasors are convenient tools to represent
and manipulate sinusoidal signals
(e.g. electromagnetic waves).

• A is the magnitude;

• φ is the phase;
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Phase Retrieval: The Missing Phase Problem

• In high-frequency (e.g. optical) applications, the (optical) detection
devices [e.g., CCD cameras, photosensitive films, and the human
eye] cannot measure the phase of a light wave.

ω0 10ω0 100ω0

• Optical devices measure the photon flux (no. of photons per second
per unit area), which is proportional to the magnitude.

• This leads to the so-called phase retrieval problem — inference with
only intensity measurements.
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Coherent Diffraction Imaging

• Given an object illuminated by coherent light, in the far field we
obtain the intensity of its Fourier transform.

• Mathematically, consider 2-D signal x(t1, t2), and its Fourier
transform:

X̂(ω1, ω2) =

∫∫
x(t1, t2)e−j2π(t1ω1+t2ω2)dt1dt2

• We measure |X̂(ω1, ω2)|2, and want to recover X̂(ω1, ω2), or
equivalently x(t1, t2).
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X-ray Crystallography and DNA structures

Aided the discovery of the double helix structure of the DNA with X-ray
crystallography in 1951.

Nobel Prize for Watson, Crick, and Wilkins in 1962.
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Computational Imaging

Phase retrieval is the foundation for modern computational imaging.
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Phase Retrieval for SAR imaging

• The platform motion instability and
electromagnetic propagation in
turbulent media affect the phase of
the SAR received signal.

• Instead of receiving the nominal signal:

h(x′, r′) =

∫∫
S

γ(x, r)g(x′ − x, r′ − r;x, r)dxdr

where (x′, r′) are the azimuth and range coordinates, γ is the
ground reflectivity function, g is the SAR space-dependent unit
response, we receive its phase-corrupted version:

h̃(x′, r′) = |h(x′, r′)|ejθ(x
′,r′).

where θ(x′, r′) is the phase error.

Isernia, T., et al. “Image reconstruction from Fourier transform magnitude with applications to synthetic aperture radar
imaging.” JOSA A 13.5 (1996): 922-934.

7



Phase information is critical

What happens if we swap the phase of two images in the Fourier domain?

The phase contains much information about the image content.

Figure credit: Shechtman et al. “Phase retrieval with application to optical imaging: a contemporary overview.” IEEE Signal
Processing Magazine 32.3 (2015): 87-109.
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Mathematical Setup
• Phase retrieval: estimate x? ∈ Rn/Cn from m phaseless

measurements:

yi = |〈ai,x?〉|, i = 1, . . . ,m

where ai corresponds to the ith measurement vector.
• ai’s are (coded or oversampled) Fourier transform vectors;
• ai’s are short-time Fourier transform vectors;
• ai’s are “generic” vectors such as random Gaussian vectors.

• In a vectorized notation, we write

y = |Ax?| ∈ Rn+, where A =


−a∗1−
−a∗2−

...
−a∗m−

 ∈ R/Cm×n.

• Phase retrieval solves a quadratic nonlinear system since:

y2
i = |〈ai,x?〉|2 = (x?)∗aia

∗
ix

?, i = 1, . . . ,m,
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Identifiability

• Identifiability/Uniqueness: For any φ ∈ [0, 2π), x? and ejφx?

produce the same measurements:

|〈ai,x?ejφ〉| = |〈ai,x?〉|.

therefore, we can only hope to recover/identify x? up to a global
phase difference.

• Often requires m > n (oversampling!) for identifiability.

• The rule-of-thumb:
– real-valued x?: m & 2n
– complex-valued x?: m & 4n

• We can further reduce the sample complexity if more priors of x?

can be exploited (such as sparsity and nonnegativity).

Shechtman et al. “Phase retrieval with application to optical imaging: a contemporary overview.” IEEE Signal Processing
Magazine 32.3 (2015): 87-109.
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Algorithms for Phase Retrieval

• The classical algorithms, which started in the 1970s, were proposed
by Gerchberg and Saxton (Error Reduction), and later refined by
Fienup (Hybrid Input-Output).

• A lot of recent interest because of
• modern applications in computational imaging: algorithm and

sensing co-design;
• connections with machine learning: understanding when nonconvex

problems can be solved in a provable manner using simple algorithms.

• This talk will focus on iterative algorithms: alternating minimization
and gradient descent.
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Quadratic Loss of Amplitudes
One can directly recover x by attempting to minimize the quadratic loss
of amplitude measurements:

`(x) :=
1

m
‖y − |Ax|‖22

=
1

m

m∑
i=1

`(yi;x) =
1

m

m∑
i=1

(yi − |〈ai,x〉|)2
,

which is nonconvex and nonsmooth.
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Other choices of loss functions are also possible such as a Poisson loss. The amplitude loss has been observed to have
performance advantages in practice, and has been selected in this presentation to maintain a focused exposition.
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The Choice of Loss Function is Important

Compare with the intensity-based loss surface:

`WF (x) =
1

m

m∑
i=1

(
y2
i − |〈ai,x〉|2

)2
,

the amplitude-based one has much better curvature.
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(b) Amplitude-based
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(c) Intensity-based

Figure: Surface of the expected loss function of (a) least-squares (mirrored
symmetrically), (b) quadratic loss of amplitudes, and (c) quadratic loss of
intensity when x = [1,−1]T .
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Phase Retrieval via Alternating Minimization

Error Reduction (ER), proposed by Gerchberg and Saxton in 1972 is
based on alternating minimization.

• Define the unit-modulo phase vector b? ∈ Cm as

b? = sign(Ax?), with bi = ej∠〈ai,x
?〉

• The magnitude measurements can be written as

diag(b?)y = Ax?.

• Notice that the loss function `(x) can be equivalently written as

`(x) = min
|bi|=1

‖diag(b)y −Ax‖22

One may solve for (x?, b?) by alternating minimization (AltMin).
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Error Reduction
Start with an initialization x0. At iteration t = 0, 1, . . .

1. update the phase as

bt+1 = argmin
|bi|=1

‖diag(b)y −Axt‖22 = sign(Axt),

2. update the signal as

xt+1 = argmin
x
‖diag(bt+1)y −Ax‖22 = A†diag(bt+1)y

= (A∗A)−1A∗diag(y)sign(Axt)

The algorithm is guaranteed to not increasing the loss function:

`(xt+1) ≤ `(xt)

• ER converges to a stationary point of `(x), but does not provide
guarantees on global convergence or convergence rates.

• In practice a random initialization is typically used, and the
performance is sensitive to the initialization.
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Phase Retrieval via Gradient Descent

• The generalized gradient of `(x) can be calculated as

∇`(x) =
1

m

m∑
i=1

(〈ai,x〉 − yi · sign(〈ai,x〉))ai

• Start with an initialization x0. At iteration t = 0, 1, . . .

xt+1 = xt − µ∇`(xt)

=
(
I − µ

m
A∗A

)
xt +

µ

m
A∗diag(y)sign(Axt),

where µ is the step size.

• Referred to as the Reshaped Wirtinger Flow (RWF).

• Side-by-side comparison with the AltMin update:

xt+1 = (A∗A)−1A∗diag(y)sign(Axt)
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Statistical Measurement Model

Strong performance guarantees are possible by leverage statistical
properties of the measurement ensemble.

• Gaussian measurement model:

ai ∼ N (0, I) i.i.d. if real-valued,

ai ∼ CN (0, I) i.i.d. if complex-valued,

• Distance measure:

dist(x, z) = min
φ∈[0,2π)

‖x− ejφz‖.

z

x

17



Local Linear Convergence of AltMin (ER)

Theorem (Waldspurger 2016)

Assume the random Gaussian measurement model. There exist universal
constants C, c1, c2 such as long as m ≥ Cn, provided that we initialize in
the neighborhood of the ground truth x?, i.e.

dist(x0,x
?) ≤ 1

10
‖x?‖,

then with probability at least 1− c1 exp(−c2m), the iterates of ER or
AltMin algorithm satisfies for some 0 < ρ < 1:

dist(xt,x
?) ≤ (1− ρ)t‖x?‖, ∀t ∈ N+.

• Sample complexity: only m = O(n) samples to guarantee local
convergence;

• Linear rate of convergence: only log(1/ε) iterations to reach an
accuracy dist(xt,x

?)/‖x?‖ ≤ ε.

Waldspurger, “Phase retrieval with random Gaussian sensing vectors by alternating projections”, arXiv:1609.0308.
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Local Linear Convergence of Gradient Descent

Theorem (Zhang, Zhou, Liang, C., 2016)

Assume the random Gaussian measurement model. There exist universal
constants C, c1, c2 such as long as m ≥ Cn, provided that we initialize in
the neighborhood of the ground truth x?, i.e.

dist(x0,x
?) ≤ 1

10
‖x?‖,

then with probability at least 1− c1 exp(−c2m), the iterates of RWF
satisfies for some 0 < ρ < 1:

dist(xt,x
?) ≤ (1− ρ)t‖x?‖, ∀t ∈ N+.

• Sample complexity: only m = O(n) samples to guarantee local
convergence;

• Linear rate of convergence: only log(1/ε) iterations to reach an
accuracy dist(xt,x

?)/‖x?‖ ≤ ε.

Zhang, Zhou, Liang and C., “Reshaped Wirtinger Flow and Incremental Algorithms for solving Quadratic Systems of Equations”,
in revision to Journal of Machine Learning Research.
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Spectral Method for Initialization
• Key observation: consider the weighted matrix

Y =
m∑
i=1

yiaia
∗
i , where E[Y ] = λx?(x?)∗

for some λ > 0.

• The top eigenvector of Y provides a good initialization (plus
estimate the norm ‖x?‖) as long as m & n.

• For the Gaussian model, a better initialization is obtained by
truncating samples with large values.

Theorem (Chen and Candès, Zhang et.al., Wang et.al., etc...)

With high probability, the spectral method produces an initialization that
satisfies

dist(x0,x
?) ≤ 1

10
‖x?‖

Zhang, Zhou, Liang and C., “Reshaped Wirtinger Flow and Incremental Algorithms for solving Quadratic Systems of Equations”,
in revision to Journal of Machine Learning Research.
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Performance of Spectral Methods
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Figure: Comparison of three initialization methods with m = 6n and 50
iterations using power method.
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Global Convergence

x̂ = argmin
x∈Rn/Cn

1

m

m∑
i=1

`(yi;x)

• Initialize z(0) via spectral methods to land in the neighborhood of
the ground truth;

• Iterative update using simple methods such as gradient descent and
alternating minimization;

Provable near-optimal performance for Gaussian measurement model:
• Statistically: m = O(n) near-optimal sample complexity
• Computationally: linear convergence with near-linear run time.

Figure credit: Yuxin Chen.
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Stochastic Gradient Descent

• Stochastic algorithms sometimes are in favor for memory or
streaming considerations.

• Consider the stochastic gradient descent (SGD) method,

xt+1 = xt − µ∇`(yit ;xt)
= xt − µ

(
a∗itxt − yit · sign(a∗itxt)

)
ait

where it is drawn from {1, 2, . . . ,m} uniformly at random.

• To fully exploit system throughput, often mini-batch version:

xt+1 = xt − µ∇`(yΓt
;xt)

= xt − µ ·A∗Γt

(
AΓtxt − yΓt

� sign(AΓtxt)
)
,

where Γt is a subset of size K that is drawn uniformly at random
from all size-K subsets of {1, 2, . . . ,m}.
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Performance of SGD

Theorem (Zhang, Zhou, Liang, C., 2017)

Assume the random Gaussian measurement model. There exist some
universal constants 0 < ρ, ρ0, ν < 1 and c0, c1, c2 > 0 such that if
m ≥ c0n and µ = ρ0/n, then with probability at least 1− c1 exp(−c2m),
mini-batch SGD yields

EΓt

[
dist2(xt,x

?)
]
≤ ν

(
1− Kρ

n

)t
‖x?‖2, ∀t ∈ N+,

if initialized by the spectral method, where EΓt [·] denotes the expectation
with respect to the randomness in Γt = {Γ1,Γ2, . . . ,Γt} conditioned on
the high probability event of random measurements {ai}mi=1.

• Linear convergence of SGD is established for a non-convex and
non-smooth loss function.

• The mini-batch size K trades-off the complexity per iteration and
the convergence rate.

Zhang, Zhou, Liang and C., “Reshaped Wirtinger Flow and Incremental Algorithms for solving Quadratic Systems of Equations”,
in revision to Journal of Machine Learning Research.
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Connection to Kaczmarz Method

• The Kaczmarz method is conventionally a method for solving linear
systems. We attempt to extend it to solve phase retrieval:

xt+1 = argmin
yit=|〈ait ,x〉|

‖x− xt‖22

= xt −
1

‖ait‖2
(
a∗itxt − yit · sign(a∗itxt)

)
ait ,

where it is drawn uniformly at random from {1, . . . ,m}.
• The update rule is surprisingly simple in a close form without any

tuning paramters despite the nonlinear constraint.

• In fact, it becomes equivalent to SGD if we set the step size of SGD
as µ = 1

‖ait‖2
∼ 1

n since ‖ait‖2 concentrates around n.

• Therefore a similar linear convergence can be established for
Kaczmarz methods, and works in mini-batch as well.
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Performance on Gaussian Model
We first look at the sample complexity of a few algorithms:

• Gradient descent type algorithms: RWF (proposed loss), TWF (Poisson loss),
WF (quadratic loss of intensity);

• Stochastic algorithms: IRWF (stochastic version of RWF), ITWF (stochastic
version of TWF), Kaczmarz;

• Alternating Minimization (Error Reduction).
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Figure: The stochastic methods IRWF/Kaczmarz achieves the best sample
complexity.
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Computational Complexity

We next look at the computational complexity. For stochastic algorithms
we cycle through the measurements several passes.

Table: Comparison of number of passes and time cost (n = 5000,m = 8n).

Real Gaussian Complex Gaussian
#passes time(s) # passes time(s)

Batch RWF 72 12.66 176 122.4

methods AltMin 6 79.58 159 9637

IRWF 9 44.77 21 233.2

Stochastic minibatch IRWF (64) 9 8.076 21 48.58

methods Kaczmarz 9 50.68 21 248.4

block Kaczmarz (64) 8 28.50 22 89.31

• A mini-batch IRWF with K = 64 provides best performance. It
outperforms Kaczmarz by using a constant step size.
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Performance on Coded Diffraction Imaging

Figure: Coded diffraction imaging: a number of random masks is placed
between the sample and the far field to modulate the Fourier transform.

Algorithms GD SGD/Kaczmarz AltMin

L = 6 #passes 140 24 230
time cost(s) 110 21.2 167

L = 12 #passes 70 8 120
time cost(s) 107 13.7 171

Table: Comparison of iterations and time cost among algorithms on Galaxy
image (1920× 1080), where L = m/n denotes the number of CDP masks.
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Robust Phase Retrieval with Outliers

What if the measurements are noisy and corrupted?

• Assume the measurements are corrupted by both sparse outliers and
bounded noise:

yi = |〈ai,x〉|+ ηi + wi, i = 1, . . . ,m,

where ‖η‖0 ≤ s ·m is the sparse outlier and w is bounded,
0 ≤ s < 1 is the fraction of outliers.

• Outliers happen with sensor failures, malicious attacks, ...

• Goal: develop algorithms that are oblivious to outliers, and
statistically and computationally efficient.
• performs equally well regardless of the existence of outliers;
• small sample size: hopefully m is linear in n;
• large fraction of outliers: hopefully s is a small constant;
• low computational complexity and easy to implement.
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Existing Approaches are not Robust

In the presence of arbitrary outliers, earlier approaches fail:

• Spectral initialization would fail: the eigenvector of Y can be
arbitrarily perturbed

Y =
1

m

m∑
i=1

yiaia
∗
i

or Y =
1

m

m∑
i=1

yiaia
∗
i1{|yi|≤αy·mean({yi})}.

• Gradient descent would fail: the search direction can be arbitrarily
perturbed

xt+1 = xt −
µ

m

m∑
i=1

∇`(yi;xt)

We can no longer guarantee the performance of the algorithm
even with a single outlier! Need better strategies.

30



Median Truncation

Key approach: “median-truncation”: we will rule out measurements
adaptively each iteration based on how large the sample gradient/value
deviates from the median.

Median is more stable than mean and top-k truncation (which truncates
a fixed amount of samples) for various levels of outliers.

• well-known in robust statistics to be outlier-resilient;

• little appearance in high-dimensional estimation;
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Median-Truncated Gradient Descent
Median-truncated spectral initialization: Set x0 := λ0x̃0 where

• Direction estimation: x̃0 is the leading eigenvector of

Y =
1

m

m∑
i=1

yiaia
∗
i1{|yi|.median({yi})}.

• Norm estimation: λ0 =
√

median({yi})/0.455

yi = |a∗ix|2 ∼ χ2
1 and E[median(χ2

1)] = 0.455

Median-truncated gradient descent:

xt+1 = xt −
µ

m

∑
i∈Tt

∇`(yi;xt),

where the set Tt contains samples that not deviates too much from the
sample median of residual:

Tt =
{
i : r

(t)
i . median({r(t)

i })
}

where r
(t)
i = `(yi;xt) = |yi − |a∗ixt||.
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Performance guarantees

Theorem (Zhang, C. and Liang, 2016)

Assume ‖w‖∞ ≤ c1‖x‖2. Assume ai’s are generated with i.i.d. Gaussian
entries. If m & n log n and s . s0, then with high probability,
median-RWF yields

dist(z(t),x) .
‖w‖∞
‖x‖

+ (1− ρ)t‖x‖, ∀t ∈ N

simultaneously for all x ∈ Rn\{0} for some 0 < ρ < 1.

• Exact recovery when ‖w‖ = 0 with slight more samples
(m = O(n log n)) but a constant fraction of outliers s = O(1).

• Stable recovery with additional bounded noise;

• Resist outliers obliviously: no prior knowledge of outliers.

• Non-asymptotic robust recovery guarantee using median: much
more involved due to the nonlinearity of median.
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Numerical experiments
Recovery with only sparse outliers:
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Figure: Success rate of exact recovery with outliers for median-RWF,
median-TWF, trimean-TWF, and TWF at different levels of outlier magnitudes.
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Numerical experiments
Recovery with both dense noise and sparse outliers:

• Median-TWF achieves slightly better accuracy than median-RWF.

• Moreover, median-TWF with outliers achieves almost the same
accuracy of TWF without outliers.
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Figure: The relative error with respect to the iteration count for median-TWF,
median-RWF and TWF with both dense noise and sparse outliers, and TWF
with only dense noise.
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Conclusions

• Provable and fast-convergent algorithms for solving nonconvex
signal estimation problems such as phase retrieval.

• Simple, iterative algorithms are demonstrated to perform remarkably
well provided good initialization – the role of initialization is critical.

• An extension is to consider low-rank models, where

yi = ‖a∗iU‖2 = a∗i (X)ai, U ∈ R/Cn×r

for some small rank r, where X = UU∗, which has a lot of
applications in low-rank matrix recovery.

• Currently we’re examining their performance on applications in THz
imaging which appears to be very promising.
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