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Abstract

Achieving communication efficiency in decentralized machine learning has been attracting significant
attention, with communication compression recognized as an effective technique in algorithm design.
This paper takes a first step to understand the role of gradient clipping, a popular strategy in practice, in
decentralized nonconvex optimization with communication compression. We propose PORTER, which con-
siders two variants of gradient clipping added before or after taking a mini-batch of stochastic gradients,
where the former variant PORTER-DP allows local differential privacy analysis with additional Gaussian
perturbation, and the latter variant PORTER-GC helps to stabilize training. We develop a novel analysis
framework that establishes their convergence guarantees without assuming the stringent bounded gra-
dient assumption. To the best of our knowledge, our work provides the first convergence analysis for
decentralized nonconvex optimization with gradient clipping and communication compression, highlight-
ing the trade-offs between convergence rate, compression ratio, network connectivity, and privacy.

Keywords: communication compression, gradient clipping, convergence rate, local differential privacy

1 Introduction

Decentralized machine learning has been attracting significant attention in recent years, which can be often
modeled as a nonconvex finite-sum optimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), where fi(x) =
1

m

∑
z∈Zi

ℓ(x; z), (1)

where x ∈ Rd and z denote the optimization parameter and one data sample, ℓ(x; z) denotes the sample
loss function that is nonconvex in x, and fi(x) and f(x) denote the local objective function at agent i
and the global objective function. In addition, Zi denotes the dataset at agent i, m = |Zi| denotes the
local sample size, and n denotes the number of agents. An undirected communication graph G is used to
model the connectivity between any two agents, where there is an edge between agent i and j only if they
can communicate. The goal is to efficiently optimize the global objective function f(x) in a decentralized
manner, subject to the network connectivity constraints specified by G.

Communication efficiency is critical to decentralized optimization algorithms, as communication can
quickly become bottleneck of the system as the number of agents and the size of the model increase. This
has led to the development of communication compression (or quantization) techniques, which can signifi-
cantly reduce the communication burden per round by transferring compressed information, especially when
the communication bandwidth is limited. Therefore, a number of recent works have focused on designing de-
centralized nonconvex optimization algorithms with communication compression, including but not limited
to [KSJ19, SDGD21, ZLL+22, TLQ+19, HP23, YCC+23].
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Built upon this line of work, the paper aims to understand the role of gradient clipping in decentral-
ized nonconvex optimization algorithms with communication compression. On the one hand, gradient clip-
ping has been used widely in privacy-preserving algorithms [ACG+16] to enable (local) differential privacy
guarantees [Dwo08]. On the other hand, gradient clipping is also observed to be beneficial in stabiliz-
ing neural network training [ZHSJ20a]. However, since gradient clipping necessarily introduces bias, the
characterization of the convergence becomes much more challenging compared to their unclipped counter-
part. As a result, most of the existing theoretical analyses for stochastic gradient algorithms with clip-
ping — in the context of centralized and server/client settings — make strong assumptions such as the
bounded gradient assumption [ACG+16, WJEG19, LZLC22] and the uniformly bounded gradient assump-
tion [YZCL22, ZJFW20, ZHSJ20a]. To the best of our knowledge, the convergence of stochastic gradient
algorithms with clipping in the decentralized setting has not been investigated before.

1.1 Our contributions

This paper proposes PORTER (cf. Algorithm 1),1 a communication-efficient decentralized algorithm for non-
convex finite-sum optimization with gradient clipping and communication compression. PORTER is built on
BEER [ZLL+22] — a fast decentralized algorithm with communication compression proposed recently — by
introducing gradient clipping to the local stochastic gradient computation at agents, while inheriting the
desirable designs such as error feedback and stochastic gradient tracking that are crucial in enabling the fast
convergence of BEER. PORTER considers two variants of gradient clipping, corresponding to adding it before
or after taking a mini-batch of stochastic gradients. In particular, the former variant PORTER-DP allows local
differential privacy (LDP) analysis with additional Gaussian perturbation, and the latter variant PORTER-GC
helps to stabilize training. Assuming a smooth clipping operator (Definition 2) and general compression
operators (Definition 3), the highlights of our contributions are as follows.

1. We establish that PORTER-DP (cf. Algorithm 1) achieves (ϵ, δ)-LDP under appropriate Gaussian pertur-
bation. Under the bounded gradient assumption (when gradient clipping can be ignored), PORTER-DP

converges in average squared ℓ2 gradient norm as 1
T

∑
t∈[T ] E

∥∥∇f(x(t))
∥∥2
2
≲ ρ−

4
3 (1 − α)−

8
3ϕ−1

m in

T = ϕ−2
m iterations, where x(t) is the average parameter, ϕm =

√
d log(1/δ)

mϵ is the baseline utility for a
centralized stochastic algorithm to achieve (ϵ, δ)-DP with m data samples [ACG+16], ρ ∈ (0, 1] is the
compression ratio, and α ∈ [0, 1) is the mixing rate of the topology.

2. However, the bounded gradient assumption might be too stringent to hold in practice. Instead we
further establish that under the local variance and bounded dissimilarity assumptions, PORTER-DP

converges in minimum ℓ2 gradient norm as mint∈[T ] E
∥∥∇f(x(t))

∥∥
2
≲ ρ−

2
3 (1 − α)−

4
3ϕ

−1/2
m in T = ϕ−2

m

iterations.

3. We establish that under the local variance and bounded dissimilarity assumptions, by properly choosing
the mini-batch size, PORTER-GC converges in minimum ℓ2 gradient norm as mint∈[T ] E

∥∥∇f(x(t))
∥∥
2
≲

ρ−
2
3 (1−α)−

4
3T−1/2, which matches the convergence rate of classical centralized stochastic algorithms.

Our work develops a novel analysis framework that establishes their convergence guarantees without
assuming the stringent bounded gradient assumption, highlighting comprehensive trade-offs between con-
vergence rate, compression ratio, network connectivity, and privacy. To the best of our knowledge, our
work provides the first private decentralized optimization algorithm with communication compression, and
a systematic investigation of gradient clipping in the fully decentralized setting. Table 1 provides a detailed
comparison of PORTER-DP with prior art on private server-client algorithms, where the bounded gradient
assumption is all in effect except ours.

1.2 Related works

Decentralized optimization algorithms have been extensively studied to solve large-scale optimization prob-
lems. We review most closely related works in this section, and refer readers to more comprehensive reviews

1The name is coined for two reasons: 1) PORTER has strong connection to the prior algorithm BEER (porter is a kind of dark
beer), and 2) the authors developed this algorithm in Porter Hall at Carnegie Mellon University.
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Table 1: Comparison of final utility upper bounds and communication complexities of different stochastic
algorithms that achieve (ϵ, δ)-DP/LDP. The Big-O notation (defined in Section 1.3) is omitted for simplicity.
DP-SGD is a single-server optimization algorithm that serves as a baseline, to show the overhead brought
in by the distributed setting. DDP-SRM and Soteria-SGD are server/client distributed algorithms, but
DDP-SRM doesn’t use communication compression.
(1) θ = (1− ω)−3/2n−1/2, where ω is the parameter for unbiased compression.

Algorithm Privacy
Compression Bounded

Utility
Communication

operator gradient rounds

DP-SGD
DP - ✓ ϕm -

[ACG+16]
DDP-SRM

DP - ✓ 1
nϕm n2dϕ−1

m[WJEG19]

Soteria-SGD (1)

LDP Unbiased ✓ (1 + θ1/2)
(
1+ω
n

)1/2
ϕm (1 + θ1/2)

(
n

1+ω

)2/3
dϕ−1

m[LZLC22]
PORTER-DP

LDP General ✓
1

(1−α)8/3ρ4/3ϕm ϕ−2
m(Algorithm 1)

PORTER-DP
LDP General ✗

1
(1−α)16/3ρ8/3ϕm ϕ−2

m(Algorithm 1)

in [NRB20, XPNK20].

Decentralized stochastic nonconvex optimization. Decentralized stochastic algorithms have been a
actively researched area in recent years. Various algorithms have been proposed by directly adapting existing
centralized algorithms, e.g., [KDG03, XB04, Sha07, BJ13, LZZ+17, ALBR19, WJ21]. However, the simple
adaptations usually fail to achieve better convergence rates. Gradient tracking [ZM10], originally proposed by
the control theory community, can be used to track the global gradient at each agent, which leads to a simple
systematic framework for extending existing centralized algorithms to the decentralized setting. Gradient
tracking can be used for both deterministic optimization algorithms, e.g., [DLS16, NOS17, QL18, LCCC20],
and stochastic algorithms, e.g., [SLH20, XKK22b, XKK22a, LLC22, HSZ+22, LY22].

Communication compression. In [DSZOR15, AGL+17], gradient compression was adopted to create
a server/client distributed SGD algorithm, however, the large variance of compressed gradients leads to a
sub-optimal convergence rate. [SFD+14] first proposed the use of error feedback to compensate for the
variance induced by compression. [SCJ18, AHJ+18, MGTR19, LKQR20, GBLR21, LR21] all equipped
similar mechanism to improve convergence for server/client distributed optimization algorithms, and [RSF21,
FSG+21] formalized the error feedback mechanism and reaches an O(1/T ) convergence rate for smooth
nonconvex objective functions. [TGZ+18, KSJ19, SDGD21, TMHP20, ZLL+22, YCC+23, LLP23, ZBLR21]
further extended communication compression schemes to the decentralized setting.

Private optimization algorithms. The concern of leaking sensitive data has been increasing with the
rapid development of large-scale machine learning systems. To address this concern, the concept of differential
privacy is widely adopted [DMNS06, Dwo08], where a popular approach to protect privacy is adding noise
to the model or gradients. This approach is first adopted in the single server setting to design differentially
private optimization algorithms [ACG+16, WYX17, INS+19, FKT20, CWH20, WXDX20], while [HDJ+20,
ACCÖ21, NBD22, DLC+22, LZLC22, MS23, ZCH+22] considered differential privacy for the server/client
distributed setting.

Gradient clipping. Understanding gradient clipping has gained significant attention in recent years. Ear-
lier works, e.g. [PMB13, BBP13, KLL16, KFI17, YGG17], used gradient clipping as a pure heuristic to
solve gradient vanishing/exploding problems without theoretical understandings. Then, [ZHSJ20b, ZKV+20,
ZJFW20, RLDJ23] introduced theoretical analyses to understand its impact on the convergence rate and

3



training performance. This question is also investigated in [CWH20, ZCH+22, DKX+22, FLFL23], which
applies gradient clipping to limit the magnitude of each of the sample gradients, so that the variance of pri-
vacy perturbation can be decided without the bounded gradient assumption. While finishing up this paper,
we became aware of [KHS23], which also develops convergence guarantees on the minimum ℓ2 gradient norm
of clipped stochastic gradient algorithms in the centralized setting with a piece-wise linear clipping operator.
In contrast, our focus is on the decentralized setting with a smooth clipping operator, where extra care is
taken to deal with the discrepancy between the local and global objective functions.

1.3 Paper organization and notation

Section 2 introduces preliminary concepts, Section 3 describes the algorithm development, Section 4 shows
the theoretical performance guarantees for PORTER, Section 5 provides numerical evidence to support the
analysis, and Section 6 concludes the paper. Proofs are postponed to appendices.

Throughout this paper, we use uppercase and lowercase boldface letters to represent matrices and vectors,
respectively. We use ∥ · ∥op for matrix operator norm, ∥ · ∥F for Frobenius norm, In for the n-dimensional
identity matrix, 1n for the n-dimensional all-one vector and 0d×n for the (d × n)-dimensional zero matrix.
For two real functions f(·) and g(·) defined on R+, we say f(x) = O

(
g(x)

)
or f(x) ≲ g(x) if there exists

some universal constant M > 0 such that f(x) ≤ Mg(x). The notation f(x) = Ω
(
g(x)

)
or f(x) ≳ g(x)

means g(x) = O
(
f(x)

)
.

2 Preliminaries

Mixing. The information mixing between agents is conducted by updating the local information via a
weighted sum of information from neighbors, which is characterized by a mixing (gossiping) matrix. Con-
cerning this matrix is an important quantity called the mixing rate, defined in Definition 1.

Definition 1 (Mixing matrix and mixing rate). The mixing matrix is a matrix W = [wij ] ∈ Rn×n, such
that wij = 0 if agent i and j are not connected according to the communication graph G. Furthermore,

W1n = 1n and W⊤1n = 1n. The mixing rate of a mixing matrix W is defined as

α :=
∥∥W − 1

n1n1
⊤
n

∥∥
op
. (2)

The mixing rate describes the connectivity of a communication graph and the speed of information
sharing. Generally, a better connected graph leads to a smaller mixing rate, for example, W can be the
averaging matrix for a fully connected communication network, which results in α = 0. A comprehensive list
of bounds on 1−α is provided by [NOR18, Proposition 5]. Our analysis does not require the mixing matrix
to be doubly stochastic, while allows us to use a non-symmetric matrix with negative values as the mixing
matrix, such as the FDLA matrix [XB04], which has a smaller mixing rate under the same connectivity
pattern.

Gradient clipping. In practice, gradient clipping is frequently adopted to ensure the gradients are within
a predetermined region, so that the variance of privacy perturbation can be decided accordingly. The clipping
operator we adopt is a smooth clipping operator [YZCL22] defined in Definition 2, which scales a vector into
a ball of radius τ centered at the origin.

Definition 2 (Smooth clipping operator). For x ∈ Rd, the clipping operator is defined as

Clipτ (x) =
τ

τ + ∥x∥2
x.

For X = [x1, . . . ,xn] ∈ Rd×n, the distributed clipping operator is defined as

Clipτ (X) = [Clipτ (x1), . . . ,Clipτ (xn)].
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0 ∥x∥2

∥Clipτ (x)∥2

Smooth
Piece-wise

Figure 1: Illustration of input norm and clipped norm for the smooth clipping operator (Definition 2) and
piece-wise linear clipping operator, where τ is the clipping parameter.

Remark 1. Another widely used clipping operator is the piece-wise linear clipping operator, which scales
inputs whenever its gradient norm is larger than τ and does nothing otherwise, defined by

Clipτ (x) = xmin
{
1, τ/∥x∥2

}
.

Figure 1 plots the norm of a vector before and after clipping for these two clipping operators, which show
that they behave quite similarly.

Compression operators. Following [RSF21, FSG+21], Definition 3 defines a randomized general com-
pression operator that only guarantees the expected compression error E∥C(x) − x∥22 is less than the mag-
nitude of original message ∥x∥22.
Definition 3 (General compression operator). A randomized map C : Rd → Rd is a ρ-compression operator
if ∀x ∈ Rd and some ρ ∈ [0, 1], the following inequality holds:

E
∥∥C(x)− x

∥∥2
2
≤ (1− ρ)∥x∥22.

Many widely used compression schemes can be modeled as special cases, for example, random sparsifici-
ation and top-k compression.

Example 1 (Random sparsification). Random sparsification keeps an element from a d-dimensional vector
with probability k

d . Let u ∈ Rd where ui ∼ B
(
k
d

)
, then random sparsification is defined as randomk(x) =

u⊙ x, which satisfies Definition 3 with ρ = k
d .

Example 2 (topk). topk [AHJ+18, SCJ18] keeps k elements that have the largest absolute values and sets
other elements to 0, which is defined as topk(x) := x ⊙ u(x), where [u(x)]i = 1 if the absolute value of
the i-th element is one of the k-largest absolute values, otherwise [u(x)]i = 0. It follows that topk satisfies
Definition 3 with ρ = k/d.

Local differential privacy. In decentralized learning systems, all agents share information with their
neighbors that are potentially sensitive. If some agents are exploited by adversaries, the system will face
a risk of privacy leakage even when the system-level privacy is protected. Therefore, we introduce local
differential privacy (LDP) — defined in Definition 4 — following [DJW13, CABP13, XYD19], which protects
each agent’s privacy from leaking to other agents.

Definition 4 (Local differential privacy (LDP)). A randomized mechanism M : Z → R with domain Z and
range R satisfies (ϵ, δ)-local differential privacy for client i, if for any two neighboring dataset Zi,Z

′
i ∈ Z at

client i and for any subset of outputs R ⊆ R, it holds that

P
(
M(Zi) ∈ R

)
≤ eϵP

(
M(Z ′

i) ∈ R
)
+ δ. (3)

The two datasets Zi and Z ′
i are called neighboring if they are only different by one data point at client i.
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Definition 4 is a stricter privacy guarantee because it can imply general differential privacy (DP). Con-
sequently, LDP requires a larger perturbation variance than general DP. To identify the impact of the
decentralized LDP setting compared to centralized DP setting, we define the baseline utility

ϕm =

√
d log(1/δ)

mϵ
, (4)

which can be understood as the final utility of a centralized system withm data samples that guarantees (ϵ, δ)-
DP. For typical private problems, the local sample size m has to be large enough for the privacy perturbation
to deliver meaning guarantees, we impose a mild assumption that ϕm < 1 to simplify presentation. For
example, the problem defined in (1) has in total mn data samples, running an (ϵ, δ)-DP algorithm on one
server that can access all data will achieve 1

nϕm utility in nϕ−1
m iterations.

3 Proposed algorithm

We propose PORTER, a novel stochastic decentralized optimization algorithm for finding first-order stationary
points of nonconvex finite-sum problems with gradient clipping and communication compression; the details
are described in Algorithm 1. On a high level, PORTER is composed of local stochastic gradient updates and
neighboring information sharing, following a similar structure as BEER [ZLL+22], in terms of the use of error
feedback [RSF21], which accelerates the convergence with biased compression operators, and stochastic
gradient tracking to track the global gradient locally at each agent. A key difference, however, is the
use of gradient clipping. Motivated by efficient training and privacy preserving, we consider two variants,
corresponding to clipping before the mini-batch with privacy perturbation (PORTER-DP), and after taking the
mini-batch (PORTER-GC), respectively.

Algorithm 1 PORTER

1: input: x(0), gradient stepsize η, consensus stepsize γ, clipping threshold τ , mini-batch size b, perturba-

tion noise σp, number of iterations T

2: initialize: V (0) = Q(0)
v = G(0)

p = 0d×n, Q
(0)
x = X(0) = x(0)1⊤

n

3: for t = 1, . . . , T do

4: Draw the local mini-batch of size b uniformly at random Z(t) = {Z(t)
i }ni=1

5: Option I: PORTER-DP (differentially-private SGD)

6: G(t)
τ = 1

b

∑
Z∈Z(t) Clipτ (∇ℓ(X(t−1);Z))

7: G(t)
p = G(t)

τ +E(t), where e
(t)
i ∼ N (0d, σ

2
pId)

8: Option II: PORTER-GC (SGD with gradient clipping)

9: G(t) = 1
b

∑
Z∈Z(t) ∇ℓ(X(t−1);Z)

10: G(t)
p = G(t)

τ = Clipτ (G
(t))

11: Q(t)
v = Q(t−1)

v + C(V (t−1) −Q(t−1)
v ) ▷ Communication

12: V (t) = V (t−1) + γQ(t)
v (W − In) +G(t)

p −G(t−1)
p

13: Q(t)
x = Q(t−1)

x + C(X(t−1) −Q(t−1)
x ) ▷ Communication

14: X(t) = X(t−1) + γQ(t)
x (W − In)− ηV (t)

15: end for

16: output: xout ∼ Uniform({x(t)
i |i ∈ [n], t ∈ [T ]}).

Before proceeding, we introduce some notation convenient for describing decentralized algorithms. Let
xi ∈ Rd be the optimization variable at agent i, we define the collection of all optimization variables
as a matrix X = [x1,x2, . . . ,xn] ∈ Rd×n, and the average as x = 1

n

∑n
i=1 xi. The gradient estimates

V , stochastic gradients G, perturbation noise E, compressed surrogate Qx and Qv, and their corre-
sponding agent-wise values are defined analogously. The distributed gradient is defined as ∇F (X) =[
∇f1(x1),∇f2(x2), . . . ,∇fn(xn)

]
∈ Rd×n.
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To provide more detail, PORTER initializes gradient-related variables to 0d and other variables to the same
random value x(0), which improves stability in early iterations and simplifies analysis, but has no impact on
the convergence rates. Within each iteration, PORTER is consisted of 3 major steps.

(1) Computing clipped stochastic gradients. We consider two options. The first option PORTER-DP

corresponds to differentially-private SGD (Line 6-Line 7), where Line 6 computes a batch of clipped
stochastic gradient on each agent, and then Line 7 adds Gaussian noise to ensure privacy. The second
option PORTER-GC corresponds to SGD with gradient clipping (Line 9-Line 10), where Line 9 computes a
batch stochastic gradient on each agent, and Line 10 applies clipping to each batch stochastic gradient.

(2) Updating gradient estimates. Line 11 updates the auxiliary variable Q(t)
v , which is a compressed

surrogate of V (t−1), by adding the compressed difference to itself C(V (t−1) −Q(t−1)
v ). Meanwhile, each

agent i sends its compressed difference C(v(t−1)
i − q

(t−1)
v,i ) to all of its neighbors, so that every neighbor

can reconstruct the auxiliary variable q
(t)
v,i by accumulating this difference. Line 12 then adds a correction

term γQ(t)
v (W − In), and applies stochastic gradient tracking to update gradient estimates.

(3) Updating variable estimates. Similar to updating gradient estimates, Line 13 updates the auxiliary

variable Q(t)
x , which is a compressed surrogate of variable estimates X(t−1), and communicates with

neighbors. Line 14 applies correction and updates the variable estimates by a gradient-style update.

4 Theoretical guarantees

This section theoretically analyzes the privacy and convergence properties of PORTER under various assump-
tions. Section 4.1 lists all assumptions required for convergence analysis, Section 4.2 shows the privacy and
convergence of PORTER-DP using a specific perturbation variance, and Section 4.3 shows the convergence of
PORTER corresponding to clipped SGD without privacy.

4.1 Assumptions

We start with smoothness assumption in Assumption 1, which is standard and required for all of our analysis.

Assumption 1 (L-smoothness). For any x,y ∈ Rd and any datum z in dataset Z,

∥∇ℓ(x; z)−∇ℓ(y; z)∥2 ≤ L∥x− y∥2.

Note that the gradient clipping operator Clipτ (·) is utilized to ensure gradients are bounded. In addition,
the boundedness of the gradient ensures the application of differentially-private mechanisms. However,
stochastic gradients at different agents lose correct scaling after clipping, which breaks the stationary point
property at local minima and introduces bias. To simplify analysis, one assumption that has been adopted
widely in theoretical analysis [LZLC22] is the following bounded gradient assumption.

Assumption 2 (Bounded gradient). For any x ∈ Rd and any datum z in dataset Z, ∥∇ℓ(x; z)∥2 ≤ τ .

Under Assumption 2, PORTER can skip the clipping operator, and g
(t)
τi becomes an unbiased estimator of

local gradient ∇fi(x
(t)
i ), while still allowing privacy analysis. However, Assumption 2 is rather strong and

seldomly met in practice. For example, the gradient of a quadratic loss function is not bounded. In addition,
it may result in an overly pessimistic clipping operation when there are possibly adversarial gradients with
large norms in the samples. Going beyond the strong bounded gradient assumption, we consider a much
milder assumption that bounds the local variance as follows, which is more standard in the analysis of
unclipped stochastic algorithms.

Assumption 3 (Bounded local variance). For any x ∈ Rd and i ∈ [n],

Ez∼Zi∥∇ℓ(x; z)−∇fi(x)∥22 ≤ σ2
g .
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An additional challenge is associated with dealing with the decentralized environment, where the local
objective functions can be rather distinct from the global one. Our analysis identifies the following assump-
tion, called bounded gradient dissimilarity, which says that the difference between the local gradient and the
global gradient should be small relative to the global one.

Assumption 4 (Bounded gradient dissimilarity). For any x ∈ Rd and i ∈ [n],∥∥∇f(x)−∇fi(x)
∥∥
2
≤ 1

12

∥∥∇f(x)
∥∥
2
.

4.2 Privacy and convergence guarantees of PORTER-DP

We start by analyzing the privacy and convergence guarantees of PORTER-DP, assuming the batch size b = 1.

Privacy guarantee. Theorem 1 proves that PORTER-DP is (ϵ, δ)-LDP when setting the variance of Gaussian
perturbation properly.

Theorem 1 (Local differential privacy). Let ϕm =

√
d log(1/δ)

mϵ and b = 1. For any ϵ ≤ T/m2 and δ ∈ (0, 1),
PORTER-DP is (ϵ, δ)-LDP after T iterations if we set

σ2
p =

Tτ2 log(1/δ)

m2ϵ2
= Tτ2ϕ2

m/d. (5)

Theorem 1 shows that PORTER-DP can achieve (ϵ, δ)-LDP regardless of whether the bounded gradient
assumption presents, because using the clipping operator Clipτ (·) can guarantee all the stochastic gradients’
ℓ2 norms are bounded by τ , so that the perturbation variance can be set accordingly.

Convergence with bounded gradient assumption. We start by analyzing the convergence when the
gradients are bounded under Assumption 2, in which case PORTER-DP can omit the clipping operator. The-
orem 2 presents the convergence result of PORTER-DP using general compression operators (Definition 3).

Theorem 2 (Convergence of PORTER-DP with bounded gradient assumption). Assume Assumptions 1 and 2
hold, and use general compression operators (Definition 3). Let ∆ = E[f(x(0))]− f⋆. Set γ = O

(
(1− α)ρ

)
,

η = O
(
γ4/3ρ4/3ϕm

)
, T = ϕ−2

m , b = 1 and σ2
p = Tτ2ϕ2

m/d. PORTER-DP converges in average squared ℓ2
gradient norm as

1

T

T∑
t=1

E∥∇f(x(t))∥22 ≲
ϕm

ρ
4
3 (1− α)

8
3

·max
{
τ2, L∆

}
. (6)

Theorem 2 shows the convergence error of the squared ℓ2 gradient norm with explicit dependency on
the compression ratio ρ and mixing rate α. When we fix ρ and α, Theorem 2 reaches an O(ϕm) final
average squared ℓ2 gradient norm, which matches the result of SoteriaFL-SGD [LZLC22], the state-of-the-
art stochastic algorithm with local differential privacy guarantees and unbiased communication compression
in the server-client setting. However, due to extra complexities induced by the decentralized setting and
biased compression, PORTER-DP takes O(ϕ−2

m ) iterations to converge while SoteriaFL-SGD only takes O(ϕ−1
m )

iterations; in addition, PORTER-DP has a slightly worse dependency on the compression ratio ρ.

Convergence with bounded gradient assumption. A more interesting and challenging scenario is
when Assumption 2 does not hold, PORTER-DP applies gradient clipping to ensure gradients are bounded to
suit the privacy constraints. Fortunately, Theorem 3 describes the convergence behavior of Algorithm 1 in
this case, under the much weaker bounded local variance and bounded dissimilarity assumptions.

Theorem 3 (Convergence of PORTER-DP without bounded gradient assumption). Assume Assumptions 1,
3 and 4 hold, and use general compression operators (Definition 3). Let ∆ = E[f(x(0))] − f⋆. Set τ =

max
{
365ρ−

4
3 (1 − α)−

8
3ϕ

1/2
m , 24σg

}
, γ = O((1 − α)ρ), η = O

(
L−1

)
, b = 1, T = ϕ−2

m and σ2
p = Tτ2ϕ2

m/d.
Algorithm 1 converges in minimum ℓ2 gradient norm as

min
t∈[T ]

E
∥∥∇f(x(t))

∥∥
2
≲ max

{
ρ−

4
3 (1− α)−

8
3 (L∆ϕm)1/2, σg

}
. (7)

8



Theorem 3 shows PORTER-DP converges in minimum ℓ2 gradient norm with explicit dependency on com-
pression ratio ρ, mixing rate α and gradient variance σg, under much weaker assumptions. To compare with
Theorem 2, we can take the square root of (6), which translates to minimum ℓ2 gradient norm convergence

on the order of O
(
ρ−2/3(1− α)−4/3ϕ

1/2
m ·max{τ, (L∆)1/2}

)
. In comparison, although Theorem 3 has worse

dependency on compression ratio ρ and mixing rate α, it matches the dependency on the baseline privacy
loss ϕm.

4.3 Convergence guarantees of PORTER-GC

Theorem 4 further establishes the convergence of PORTER-GC without the bounded gradient assumption,
which applies the clipping operator to mini-batch stochastic gradients without privacy perturbation.

Theorem 4 (Convergence of PORTER-GC without bounded gradient assumption). Assume Assumptions 1,
3 and 4 hold, and use general compression operators (Definition 3). Let ∆ = E[f(x(0))] − f⋆. Set τ =

O
(
ρ−

2
3 (1 − α)−

4
3T−1/2

)
, γ = O

(
(1 − α)ρ

)
, η = O(L−1) and b = O(σ2

gν
−2). PORTER-GC converges in

minimum ℓ2 gradient norm as

min
t∈[T ]

E
∥∥∇f(x(t))

∥∥
2
≲

1

ρ
2
3 (1− α)

4
3

· 1

T 1/2
.

Theorem 4 suggests that by picking the clipping threshold τ and batch size b properly, PORTER-GC

converges at an O(1/T 1/2) rate. In comparison, standard centralized SGD converges in average squared ℓ2
gradient norm at an O(1/T ) rate, which also translates to a minimum ℓ2 gradient norm convergence in the
form of mint∈[T ] E

∥∥∇f(x(t))
∥∥
2
≲ 1/T 1/2. Therefore, using gradient clipping for decentralized SGD does not

affect the convergence rate, providing proper hyper parameter choices.
When the gradients are bounded, we can omit the clipping operator in PORTER-GC, which become the

same as BEER [ZLL+22]. Recall that BEER guarantees a minimum ℓ2 gradient norm convergence at the rate
1

ρ1/2(1−α)3/2
· 1
T 1/2 . In comparison, Theorem 4 has a better dependency on the mixing rate α, but has a

slightly worse dependency on the compression ratio ρ, which again emphasizes that gradient clipping does
not harm convergence.

5 Numerical experiments

This section presents numerical experiments to examine the performance of PORTER-DP, with comparison to
the state-of-the-art server/client private stochastic algorithm SoteriaFL-SGD, which also utilizes communi-
cation compression and guarantees local differential privacy. More specifically, we evaluate the convergence
of utility and accuracy in terms of communication rounds and communication bits, to analyze the privacy-
utility-communication trade-offs of different algorithms.

For all experiments, we split shuffled datasets evenly to 10 agents that are connected by an Erdős-Rényi
random graph with connecting probability p = 0.8. We use the FDLA matrix [XB04] as the mixing matrix
to perform weighted information aggregation to accelerate convergence. We use biased random sparsification
(cf. Example 1) for all algorithms where k = ⌊ d

20⌋, i.e., the compressor randomly selects 5% elements from
each vector. We also apply gradient clipping with τ = 1 to all algorithms for simplicity. For each experiment,
all algorithms are initialized to the same starting point, and use best-tuned learning rates, batch size 1 and

σp =
τ
√

T log(1/δ)

mϵ .

5.1 Logistic regression with nonconvex regularization

We run experiments on logistic regression with nonconvex regularization on the a9a dataset [CL11]. Following
[WJZ+19], the objective function is defined as

ℓ(x; {f , l}) = log
(
1 + l exp(−x⊤f)

)
+ λ

d∑
i=1

x2
i

1 + x2
i

,
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where {f , l} represents a training tuple, f ∈ Rd is the feature vector and l ∈ {0, 1} is the label, and λ is the
regularization parameter which is set to λ = 0.2.
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(a) (10−2, 10−3)-LDP (b) (10−1, 10−3)-LDP

Figure 2: The train utility and test accuracy vs. communication rounds for logistic regression with nonconvex
regularization on the a9a dataset when guaranteeing (10−2, 10−3)-LDP and (10−1, 10−3)-LDP, respectively.
Both PORTER-DP and SoteriaFL-SGD employ random162 compression (cf. Example 1).

Figure 2 shows the convergence results of PORTER-DP and SoteriaFL-SGD for logistic regression with
nonconvex regularization on the a9a dataset to reach (10−2, 10−3)-LDP and (10−1, 10−3)-LDP, respectively.
Under (10−2, 10−3)-LDP, which is a stricter privacy setting, PORTER-DP converges faster than SoteriaFL-SGD

in test accuracy, while converges slightly slower in train utility. Under (10−1, 10−3)-LDP, PORTER-DP performs
slightly worse than SoteriaFL-SGD. Given that PORTER-DP operates under the decentralized topology with
much weaker information exchange, the results highlight PORTER-DP’s communication efficiency by showing
it can achieve similar performance as its server/client counterpart, i.e. SoteriaFL-SGD, especially under
strict privacy constraints.

5.2 One-hidden-layer neural network training

We evaluate PORTER-DP by training a one-hidden layer neural network on the MNIST dataset [LJB+95]. The
network uses 64 hidden neurons, sigmoid activation functions and cross-entropy loss, where the loss function
over a training pair {f , l} is defined as

ℓ(x; (f , l)) = CrossEntropy(softmax(W2 sigmoid(W1f + c1) + c2), l).

Here, the model parameter is defined by x = vec(W1, c1,W2, c2), where the dimensions of the network
parameters W1, c1, W2, c2 are 64× 784, 64× 1, 10× 64, and 10× 1, respectively.
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Figure 3: The train utility and test accuracy vs. communication rounds for training a one-hidden-layer neural
network on the MNIST dataset when guaranteeing (10−2, 10−3)-LDP and (10−1, 10−3)-LDP, respectively.
Both PORTER-DP and SoteriaFL-SGD employ random2583 compression (cf. Example 1).

Figure 3 shows the convergence results of PORTER-DP and SoteriaFL-SGD for training a one-hidden-
layer neural network on the MNIST dataset to reach (10−2, 10−3)-LDP and (10−1, 10−3)-LDP, respectively.
Under both privacy settings, PORTER-DP converges at a similar rate as SoteriaFL-SGD in train utility. How-
ever, in terms of convergence in test accuracy, PORTER-DP outperforms SoteriaFL-SGD under the stricter
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(10−2, 10−3)-LDP, while the two algorithms have similar performance under the other setting. This experi-
ment again emphasizes PORTER-DP’s communication efficiency in comparison to the server/client algorithm
SoteriaFL-SGD.

6 Conclusions

In this paper, we propose an algorithmic framework called PORTER, which incorporates practically-relevant
gradient clipping and communication compression simultaneously in the design of decentralized nonconvex
optimization algorithms. We propose two variants: PORTER-DP and PORTER-GC. While they share a similar
structure that makes use of gradient tracking, communication compression, and error feedback, their focuses
are on different perspectives motivated by applications in privacy preserving and neural network training,
respectively. PORTER-DP adds privacy perturbation to clipped gradients to protect the local differential pri-
vacy of each agent, with explicit utility and communication complexities. PORTER applies gradient clipping
to mini-batch stochastic gradients, which converges in minimum ℓ2 gradient norm at similar rate as central-
ized SGD without clipping under proper choices of hyperparameters. The development of PORTER offers a
simple analysis framework to understand gradient clipping in decentralized nonconvex optimization without
bounded gradient assumptions, highlighting the potential of achieving both communication efficiency and
privacy preserving in the decentralized framework.
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A Proof of Theorem 1

This section proves Theorem 1 in the following steps: 1) define privacy loss and moment generating function,
2) define mechanisms and sub-mechanisms, and 3) bound the overall moment generating function and show
the choice of perturbation variance satisfies all conditions.

Moment generating function. Let o and aux denote an outcome and an auxiliary input, respectively.
Then, we can define the privacy loss of an outcome o on neighboring dataset Z and Z(i) as

c(o;M, aux,Z,Z(i)) = log
P
(
M(aux,Z) = o

)
P
(
M(aux,Z(i)) = o

) ,
and its log moment generating functions as

αM
i (λ; aux,Z,Z(i)) = logEo∼M(aux,Z)

[
exp

(
λc(o;M, aux,Z,Z(i))

)]
.

Taking maximum over conditions, the unconditioned log moment generating function is

α̂M
i (λ) = max

aux,Z,Z(i)
αM
i (λ; aux,Z,Z(i)).

Sub-mechanisms. Definition 4 defines the LDP mechanism, but it is not enough to model decentralized
algorithms. To model the perturbation operation happens on agent i at time t, we define a sub-mechanism

as M(t)
i : D → R, where i ∈ [n], t ∈ [T ], which can be understood as the perturbation added on agent i

at time t. In addition, we define another mechanism C : R → R to model the compression operator and

C ◦M(t)
i to represent the full update at an agent, and use M to represent the full algorithm.

Proof of LDP. The overall log moment generating function for agent i can be bounded using [LZLC22,
Lemma 2] as

α̂M
i (λ) ≤

T∑
t=1

α̂
C◦M(t)

i
i (λ) ≤

T∑
t=1

α̂
M(t)

i
i (λ).

Let q = 1
m denote the probability each data sample is chosen. For agent i and λ > 0, assume q ≤ τ

16σp

and λ ≤ σ2
p

τ2 log τ
qσp

. We can apply [ACG+16, Lemma 3] to bound each α̂
M(t)

i
i (λ) as

α̂M(t)
i (λ) ≤ q2λ(λ+ 1)τ2

(1− q)σ2
p

+O
(q3λ3τ3

σ3
p

)
= O

(q2λ2τ2

σ2
p

)
.
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To conclude the proof, we can verify there exists some λ that satisfies the following inequalities when

choosing σp =
τq
√

T log(1/δ)

ϵ and q = 1
m , namely,(Tqτλ

σp

)2
≤ λϵ

2
,

exp(−λϵ/2) ≤ δ,

λ ≤ σ2
p

τ2
log

τ

qσp
.

B Proof of Theorem 2

This section proves Theorem 2 in the following 4 subsections: Appendix B.1 derives the descent inequality,
Appendices B.2 and B.3 create two linear systems to bound the sum of consensus errors in the descent
inequality, and finally Appendix B.4 specifies hyper parameters to obtain convergence rate.

With Assumption 2, we can skip the compression operator, in PORTER-DP. To reuse this section’s results
in later analysis, we assume Assumption 3 in deriving descent lemma and linear systems, and lift this
assumption when computing convergence rate in Appendix B.4 using σg ≤ 2τ .

Denote

G(t) =
1

b

∑
Z∈Z(t)

∇ℓ(X(t−1);Z).

B.1 Function value descent

Using Taylor expansion, and taking expectation conditioned on time t,

Et

[
f(x(t+1))− f(x(t))

]
≤ Et⟨∇f(x(t)),−ηv(t+1)⟩+ L

2
Et

∥∥ηv(t+1)
∥∥2
2

= −η⟨∇f(x(t)),Et[v
(t+1)]⟩+ η2L

2
Et

∥∥v(t+1)
∥∥2
2

= −η⟨∇f(x(t)),Et[g
(t+1)
τ + e(t+1)]⟩+ η2L

2
Et

∥∥v(t+1)
∥∥2
2
,

where the last equality is due to v(t) = g(t)
p that can be proved by induction.

Because Et[e
(t)
i ] = 0d and stochastic gradients are unbiased,

Et

[
f(x(t+1))− f(x(t))

]
= −η⟨∇f(x(t)),∇F (X(t))( 1n1n)⟩+

η2L

2
Et

∥∥v(t+1)
∥∥2
2

=
η

2

(∥∥∇f(x(t))−∇F (X(t))( 1n1n)
∥∥2
2
−
∥∥∇f(x(t))

∥∥2
2
−
∥∥∇F (X(t))( 1n1n)

∥∥2
2

)
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2

≤ −η

2

∥∥∇f(x(t))
∥∥2
2
+

ηL2

2n

∥∥X(t) − x(t)1⊤
n

∥∥2
F
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2
− η

2

∥∥∇F (X(t))( 1n1n)
∥∥2
2
, (8)

where the last inequality is due to Assumption 1.
Let ∆ = E

[
f(x(0))

]
− f⋆. Take full expectation and average (8) over t = 1, . . . , T , the expected utility

can be bounded by

1

T

T∑
t=1

E
∥∥∇f(x(t))

∥∥2
2
≤ 2∆

ηT
+

1

T
· L

2

n

T∑
t=1

E
∥∥X(t) − x(t)1⊤

n

∥∥2
F

+
1

T
· ηL

T∑
t=1

E
∥∥v(t+1)

∥∥2
2
− 1

T

T∑
t=1

E
∥∥∇F (X(t))( 1n1n)

∥∥2
2
. (9)
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B.2 Sum of variable consensus errors

This subsection creates a linear system to bound
∑T

t=1 E
∥∥X(t) − x(t)1⊤

n

∥∥2
F
by
∑T

t=1 E
∥∥V (t) − v(t)1⊤

n

∥∥2
F
and∑T

t=1 E
∥∥v(t)

∥∥2
2
. To simplify notations, let Ŵ = In + γ(W − In), and denote the mixing rate of Ŵ by

α̂ =
∥∥Ŵ − ( 1n1n1

⊤
n )
∥∥
op
. Lemma 1 analyzes the mixing rate of the regularized mxing matrix.

Lemma 1 (Mixing rate of regularized mixing matrix). Assuming 0 < γ ≤ 1. The mixing rate of Ŵ can be
bounded as

α̂ ≤ 1 + γ(α− 1). (10)

Proof of Lemma 1. Let λ1 = 1 > λ2 ≥ . . . ≥ λn > −1 denote the eigenvalues of W . Corresponding

eigenvalues of Ŵ are 1 + γ(λi − 1), i = 1, . . . , n.

The mixing rate of Ŵ is

α̂ = max
{∣∣1 + γ(λ2 − 1)

∣∣, ∣∣1 + γ(λn − 1)
∣∣}

≤ max
{
|1− γ|+ γ|λ2|, |1− γ|+ γ|λn|

}
= 1 + γ(α− 1).

B.2.1 Variable consensus error

Take expectation conditioned on time t, and use Young’s inequality, the variable consensus error can be
bounded as

Et

∥∥X(t+1) − x(t+1)1⊤
n

∥∥2
F

= Et

∥∥∥(X(t) + γQ(t+1)
x (W − In)− ηV (t+1)

)(
In − ( 1n1n1

⊤
n )
)∥∥∥2

F

= Et

∥∥∥(X(t) − x(t)1⊤
n

)(
Ŵ − ( 1n1n1

⊤
n )
)
+ γ(Q(t+1)

x −X(t))(W − In)− ηV (t+1)
(
In − ( 1n1n1

⊤
n )
)∥∥∥2

F

≤ 2

1 + α̂2

∥∥(X(t) − x(t)1⊤
n

)(
Ŵ − ( 1n1n1

⊤
n )
)∥∥2

F

+
2

1− α̂2
Et

∥∥∥γ(Q(t+1)
x −X(t))(W − In)− ηV (t+1)

(
In − ( 1n1n1

⊤
n )
)∥∥∥2

F

≤ 2

1 + α̂2

∥∥(X(t) − x(t)1⊤
n

)(
Ŵ − ( 1n1n1

⊤
n )
)∥∥2

F

+
4

1− α̂2
Et

∥∥∥γ(Q(t+1)
x −X(t))(W − In)

∥∥∥2
F
+

4

1− α̂2
Et

∥∥∥ηV (t+1)
(
In − ( 1n1n1

⊤
n )
)∥∥∥2

F

(i)

≤ 2α̂2

1 + α̂2

∥∥X(t) − x(t)1⊤
n

∥∥2
F
+

16γ2

1− α̂2
Et

∥∥Q(t+1)
x −X(t)

∥∥2
F
+

4η2

1− α̂2
Et

∥∥V (t+1) − v(t+1)1⊤
n

∥∥2
F

(ii)

≤ α̂
∥∥X(t) − x(t)1⊤

n

∥∥2
F
+

16(1− ρ)γ2

1− α̂

∥∥Q(t)
x −X(t)

∥∥2
F
+

4η2

1− α̂
Et

∥∥V (t+1) − v(t+1)1⊤
n

∥∥2
F
, (11)

where (i) is obtained by ∥W − In∥op ≤ 2, (ii) uses 2α̂ ≤ 1 + α̂2, 1− α̂ ≤ 1− α̂2 and Definition 3.

B.2.2 Variable quantization error

Assume γ satisfies the following inequality (which will be verified in Appendix B.4)

γ2 ≤ ρ2

96(1− ρ)
. (12)

Taking expectation conditioned on time t, the variable quantization error can be decomposed and bounded
as

Et

∥∥Q(t+1)
x −X(t+1)

∥∥2
F
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= Et

∥∥Q(t)
x + C(X(t) −Q(t)

x )−X(t+1)
∥∥2
F

= Et

∥∥C(X(t) −Q(t)
x )− (X(t) −Q(t)

x )− (X(t+1) −X(t))
∥∥2
F

(i)

≤ 2

1 + (1− ρ)
Et

∥∥C(X(t) −Q(t)
x )− (X(t) −Q(t)

x )
∥∥2
F
+

2

1− (1− ρ)
Et

∥∥X(t+1) −X(t)
∥∥2
F

(ii)

≤ 2(1− ρ)

1 + (1− ρ)

∥∥X(t) −Q(t)
x

∥∥2
F
+

2

ρ
Et

∥∥X(t+1) −X(t)
∥∥2
F

=
2(1− ρ)

1 + (1− ρ)

∥∥X(t) −Q(t)
x

∥∥2
F

+
2

ρ
Et

∥∥γ(Q(t+1)
x −X(t))(W − In) + γ(X(t) − x(t)1⊤

n )(W − In)− ηV (t+1)
∥∥2
F

(iii)

≤
(
1− ρ

2

)∥∥X(t) −Q(t)
x

∥∥2
F
+

24γ2

ρ
Et

∥∥Q(t+1)
x −X(t)

∥∥2
F
+

24γ2

ρ

∥∥X(t) − x(t)1⊤
n

∥∥2
F
+

6η2

ρ
Et

∥∥V (t+1)
∥∥2
F

≤
(
1− ρ

2
+

24(1− ρ)γ2

ρ

)∥∥Q(t)
x −X(t)

∥∥2
F
+

24γ2

ρ

∥∥X(t) − x(t)1⊤
n

∥∥2
F
+

6η2

ρ
Et

∥∥V (t+1)
∥∥2
F

(iv)

≤
(
1− ρ

4

)∥∥Q(t)
x −X(t)

∥∥2
F
+

24γ2

ρ

∥∥X(t) − x(t)1⊤
n

∥∥2
F
+

6η2

ρ
Et

∥∥V (t+1)
∥∥2
F
, (13)

where (i) is obtained by applying Young’s inequality, (ii) uses Definition 3, (iii) uses the fact
∥∥W−In

∥∥
op

≤ 2,

and (iv) uses (12).

B.2.3 Linear system

Let e
(t)
1 =

[∥∥X(t) − x(t)1⊤
n

∥∥2
F∥∥Q(t)

x −X(t)
∥∥2
F

]
, we can take full expectation and rewrite (11) and (13) in matrix form as

E[e(t+1)
1 ] ≤

[
α̂ 16(1−ρ)γ2

1−α̂
24γ2

ρ 1− ρ
4

]
E[e(t)1 ] +

[
4η2

1−α̂E
∥∥V (t+1) − v(t+1)1⊤

n

∥∥2
F

6η2

ρ E
∥∥V (t+1)

∥∥2
F

]
:= G1E[e(t)1 ] + b

(t)
1 . (14)

We can compute (In −G1)
−1 and verify all its entries are positive:

(In −G1)
−1 =

1

(1− α̂) · ρ
4 − 16(1−ρ)γ2

1−α̂ · 24γ2

ρ

[
ρ
4

16(1−ρ)γ2

1−α̂
24γ2

ρ 1− α̂

]

≤ 1
1
8 (1− α̂)ρ

[
ρ
4

16(1−ρ)γ2

1−α̂
24γ2

ρ 1− α̂

]
, (15)

where we assume the following inequality to to prove (15), which will be validated in Appendix B.4:

(1− α̂) · ρ
4
− 16(1− ρ)γ2

1− α̂
· 24γ

2

ρ
≥ 1

8
(1− α̂)ρ. (16)

Sum expected error vectors E[e(t)1 ] over t = 1, . . . , T ,

T∑
t=1

E[e(t)1 ] ≤
T∑

t=1

(G1E[e(t−1)
1 ] + b

(t−1)
1 )

≤ G1

T∑
t=1

E[e(t)1 ] +G1E[e(0)1 ] +

T∑
t=1

b
(t−1)
1 .
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Reorganize terms, multiply (In −G1)
−1 on both sides and use e

(0)
1 = 02, the sum of error vectors can

be bounded as

T∑
t=1

E[e(t)1 ] ≤ (In −G1)
−1

T−1∑
t=0

b
(t)
1 . (17)

The sum of consensus error can be computed as

T∑
t=1

E
∥∥X(t) − x(t)1⊤

n

∥∥2
F

≤
[
1 0

]
(In −G)−1

T−1∑
t=0

b
(t)
1

=
1

1
8 (1− α̂)ρ

[
ρ
4

16(1−ρ)γ2

1−α̂

] [ 4η2

1−α̂

∑T
t=1 E

∥∥V (t) − v(t)1⊤
n

∥∥2
F

6η2

ρ

∑T
t=1 E

∥∥V (t)
∥∥2
F

]

=
η2

1
8 (1− α̂)ρ

( ρ

1− α̂

T∑
t=1

E
∥∥V (t) − v(t)1⊤

n

∥∥2
F
+

16(1− ρ)γ2

1− α̂
· 6
ρ

T∑
t=1

E
∥∥V (t)

∥∥2
F

)
(i)
=

8η2

(1− α̂)ρ

( ρ

1− α̂
+

96(1− ρ)γ2

(1− α̂)ρ

) T∑
t=1

E
∥∥V (t) − v(t)1⊤

n

∥∥2
F
+

768(1− ρ)γ2η2

(1− α̂)2ρ2

T∑
t=1

nE
∥∥v(t)

∥∥2
F

(ii)

≤ 16η2

(1− α̂)2

T∑
t=1

E
∥∥V (t) − v(t)1⊤

n

∥∥2
F
+

768(1− ρ)γ2η2

(1− α̂)2ρ2

T∑
t=1

nE
∥∥v(t)

∥∥2
F
, (18)

where we use the equality
∥∥V (t)

∥∥2
F
=
∥∥V (t) − v(t)1⊤

n

∥∥2
F
+ n∥v(t)∥22 for (i) and use (12) for (ii).

B.3 Sum of gradient consensus errors

This section creates a linear system to bound the sum of gradient consensus error
∑T

t=1 E
∥∥V (t) − v(t)1⊤

n

∥∥2
F

by
∑T

t=1 E
∥∥v(t)

∥∥2
2
and constant terms.

B.3.1 Gradient consensus error

Take expectation conditioned on time t and reorganize terms, the gradient consensus error can be expanded
as

Et

∥∥V (t+1) − v(t+1)1⊤
n

∥∥2
F

= Et

∥∥∥(V (t) + γQ(t+1)
v (W − In) +G(t+1)

p −G(t)
p

)(
In − ( 1n1n1

⊤
n )
)∥∥∥2

F

= Et

∥∥∥(V (t) − v(t)1⊤
n

)(
Ŵ − ( 1n1n1

⊤
n )
)
+ γ
(
Q(t+1)

v − V (t)
)
(W − In) +

(
G(t+1)

p −G(t)
p

)(
In − ( 1n1n1

⊤
n )
)∥∥∥2

F
.

Then, take full expectation, use the update formula and Young’s inequality similarly to (11),

E
∥∥V (t+1) − v(t+1)1⊤

n

∥∥2
F

≤ 2α̂2

1 + α̂2

∥∥V (t) − v(t)1⊤
n

∥∥2
F

+
2

1− α̂2
E
∥∥∥γ(Q(t+1)

v − V (t)
)
(W − In) +

(
G(t+1)

p −G(t)
p

)(
In − ( 1n1n1

⊤
n )
)∥∥∥2

F

≤ α̂
∥∥V (t) − v(t)1⊤

n

∥∥2
F
+

4

1− α̂
E
∥∥γ(Q(t+1)

v − V (t)
)
(W − In)

∥∥2
F

+
4

1− α̂
E
∥∥(G(t+1)

p −G(t)
p

)(
In − ( 1n1n1

⊤
n )
)∥∥2

F
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(i)

≤ α̂
∥∥V (t) − v(t)1⊤

n

∥∥2
F
+

16γ2

1− α̂
E
∥∥Q(t+1)

v − V (t)
∥∥2
F
+

4

1− α̂
E
∥∥G(t+1)

p −G(t)
p

∥∥2
F

(ii)

≤ α̂
∥∥V (t) − v(t)1⊤

n

∥∥2
F
+

16(1− ρ)γ2

1− α̂
E
∥∥Q(t)

v − V (t)
∥∥2
F
+

16n(τ2 + σ2
pd)

1− α̂
, (19)

where (i) is proved using the facts
∥∥W − In

∥∥
op

≤ 2 and
∥∥In − ( 1n1n1

⊤
n )
∥∥
op

≤ 1, (ii) is due to Definition 3

and

E
∥∥G(t+1)

p −G(t)
p

∥∥2
F
≤ 2E

∥∥G(t+1)
p

∥∥2
F
+ 2E

∥∥G(t)
p

∥∥2
F

= 2
(
E
∥∥G(t+1)

τ

∥∥2
F
+ nσ2

pd
)
+ 2
(
E
∥∥G(t)

τ

∥∥2
F
+ nσ2

pd
)

≤ 4n(τ2 + σ2
pd). (20)

B.3.2 Gradient quantization error

Et

∥∥Q(t+1)
v − V (t+1)

∥∥2
F
= Et

∥∥(Q(t+1)
v − V (t))− (V (t+1) − V (t))

∥∥2
F

≤ 2

1 + (1− ρ)
Et

∥∥Q(t+1)
v − V (t)

∥∥2
F
+

2

1− (1− ρ)
Et

∥∥V (t+1) − V (t)
∥∥2
F

≤ 2(1− ρ)

2− ρ

∥∥Q(t)
v − V (t)

∥∥2
F
+

2

ρ
Et

∥∥γQ(t+1)
v (W − In) +G(t+1)

p −G(t)
p

∥∥2
F

≤ 2(1− ρ)

2− ρ

∥∥Q(t)
v − V (t)

∥∥2
F
+

6γ2

ρ
Et

∥∥(Q(t+1)
v − V (t))(W − In)

∥∥2
F

+
6γ2

ρ

∥∥V (t)(W − In)
∥∥2
F
+

6

ρ
Et

∥∥G(t+1)
p −G(t)

p

∥∥2
F

(i)

≤
(
1− ρ

2
+

24γ2(1− ρ)

ρ

)∥∥Q(t)
v − V (t)

∥∥2
F
+

24γ2

ρ

∥∥V (t) − v(t)1⊤
n

∥∥2
F
+

24n(τ2 + σ2
pd)

ρ

(ii)

≤
(
1− ρ

4

)∥∥Q(t)
v − V (t)

∥∥2
F
+

24γ2

ρ

∥∥V (t) − v(t)1⊤
n

∥∥2
F
+

24n(τ2 + σ2
pd)

ρ
, (21)

where we use (20) and the fact 2(1−ρ)
2−ρ = 1− ρ

2−ρ ≥ 1− ρ
2 when ρ ≥ 0 to reach (i) and use (12) to reach (ii).

B.3.3 Linear system

Let e
(t)
2 =

[∥∥V (t) − v(t)1⊤
n

∥∥2
F∥∥Q(t)

v − V (t)
∥∥2
F

]
. We can write (19) and (21) in matrix form as

E[e(t+1)
2 ] ≤

[
α̂ 16(1−ρ)γ2

1−α̂
24γ2

ρ 1− ρ
4

]
E[e(t)2 ] +

 16n(τ2+σ2
pd)

1−α̂
24n(τ2+σ2

pd)

ρ


:= G2E[e(t)2 ] + b

(t)
2 .

Because G2 = G1, we can use the same argument as in Appendix B.2.3, and use (15) to prove

T∑
t=1

E
∥∥V (t) − v(t)1⊤

n

∥∥2
F
≤
[
1 0

]
(In −G2)

−1
(
E[e(0)2 ] +

T−1∑
t=0

b
(t)
2

)

≤ 1
1
8 (1− α̂)ρ

[
ρ
4

16(1−ρ)γ2

1−α̂

] 16Tn(τ2+σ2
pd)

1−α̂
24Tn(τ2+σ2

pd)

ρ


=

Tn(τ2 + σ2
pd)

1
8 (1− α̂)ρ

·
(ρ
4
· 16

1− α̂
+

16(1− ρ)γ2

1− α̂
· 24
ρ

)
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≤ Tn(τ2 + σ2
pd)

1
8 (1− α̂)ρ

·
( 4ρ

1− α̂
+

4ρ

1− α̂

)
=

64

(1− α̂)2
Tn(τ2 + σ2

pd), (22)

where we use (12) to prove the last inequality.
With (22), we can bound (18) by

T∑
t=1

E
∥∥X(t) − x(t)1⊤

n

∥∥2
F

≤ 16η2

(1− α̂)2

T∑
t=1

E
∥∥V (t) − v(t)1⊤

n

∥∥2
F
+

768(1− ρ)γ2η2

(1− α̂)2ρ2

T∑
t=1

nE
∥∥v(t)

∥∥2
F

≤ 16η2

(1− α̂)2
· 64

(1− α̂)2
Tn(τ2 + σ2

pd) +
768(1− ρ)γ2η2

(1− α̂)2ρ2

T∑
t=1

nE
∥∥v(t)

∥∥2
F

≤ 1024η2

(1− α̂)4
Tn(τ2 + σ2

pd) +
8η2

(1− α̂)2

T∑
t=1

nE
∥∥v(t)

∥∥2
F
, (23)

where we use (12) again to prove the last inequality.

B.4 Convergence rate

Note bounded gradient assumption can imply Assumption 3 for some σg ≤ 2τ , we can bound the expected
norm of average gradient estimate as

E
∥∥v(t)

∥∥2
2
= E

∥∥g(t)
p

∥∥2
2

= E
∥∥g(t)

τ

∥∥2
2
+

σ2
pd

n

≤ E
∥∥∇F (X(t))( 1n1n)

∥∥2
2
+

σ2
g

b
+

σ2
pd

n

≤ E
∥∥∇F (X(t))( 1n1n)

∥∥2
2
+

4τ2

b
+

σ2
pd

n
. (24)

We assume

ηL ≤ 1

8
(1− α̂)

4
3 . (25)

Using (23) (24), expected utility (9) can be bounded by

1

T

T∑
t=1

E∥∇f(x(t))∥22 ≤ 2∆

ηT
+

1

T
· L

2

n

T∑
t=1

E
∥∥X(t) − x(t)1⊤

n

∥∥2
F

+
1

T

T∑
t=1

ηLE∥v(t)∥22 −
1

T

T∑
t=1

E
∥∥∇F (X(t))( 1n1n)

∥∥2
2

≤ 2∆

ηT
+

1

T
· L

2

n

( 1024η2

(1− α̂)4
Tn(τ2 + σ2

pd) +
8η2

(1− α̂)2

T∑
t=1

nE
∥∥v(t)

∥∥2
2

)
+

1

T

T∑
t=1

ηLE∥v(t)∥22 −
1

T

T∑
t=1

E
∥∥∇F (X(t))( 1n1n)

∥∥2
2

(i)

≤ 2∆

ηT
+

1024η2L2

(1− α̂)4
(τ2 + σ2

pd) +
2ηL

(1− α̂)
4
3T

T∑
t=1

E∥v(t)∥22 −
1

T

T∑
t=1

E
∥∥∇F (X(t))( 1n1n)

∥∥2
2

22



≤ 2∆

ηT
+

1024η2L2

(1− α̂)4
(τ2 + σ2

pd) +
2ηL

(1− α̂)
4
3

(4τ2
b

+
σ2
pd

n

)
(ii)
=

2∆

ηT
+

1024η2L2τ2

(1− α̂)4
(1 + Tϕ2

m) +
8ηLτ2

(1− α̂)
4
3

(1 + Tϕ2
m)

(iii)
=

2∆

ηT
+

2048η2L2τ2

(1− α̂)4
+

16ηLτ2

(1− α̂)
4
3

(26)

where we use (25) for (i), substitute b = 1 and σ2
pd =

(
τ
√

T log(1/δ)

mϵ

)2
= Tτ2ϕ2

m for (ii), and substitute

T = ϕ−2
m for (iii).

We set the step size as

η =
γ

4
3 (1− α)

4
3

32
· ϕm

L
,

(26) can be further bounded as

1

T

T∑
t=1

E∥∇f(x(t))∥22 ≤ 64L∆ϕm

γ
4
3 (1− α)

4
3

+
2τ2ϕ2

m

(1− α̂)
4
3

+
τ2ϕm

2

≤ 64L∆ϕm

γ
4
3 (1− α)

4
3

+
3τ2ϕm

(1− α̂)
4
3

≤ 67ϕm

γ
4
3 (1− α)

4
3

max
{
τ2, L∆

}
,

where we use Lemma 1 to reach the last inequality.
Lastly, set the hyper parameter γ as

γ =
1

100
(1− α)ρ.

We can now verify conditions (12), (16) and the condition on η are all met to conclude the proof:

γ2 ≤ ρ2

10000
⇒ (12)

γ4 = γ2 · (1− α)2ρ2

10000
≤ (1− α̂)2ρ2

10000
⇒ (16)

ηL ≤ (1− α̂)
4
3

32
⇒ (25)

C Proof of Theorem 3

This section proves Theorem 3 in 2 subsections. Appendix C.1 derives the descent inequality using results
from Appendices B.2 and B.3. Appendix C.2 first assumes all expected gradient norm E

∥∥∇f(x(t))
∥∥
2
are

greater than a threshold ν (i.e. E
∥∥∇f(x(t))

∥∥
2
≥ ν for all t = 1, . . . , T ), then specifies parameters and proves

the average of expected gradient norm is smaller than that threshold 1
T

∑T
t=1 E

∥∥∇f(x(t))
∥∥
2
≤ ν, which

contradicts the assumption hence proves the algorithm reaches E
∥∥∇f(x(t))

∥∥
2
≤ ν within T steps.

C.1 Function value descent

Let δ
(t)
i = τ

τ+∥g(t)
i ∥2

and δ(t) = τ
τ+∥∇f(x(t))∥2

. Similar to Appendix B.1, use Taylor expansion and take

expectation conditioned on t, we can expand the function value descent as

Et

[
f(x(t+1))− f(x(t))

]
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≤ Et⟨∇f(x(t)),−ηv(t+1)⟩+ L

2
Et

∥∥ηv(t+1)
∥∥2
2

= −ηEt

〈
∇f(x(t)), g(t+1)

p

〉
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2

= −ηEt

〈
∇f(x(t)), g(t+1)

τ

〉
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2

= −ηEt

〈
∇f(x(t)),Clipτ (∇f(x(t)))

〉
+ ηEt

〈
∇f(x(t)),Clipτ (∇f(x(t)))− g(t+1)

τ

〉
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2

= −ηδ(t)
∥∥∇f(x(t))

∥∥2
2
+ ηEt

〈
∇f(x(t)),Clipτ (∇f(x(t)))− g(t+1)

τ

〉
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2

≤ −ηδ(t)
∥∥∇f(x(t))

∥∥2
2
+ η
∥∥∇f(x(t))

∥∥
2
Et

∥∥Clipτ (∇f(x(t)))− g(t+1)
τ

∥∥
2
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2
. (27)

The Et

∥∥Clipτ (∇f(x(t))) − g(t+1)
τ

∥∥
2
term in (27) is the error introduced by gradient clipping, which can be

analyzed by splitting it to 4 terms as following

Et

∥∥Clipτ (∇f(x(t)))− g(t+1)
τ

∥∥
2

= Et

∥∥∥ 1
n

n∑
i=1

τ

τ + ∥g(t)
i ∥2

g
(t)
i − τ

τ + ∥∇f(x(t))∥2
∇f(x(t))

∥∥∥
2

= Et

∥∥∥∥∥ 1n
n∑

i=1

( τ

τ + ∥g(t)
i ∥2

g
(t)
i − τ

τ + ∥∇fi(x
(t)
i )∥2

g
(t)
i

)
+

1

n

n∑
i=1

( τ

τ + ∥∇fi(x
(t)
i )∥2

g
(t)
i − τ

τ + ∥∇fi(x
(t)
i )∥2

∇fi(x
(t)
i )
)

+
1

n

n∑
i=1

( τ

τ + ∥∇fi(x
(t)
i )∥2

∇fi(x
(t)
i )− τ

τ + ∥∇f(x(t))∥2
∇fi(x

(t)
i )
)

+
1

n

n∑
i=1

( τ

τ + ∥∇f(x(t))∥2
∇fi(x

(t)
i )− τ

τ + ∥∇f(x(t))∥2
∇f(x(t))

)∥∥∥∥∥
2

≤ 1

n

n∑
i=1

Et

∥∥∥∥∥( τ

τ + ∥g(t)
i ∥2

− τ

τ + ∥∇fi(x
(t)
i )∥2

)
g
(t)
i

∥∥∥∥∥
2

(28)

+
1

n

n∑
i=1

Et

∥∥∥∥∥ τ

τ + ∥∇fi(x
(t)
i )∥2

(
g
(t)
i −∇fi(x

(t)
i )
)∥∥∥∥∥

2

(29)

+
1

n

n∑
i=1

∥∥∥∥∥( τ

τ + ∥∇fi(x
(t)
i )∥2

− τ

τ + ∥∇f(x(t))∥2

)
∇fi(x

(t)
i )

∥∥∥∥∥
2

(30)

+

∥∥∥∥∥ τ

τ + ∥∇f(x(t))∥2

( 1
n

n∑
i=1

∇fi(x
(t)
i )−∇f(x(t))

)∥∥∥∥∥
2

. (31)

Next, we bound each term separately using triangle inequality, Assumptions 3 and 4.
Bound the first term (28) as

1

n

n∑
i=1

Et

∥∥∥∥∥( τ

τ +
∥∥g(t)

i

∥∥
2

− τ

τ +
∥∥∇fi(x

(t)
i )
∥∥
2

)
g
(t)
i

∥∥∥∥∥
2

=
1

n

n∑
i=1

Et

∥∥∥∥∥ τ(
∥∥g(t)

i

∥∥
2
−
∥∥∇fi(x

(t)
i )
∥∥
2
)

(τ +
∥∥g(t)

i

∥∥
2
)(τ +

∥∥∇fi(x
(t)
i )
∥∥
2
)
g
(t)
i

∥∥∥∥∥
2

=
1

n

n∑
i=1

Et

(∣∣∣∥∥g(t)
i

∥∥
2
−
∥∥∇fi(x

(t)
i )
∥∥
2

∣∣∣ · τ

τ +
∥∥∇fi(x

(t)
i )
∥∥
2

·
∥∥g(t)

i

∥∥
2

τ +
∥∥g(t)

i

∥∥
2

)
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≤ 1

n

n∑
i=1

Et

∣∣∣∥∥g(t)
i

∥∥
2
−
∥∥∇fi(x

(t)
i )
∥∥
2

∣∣∣
≤ 1

n

n∑
i=1

√
Et

(∥∥g(t)
i

∥∥
2
−
∥∥∇fi(x

(t)
i )
∥∥
2

)2
=

1

n

n∑
i=1

√
Et

(∥∥g(t)
i

∥∥2
2
+
∥∥∇fi(x

(t)
i )
∥∥2
2
− 2
∥∥g(t)

i

∥∥
2

∥∥∇fi(x
(t)
i )
∥∥
2

)
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n

n∑
i=1

√
Et

(∥∥g(t)
i

∥∥2
2
+
∥∥∇fi(x

(t)
i )
∥∥2
2
− 2⟨g(t)

i ,∇fi(x
(t)
i )⟩

)
=

1

n

n∑
i=1

√
Et

∥∥g(t)
i −∇fi(x

(t)
i )
∥∥2
2

≤ σg√
b
. (32)

Bound the second term (29) as

1

n

n∑
i=1

Et

∥∥∥∥∥ τ

τ +
∥∥∇fi(x

(t)
i )
∥∥
2

(
g
(t)
i −∇fi(x

(t)
i )
)∥∥∥∥∥

2

≤ 1

n

n∑
i=1

τσg/
√
b

τ +
∥∥∇fi(x

(t)
i )
∥∥
2

≤ σg√
b
. (33)

Bound the third term (30) as

1

n

n∑
i=1

∥∥∥∥∥( τ

τ +
∥∥∇fi(x

(t)
i )
∥∥
2

− τ

τ +
∥∥∇f(x(t))

∥∥
2

)
∇fi(x

(t)
i )

∥∥∥∥∥
2

=
1

n

n∑
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∥∥∥∥∥ τ
(∥∥∇fi(x

(t)
i )
∥∥
2
−
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∥∥
2
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τ +

∥∥∇fi(x
(t)
i )
∥∥
2

)(
τ +

∥∥∇f(x(t))
∥∥
2

)∇fi(x
(t)
i )

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

τ
∣∣∣∥∥∇fi(x

(t)
i )
∥∥
2
−
∥∥∇f(x(t))

∥∥
2

∣∣∣
τ +

∥∥∇f(x(t))
∥∥
2

≤ 1

n

n∑
i=1

δ(t)
∣∣∣∥∥∇fi(x

(t)
i )
∥∥
2
−
∥∥∇fi(x

(t))
∥∥
2

∣∣∣+ 1

n

n∑
i=1

δ(t)
∣∣∣∥∥∇fi(x

(t))
∥∥
2
−
∥∥∇f(x(t))

∥∥
2

∣∣∣
≤ 1

n

n∑
i=1

δ(t)L
∥∥x(t)

i − x(t)
∥∥
2
+

1

n

n∑
i=1

δ(t) · 1

12
∥∇f(x(t))∥2

≤ δ(t)L√
n

∥∥X(t) − x(t)1⊤
n

∥∥
F
+

1

12
∥∇f(x(t))∥2, (34)

where we use δ(t) ≤ 1 to reach the last inequality.
Bound (31) as ∥∥∥∥∥ τ

τ + ∥∇f(x(t))∥2

( 1
n

n∑
i=1

∇fi(x
(t)
i )−∇f(x(t))

)∥∥∥∥∥
2

=
τ

τ +
∥∥∇f(x(t))

∥∥
2

∥∥∇F (X(t))( 1n1n)−∇f(x(t))
∥∥
2

≤ δ(t)L√
n

∥∥X(t) − x(t)1⊤
n

∥∥
F
. (35)

Using (32), (33), (34) and (35), the function value descent inequality (27) becomes

Et

[
f(x(t+1))− f(x(t))

]
≤ −ηδ(t)

∥∥∇f(x(t))
∥∥2
2
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2
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+ η
∥∥∇f(x(t))

∥∥
2
Et

∥∥Clipτ(∇f(x(t))
)
− g(t+1)

τ

∥∥
2

≤ −ηδ(t)
∥∥∇f(x(t))

∥∥2
2
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2

+ η
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∥∥
2

(2σg√
b
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1

12
δ(t)∥∇f(x(t))∥2 +

2δ(t)L√
n

∥∥X(t) − x(t)1⊤
n
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F

)
= −11

12
ηδ(t)

∥∥∇f(x(t))
∥∥2
2
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2

+ η
∥∥∇f(x(t))

∥∥
2

(2σg√
b
+

2δ(t)L√
n

∥∥X(t) − x(t)1⊤
n

∥∥
F

)
≤ − 5

12
ηδ(t)

∥∥∇f(x(t))
∥∥2
2
+

η2L

2
Et

∥∥v(t+1)
∥∥2
2

+
2ησg√

b

∥∥∇f(x(t))
∥∥
2
+

2δ(t)ηL2

n

∥∥X(t) − x(t)1⊤
n

∥∥2
F
, (36)

where the last inequality is due to

η
∥∥∇f(x(t))

∥∥
2
· 2δ

(t)L√
n

∥∥X(t) − x(t)1⊤
n

∥∥
F

≤ ηδ(t) · 2 ·
√

1

2

∥∥∇f(x(t))
∥∥2
2
·
√

2L2

n

∥∥X(t) − x(t)1⊤
n

∥∥2
F

≤ 1

2
ηδ(t)

∥∥∇f(x(t))
∥∥2
2
+

2δ(t)ηL2

n

∥∥X(t) − x(t)1⊤
n

∥∥2
F
.

C.2 Convergence rate

Different from (24), with the use of gradient clipping operator, we can only bound the expected norm of
average gradient estimate as

E∥v(t)∥22 = E∥g(t)
p ∥22

= E∥g(t)
τ + e(t)∥22

= E∥g(t)
τ ∥22 + E∥e(t)∥22

≤ τ2 +
σ2
pd

n
. (37)

Let ∆ = E
[
f(x(0))

]
− f⋆. The techniques used is similar to that used in Appendix B, so that we can

reuse results from Appendices B.2 and B.3, namely (23), in the following proof. Take full expectation and
use (37), sum (36) over t = 1, . . . , T ,

−∆ ≤ −5η

12

T∑
t=1

E
(
δ(t)
∥∥∇f(x(t))

∥∥2
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)
+

2ησ√
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2

+
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∥∥2
F
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E
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∥∥2
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E
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δ(t)
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)
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2

+
2ηL2

n
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(1− α̂)2

T∑
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nE
∥∥v(t)

∥∥2
2
+

1024η2

(1− α̂)4
Tn(τ2 + σ2

pd)
)
+

η2L

2

T∑
t=1

E
∥∥v(t+1)

∥∥2
2

= −5η

12

T∑
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E
(
δ(t)
∥∥∇f(x(t))

∥∥2
2

)
+

2ησ√
b

T∑
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E
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+
16η3L2

(1− α̂)2

(
τ2 +

σ2
pd

n

)
+

2048η3L2

(1− α̂)4
T (τ2 + σ2

pd) +
η2LT

2

(
τ2 +

σ2
pd

n

)
. (38)

To be able to analyze the expected clipped gradient norm E
(
δ(t)
∥∥∇f(x(t))

∥∥2
2

)
, we need to use convexity

and monotonicity from Lemma 2.

Lemma 2. Let g(x) = x
c+x and h(x) = xg(x) = x2

c+x . When x ≥ 0, g(x) and h(x) increase monotonically,
while g(x) is concave and h(x) is convex.

Proof of Lemma 2. It is sufficient to prove Lemma 2 by evaluating the first-order and second-order derivatives
of g(x) and h(x).

Because g′(x) = (c+x)−x
(c+x)2 = c

(c+x)2 > 0 and h′(x) = g(x) + xg′(x) ≥ 0, g(x) and h(x) increase monotoni-

cally.

g(x) is concave because g′′(x)− 2c(c+x)
(c+x)4 = − 2c

(c+x)3 < 0.

h(x) is convex because h′′(x) = 2g′(x) + xg′′(x) = 2c
(c+x)2 − 2cx

(c+x)3 = 2c2

(c+x)3 > 0.

Next, we substitute τ = ν (cf. Theorem 2), and assume the following inequality

E∥∇f(x(t))∥2 ≥ ν. (39)

By Lemma 2, the expectation of clipped gradients can be bounded as

E
(
δ(t)
∥∥∇f(x(t))

∥∥2
2

)
= E

( τ
∥∥∇f(x(t))

∥∥2
2

τ +
∥∥∇f(x(t))

∥∥
2

)
≥

τ
(
E
∥∥∇f(x(t))

∥∥
2

)2
τ + E

∥∥∇f(x(t))
∥∥
2

≥ τν

τ + ν
E
∥∥∇f(x(t))

∥∥
2

=
ν

2
E
∥∥∇f(x(t))

∥∥
2
. (40)

Using (37), (40) Assumptions 3 and 4, and set b = 1, we can further bound the RHS of (38) as

−∆ ≤ −5ην

24

T∑
t=1

E
∥∥∇f(x(t))

∥∥
2
+

2ησg√
b

T∑
t=1

E
∥∥∇f(x(t))

∥∥
2

+
16η3L2

(1− α̂)2

(
τ2 +

σ2
pd

n

)
+

2048η3L2

(1− α̂)4
T (τ2 + σ2

pd) +
η2LT

2

(
τ2 +

σ2
pd

n

)
(41)

(i)

≤ −ην

8

T∑
t=1

E
∥∥∇f(x(t))

∥∥
2
+

2048Tη3L2

(1− α̂)4
(τ2 + σ2

pd) +
3Tη2L

1− α̂

(
τ2 +

σ2
pd

n

)
= −ην

8

T∑
t=1

E
∥∥∇f(x(t))

∥∥
2
+

2048Tη3L2τ2

(1− α̂)4
(1 + Tϕ2

m) +
3Tη2Lτ2

1− α̂
(1 + Tϕ2

m), (42)

where we use the condition ν ≥ 24σg to prove (i) and substitute σ2
p = Tτ2ϕ2

m/d to prove (42).
Reorganize terms, (42) can be further bounded as

1

T

T∑
t=1

E
∥∥∇f(x(t))

∥∥
2
≤ 8∆

ηνT
+

16384η2L2ν

(1− α̂)4
(1 + Tϕ2

m) +
24ηLν

1− α̂
(1 + Tϕ2

m)

(i)

≤ 8∆ϕm

ην
+

32768η2L2ν

(1− α̂)4
+

48ηLν

1− α̂

(ii)

≤ 8∆ϕm

ην
+

4096ηLν

(1− α̂)
8
3

+
48ηLν

1− α̂
,
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≤ 8∆ϕm

ην
+

4144ηLν

(1− α̂)
8
3

, (43)

where we substitute T = ϕ−2
m to prove (i), and use (25) for (ii).

Set η = γ
8
3 (1−α)

8
3

8288L and γ = 1
100 (1− α)ρ, (43) can be further bounded as

1

T

T∑
t=1

E
∥∥∇f(x(t))

∥∥
2
<

8288

γ
8
3 (1− α)

8
3

· 192L∆ϕm

ν
+

γ
8
3 (1− α)

8
3

8288
· 4144ν

(1− α̂)
8
3

=
8288

γ
8
3 (1− α)

8
3

· 192L∆ϕm

ν
+

ν

2

<
1784

√
L∆ϕm

γ
4
3 (1− α)

4
3

. (44)

Choosing ν = 1784
√
L∆ϕm

γ
4
3 (1−α)

4
3
, (44) simplifies to 1

T

∑T
t=1 E

∥∥∇f(x(t))
∥∥
2
< ν, which further implies that there

exists some t ∈ [T ] such that E
∥∥∇f(x(t))

∥∥
2
< ν. However, this contradicts the assumption (39), which leads

to the convergence results in the theorem.
Lastly, we can verify conditions (12), (16) and (25) are all met, which concludes the proof.

D Proof of Theorem 4

This section proves Theorem 4 based on results from Appendix C. We first assume all expected gradient norm

E
∥∥∇f(x(t))

∥∥
2
are greater than a threshold ν (i.e. E

∥∥∇f(x(t))
∥∥
2
≥ ν for all t = 1, . . . , T ). Set b =

( 24σg

ν

)2
and σp = 0 in (41), we can reach the following descent inequality

−∆ ≤ −ην

8

T∑
t=1

E
∥∥∇f(x(t))

∥∥
2
+

2048Tη3L2τ2

(1− α̂)4
+

3Tη2Lτ2

1− α̂
. (45)

Reorganize terms,

1

T

T∑
t=1

E
∥∥∇f(x(t))

∥∥
2
≤ 8∆

ηνT
+

16384η2L2ν

(1− α̂)4
+

24ηLν

1− α̂

<
8∆

ηνT
+

2048ηLν

(1− α̂)
8
3

+
24ηLν

1− α̂
,

≤ 8∆

ηνT
+

2072ηLν

(1− α̂)
8
3

,

where we use (25) for the second inequality.

Set η = 1
L ·
√

8
2072 and ν =

√
L∆

(1−α̂)
8
3 T

, the average ℓ2 norm of gradients can be bounded as

1

T

T∑
t=1

E
∥∥∇f(x(t))

∥∥
2
<

√
L∆

(1− α̂)
8
3T

= ν,

which implies that there exists some t ∈ [T ], such that E
∥∥∇f(x(t))

∥∥
2
< ν which contradicts the assumption,

and proves that PORTER-GC reaches E
∥∥∇f(x(t))

∥∥
2
≤ ν within T iterations
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