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Abstract

Policy gradient methods, where one searches for the policy of interest by maximizing the value functions using first-
order information, become increasingly popular for sequential decision making in reinforcement learning, games, and control.
Guaranteeing the global optimality of policy gradient methods, however, is highly nontrivial due to nonconcavity of the value
functions. In this exposition, we highlight recent progresses in understanding and developing policy gradient methods with
global convergence guarantees, putting an emphasis on their finite-time convergence rates with regard to salient problem
parameters.

1 Introduction

Sequential decision making is a canonical task that lies at
the heart of a wide spectrum of disciplines such as reinforce-
ment learning (RL), games and control, finding numerous
applications in autonomous driving, robotics, supply chain
management, resource scheduling, and so on. While classical
approaches such as dynamic programming (Bertsekas, 2017)
require model knowledge, modern practices advocate for the
model-free approach as an alternative: one seeks the policy
of interest directly based on data collected through interac-
tions with the environments, without estimating the model.
The advantage is that the model-free approach is often more
memory efficient, as well as more agile to changes.

One prevalent class of model-free approaches is policy gra-
dient (PG) methods, which follow an optimizer’s perspective
by formulating a value maximization problem with regard to
parameterized policies, and performing gradient updates to
improve the policy iteratively — often based on noisy feed-
backs received from the environments. PG methods and their
variants have become the de facto standard practices in an in-
creasing number of domains, due to their seamless integration
with neural network parameterization and adaptivity to var-
ious problem setups involving discrete, continuous or mixed
action and state spaces.

Despite the great empirical success of PG methods, little is
known about their theoretical convergence properties — es-
pecially when it comes to finite-time global convergence —
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due to the notorious nonconcavity of the value functions.
Until very recently, such understandings begin to emerge,
leveraging the fact that the PG methods are typically op-
erated on highly structured model classes, whose induced op-
timization landscapes turn out to be much more benign and
tractable than previously thought. The execution of problem-
dependent tailored analyses, rather than relying on black-box
optimization theory, fuels recent breakthroughs pioneered by
Fazel et al. (2018); Agarwal et al. (2021); Bhandari and Russo
(2019), to name just a few. The purpose of this article is to
survey the latest efforts in understanding the global conver-
gence of PG methods in the fields of RL, game theory and
control, as well as highlight algorithmic ideas that enable fast
global convergence, especially with regard to salient problem
parameters that are crucial in practice.

Organization. The rest of this article is organized as fol-
lows. Section 2 reviews PG methods in single-agent RL, fo-
cusing on solving tabular Markov decision processes (MDP).
Section 3 reviews PG methods in the game and multi-agent
RL setting, using the two-player zero-sum matrix game and
two-player zero-sum Markov game as illustrative examples.
Section 4 moves onto PG methods in control, focusing on
solving the linear quadratic regulator (LQR). We conclude in
Section 5.

Notation. We use ∥A∥, ∥A∥F and σmin(A) to represent the
spectral norm, the Frobenius norm, and the smallest singu-
lar value of a matrix A, respectively. For two vectors a and
b, we use a

b to denote their entrywise division when exists,
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and ∥a∥∞ denotes the entrywise maximum absolute value
of a vector a. Given a set S, we let ∆(S) represent the
probability simplex over S. Given two distributions p and q,
KL

(
p ∥ q

)
denotes the Kullback-Leibler (KL) divergence from

q to p. Last but not least, let PC(·) be the projection operator
onto the set C. To characterize the iteration complexity, we
write T (x) = O(f(x)) when T (x) ≤ Cf(x),∀x ≥ X for some
C,X > 0. Here x is typically set to 1/ϵ or other salient prob-

lem parameters. We use Õ(·) to suppress logarithmic factors
from the standard order notation O(·).

2 Global convergence of policy gra-
dient methods in RL

In this section, we review recent progresses in developing pol-
icy gradient methods for single-agent RL, focusing on the ba-
sic model of tabular Markov decision processes (MDPs).

2.1 Problem settings

Markov decision processes. An infinite-horizon dis-
counted MDP models the sequential decision making prob-
lem as M = (S,A, P, r, γ) with the state space S, the action
space A, the transition kernel P : S × A → ∆(S), the re-
ward function r : S × A → [0, 1] and the discount factor
γ ∈ (0, 1). Upon the agent choosing action a ∈ A at state
s ∈ S, the environment will move to a new state s′ according
to the transition probability P (s′|s, a) and assign a reward
r(s, a) to the agent. The action selection rule is implemented
by a randomized policy π : S → ∆(A), where π(a|s) speci-
fies the probability of choosing action a in state s. We shall
focus exclusively on the case where both S and A are finite
throughout this article.

Value functions and Q-functions. The value function
V π : S → R is defined as the expected discounted cumulative
reward starting at state s:

V π(s) := E
[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s

]
,

where at ∼ π(·|st) is obtained by executing policy π and
st+1 ∼ P (·|st, at) is generated by the MDP. The Q-function
(or action-value function) Qπ : S × A → R is defined in a
similar manner with an initial state-action pair (s, a):

Qπ(s, a) := E
[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s, a0 = a

]
.

In addition, the advantage function of policy π is defined as

Aπ(s, a) := Qπ(s, a)− V π(s).

It is well-known that there exists an optimal policy π⋆ that
maximizes the value function V π(s) for all s ∈ S simulta-
neously (Bellman, 1952; Puterman, 2014). We denote the
resulting optimal value function and Q-function by V ⋆ and
Q⋆, which satisfy the well-known Bellman optimality equa-
tions. The optimal policy π⋆ can be implied from the optimal
Q-function in a greedy fashion as

π⋆(a|s) = argmax
a∈A

Q⋆(s, a), ∀ s ∈ S. (1)

Policy parameterizations. Given some prescribed initial
distribution ρ over S, policy optimization methods seek to
maximize the value function

V π(ρ) := V πθ (ρ)

over the policy π, where π := πθ is often parameterized via
some parameter θ, and we overload the notation to denote
by V π(ρ) the expected value function Es∼ρ

[
V π(s)

]
. Note

that it is straightforward to observe that V ⋆(ϕ) − V π(ϕ) ≤
∥ϕ/ρ∥∞(V ⋆(ρ) − V π(ρ)) for general choices of ϕ ∈ ∆(S),
which characterizes the effect of possible discrepancy between
the initial distributions in training and deploying. Common
choices of policy parameterization are as follows.

• Direct parameterization: the policy is directly parame-
terized by

πθ(a|s) = θ(s, a),

where θ ∈ {θ ∈ R|S||A| : θ(s, a) ≥ 0,
∑

a∈A θ(s, a) = 1}.

• Tabular softmax parameterization: For θ ∈ R|S||A|, the
policy πθ is generated through softmax transform

πθ(a|s) =
exp(θ(s, a))∑

a′∈A exp(θ(s, a′))
,

leading to an unconstrained optimization over θ. Al-
though beyond the scope of this exposition, softmax
prameterization is more popular with function approx-
imation, by replacing θ(s, a) with fθ(s, a) typically im-
plemented by neural networks.

Policy gradients. The gradient ∇θV
πθ (ρ) plays an in-

strumental role in developing first-order policy optimization
methods. To facilitate presentation, we shall first introduce
the discounted state visitation distributions of a policy π:

dπs0(s) := (1− γ)

∞∑
t=0

γtP(st = s|s0),

where the expectation is with respect to the trajectory
(s0, a0, s1, a1, · · · ) generated by the MDP under policy π. We
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further denote by dπρ the discounted state visitation distribu-
tion when s0 is randomly drawn from distribution ρ, i.e.,

dπρ (s) := Es0∼ρ

[
dπs0(s)

]
.

The policy gradient of parameterized policy πθ is then given
by (Williams, 1992)

∇θV
πθ (ρ) =

1

1− γ
Es∼d

πθ
ρ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)Qπθ (s, a)

]
=

1

1− γ
Es∼d

πθ
ρ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)Aπθ (s, a)

]
,

which can be evaluated, for example, via REINFORCE
(Williams, 1992). The use of the advantage function
Aπθ (s, a), rather than the Q-function Qπθ (s, a), often helps
to reduce the variance of the estimated policy gradient.

For notational simplicity, we shall denote by θ(t) and π(t)

the parameter and the policy at the t-th iteration, and use

V (t), Q(t), A(t), d
(t)
ρ to denote V π(t)

, Qπ(t)

, Aπ(t)

, dπ
(t)

ρ , re-
spectively. In addition, we assume the policy gradients and
the value functions are exactly evaluated throughout this ar-
ticle, which enables us to focus on the optimization aspect of
PG methods.

2.2 Projected policy gradient method

The most straightforward first-order policy optimization
method is to adopt direct parameterization and perform pro-
jected gradient ascent updates:

θ(t+1) = P∆(A)|S|
(
θ(t) + η∇θV

(t)(ρ)
)
, (2)

or equivalently

π(t+1) = P∆(A)|S|
(
π(t) + η∇πV

(t)(ρ)
)
,

where η > 0 is the learning rate, and

∇θ(s,a)V
(t)(ρ) = ∇π(s,a)V

(t)(ρ) =
1

1− γ
d(t)ρ (s)Q(t)(s, a).

As the value function V πθ (ρ) is 2γ|A|
(1−γ)3 -smooth (Agarwal et al.,

2021), setting the learning rate to 0 < η ≤ (1−γ)3

2γ|A| ensures

monotonicity of V (t)(ρ) in t. On the other end, it is critically
established in Agarwal et al. (2021) that the value function
satisfies the following gradient domination condition.

Lemma 1 (Variational gradient domination). For any policy
π, we have

V ⋆(ρ)−V π(ρ) ≤ 1

1− γ

∥∥∥∥dπ⋆

ρ

ρ

∥∥∥∥
∞

max
π′∈∆(A)|S|

(π′−π)⊤∇πV
π(ρ).

The above lemma associates the optimality gap V ⋆(ρ) −
V π(ρ) with a variational gradient term, allowing the iterates
to converge globally as stated below.

Theorem 1 (Agarwal et al. (2021)). With 0 < η ≤ (1−γ)3

2γ|A| ,

the iterates of the projected PG method (2) satisfies

min
0≤t≤T

V ⋆(ρ)−V (t)(ρ) ≤ 4
√
|S|

1− γ

∥∥∥∥dπ⋆

ρ

ρ

∥∥∥∥
∞

√
2(V ⋆(ρ)− V (0)(ρ))

ηT
.

Theorem 1 establishes an iteration complexity of

O
(

|S||A|
(1−γ)6ϵ2

∥∥dπ⋆

ρ

ρ

∥∥2
∞

)
for finding an ϵ-optimal policy, which is

later improved to O
(

|S||A|
(1−γ)5ϵ

∥∥dπ⋆

ρ

ρ

∥∥2
∞

)
(Xiao, 2022). However,

the projection operator introduces O(log |A|) computational
overhead every iteration and is less compatible with function
approximation. This motivates the study of PG methods that
are compatible with unconstrained optimization, e.g., by us-
ing softmax parameterization.

2.3 Softmax policy gradient method

With softmax parameterization, the policy gradient method
writes

θ(t+1) = θ(t) + η∇θV
(t)(ρ), (3)

where

∇θ(s,a)V
(t)(ρ) =

η

1− γ
d(t)ρ (s)π(t)(a|s)A(t)(s, a).

Remarkably, Agarwal et al. (2021) established the asymptotic
global convergence of the softmax PG method as follows.

Theorem 2 (Agarwal et al. (2021)). With constant learning
rate 0 < η ≤ (1 − γ)3/8, the softmax PG method converges
to the optimal policy, i.e., V (t)(s) → V ⋆(s) as t → ∞ for all
s ∈ S.

Mei et al. (2020) later demonstrated an iteration complex-
ity of O( 1

c(M)2ϵ ) for achieving an ϵ-optimal policy, where

c(M) is a trajectory-dependent quantity depending on salient
problem parameters such as the number of states |S| and
the effective horizon (1 − γ)−1. Unfortunately, this quantity
c(M) can be rather small and does not exclude the possibility
of incurring excessively large iteration complexity, as demon-
strated by the following hardness result (Li et al., 2023).

Theorem 3 (Li et al. (2023)). There exist universal constants
c1, c2, c3 > 0 such that for any γ ∈ (0.96, 1) and |S| ≥ c3(1−
γ)−6, one can find a γ-discounted MDP such that the softmax
PG method takes at least

c1
η
|S|2

c2
1−γ

iterations to reach ∥V ⋆ − V (t)∥∞ ≤ 0.15.

3



Therefore, though guaranteed to converge globally, softmax
PG can take (super-)exponential time to even reduce the op-
timality gap within a constant level. Intuitively speaking,
softmax PG method fails to achieve a reasonable convergence
rate when the probability π(t)(a⋆(s)|s) assigned to the optimal
action a⋆(s) is close to zero. Agarwal et al. (2021) proposed
to penalize the policy for getting too close to the border, by
imposing a log barrier regularization

V πθ
ω (ρ) = V πθ (ρ) +

ω

|S||A|
∑

s∈S,a∈A
log πθ(a|s).

With an appropriate choice of regularization parameter ω,
the regularized softmax PG can achieve an ϵ-optimal policy

within O
(

|S|2|A|2
(1−γ)6ϵ2

∥∥∥d⋆
ρ

ρ

∥∥∥2
∞

)
iterations (Agarwal et al., 2021).

Nonetheless, this regularization scheme is not as popular in
practice, compared to the entropy regularization scheme that
will be discussed momentarily.

2.4 Natural policy gradient method

Both projected PG and softmax PG fall short of attaining an
iteration complexity that is independent of salient problem
parameters, especially with respect to the size of the state
space |S|. This ambitious goal can be achieved, somewhat
surprisingly, by adopting Fisher information matrix as a pre-
conditioner, which leads to the natural policy gradient (NPG)
method (Kakade, 2002):

θ(t+1) = θ(t) + η(Fθ(t)

ρ )†∇θV
(t)(ρ), (4)

where

Fθ
ρ := Es∼d

πθ
ρ ,a∼πθ(·|s)

[(
∇θ log πθ(a|s)

)(
∇θ log πθ(a|s)

)⊤]
is the Fisher information matrix, and † denotes the Moore-
Penrose pseudoinverse. With softmax parameterization, the
NPG updates take the form

θ(t+1) = θ(t) +
η

1− γ
A(t),

or equivalently,

π(t+1)(a|s) ∝ π(t)(a|s) exp
(ηQ(t)(s, a)

1− γ

)
,

It is noted that the (softmax) NPG update rule coincides with
the multiplicative weights update (MWU) method (Cesa-
Bianchi and Lugosi, 2006), and that the update rule does not
depend on the initial state distribution ρ. Shani et al. (2020)
first established a global convergence rate of O

(
1

(1−γ)2
√
T

)
us-

ing decaying learning rate ηt = O
(
1−γ√

t

)
, which was improved

by Agarwal et al. (2021) using a constant learning rate η,
stated as follows.

Theorem 4 (Agarwal et al. (2021)). With uniform initial-
ization θ(0) = 0 and constant learning rate η > 0, the iterates
of NPG satisfy

V ⋆(ρ)− V (T )(ρ) ≤ 1

T

( log |A|
η

+
1

(1− γ)2

)
.

Encouragingly, as long as η ≥ (1−γ)2

log |A| , the iteration com-

plexity of NPG methods becomes O
(

1
(1−γ)2T

)
, which is inde-

pendent of the size of the state-action space. On the com-
plementary side, the iteration complexity of NPG is lower
bounded by ∆

(1−γ)|A| exp(−η∆T ) — established in Khodada-

dian et al. (2021) — where the optimal advantage function
gap ∆ = mins mina̸=a⋆(s) |A⋆(s, a)| ≥ 0 is determined by the
MDP instance. As the lower bound attains its maximum

1
(1−γ)eηT when ∆ = 1

ηT , it is immediate that the sublinear

rate in Theorem 4 cannot be improved in T . Nonetheless,
two strategies to achieve even faster linear convergence with
NPG updates include (i) adopting increasing/adaptive learn-
ing rates (Khodadadian et al., 2021; Bhandari and Russo,
2021; Lan, 2023; Xiao, 2022), or (ii) introducing entropy reg-
ularization (Cen et al., 2022; Lan, 2023; Zhan et al., 2023),
which we shall elaborate on next.

2.5 Entropy regularization

Introducing entropy regularization is a popular technique
in practice to promote exploration (Haarnoja et al., 2017).
Specifically, one seeks to optimize the entropy-regularized
value function defined as

V π
τ (s) = V π(s) +

τ

1− γ
Es′∼dπ

s

[
H(π(·|s′))

]
,

where H(π(·|s)) = −∑
a∈A π(a|s) log π(a|s) is the entropy

of policy π(·|s), and τ > 0 serves as the regularization pa-
rameter known as the temperature. The entropy-regularized
Q-function is defined as

Qπ
τ (s, a) = r(s, a) + γEs′∼P (·|s,a)

[
V π
τ (s′)

]
.

The resulting optimal value function, Q-function and opti-
mal policy are denoted by V ⋆

τ , Q⋆
τ , and π⋆

τ . From an op-
timization perspective, the entropy term adds curvature to
the value function and ensures that the optimal policy π⋆

τ is
unique. Interestingly, in contrast to the greedy optimal policy
for the unregularized problem in (1), the optimal policy of the
entropy-regularized problem reflects “bounded rationality” in
decision making, namely

π⋆
τ (·|s) ∝ exp (Q⋆

τ (s, ·)/τ) .

It should be noted, however, adding the entropy regulariza-
tion generally does not make V π

τ (ρ) concave unless τ is unrea-
sonably large. As the entropy function is bounded by log |A|,
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the optimal entropy-regularized policy is also guaranteed to
be approximately optimal for the unregularized RL problem
in the following sense:

V π⋆
τ (ρ) ≥ V ⋆(ρ)− τ log |A|

1− γ
.

Motivated by its benign convergence, we consider NPG for
the entropy-regularized problem:

θ(t+1) = θ(t) + η(Fθ(t)

ρ )†∇θV
(t)
τ (ρ),

which can be equivalently written as

π(t+1)(a|s) ∝ π(t)(a|s)1− ητ
1−γ exp

(ηQ(t)
τ (s, a)

1− γ

)
. (5)

The following theorem shows that with appropriate choices
of constant learning rate η, entropy-regularized NPG con-
verges to the unique optimal policy π⋆

τ at a linear rate.

Theorem 5. For constant learning rate 0 < η ≤ (1 − γ)/τ
and uniform initialization, the entropy-regularized NPG up-
dates (5) satisfy

∥V ⋆
τ − V (T )

τ ∥∞ ≤ 15(1 + τ log |A|)
1− γ

(1− ητ)T−1

and

V ⋆
τ (ρ)− V (T )

τ (ρ) ≤
∥∥∥∥ ρ

ν⋆τ

∥∥∥∥
∞

(
1 + τ log |A|

1− γ
+

(1− γ) log |A|
η

)
·max

{
γ, 1− ητ

1− γ

}T

.

Here, ν⋆τ is the stationary state distribution of policy π⋆
τ .

The first and the second bounds are due to Cen et al. (2022)
and Lan (2023)1 respectively, where they lead to slightly
different iteration complexities. Taken collectively, entropy-
regularized NPG takes no more than

Õ
(
min

{ 1

ητ
log

1

ϵ
,max

{ 1

1− γ
,
1− γ

ητ

}
log

∥ρ/ν⋆τ ∥∞
ϵ

})
iterations to find a policy satisfying V ⋆

τ (ρ) − V π
τ (ρ) ≤ ϵ. We

make note that the difference stems from different analy-
sis approaches: Cen et al. (2022) built their analysis upon
the contraction property of the soft Bellman operator (the
entropy-regularized counterpart of the original Bellman oper-
ator), while Lan (2023) made use of the connection between
regularized NPG and regularized mirror descent. This can be

1We discard some of the simplification steps therein and state the
convergence result for a wider range of learning rate η.
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Figure 1: Comparison of PG and NPG methods with entropy
regularization for a bandit problem (γ = 0) with 3 actions
associated with rewards 1.0, 0.9 and 0.1. The regularization
parameter is set to τ = 0.1.

observed from the following equivalence: the update rule (5)
can be equivalently expressed as

π(t+1)(·|s) = arg min
p∈∆(A)

〈
p,−Q(t)

τ (s, ·)
〉
− τH(p)

+
1

ηMD
KL

(
p ∥π(t)(·|s)

)
,

with ηMD = η
1−γ−ητ . The analysis of regularized RL can be

further generalized to adopt non-strongly convex regulariz-
ers (Lan, 2023), non-smooth regularizers (Zhan et al., 2023),
state-wise policy updates (Lan et al., 2023), and so on.

3 Global convergence of policy gra-
dient methods in games

In this section, we review recent progresses in developing pol-
icy gradient methods for games and multi-agent RL, focusing
on the basic models of two-player zero-sum matrix games and
two-player zero-sum Markov games.

3.1 Problem settings

Two-player zero-sum matrix games. Given two players
each taking actions from action spaces A and B, the matrix
game aims to solve the following saddle-point optimization
problem

max
µ∈∆(A)

min
ν∈∆(B)

V µ,ν := µ⊤Aν, (6)

where A ∈ R|A|×|B| denotes the payoff matrix with ∥A∥∞ ≤ 1,
µ ∈ ∆(A) and ν ∈ ∆(B) stand for the mixed/randomized
policies of each player, defined respectively as distributions
over the probability simplex ∆(A) and ∆(B). Here, one player
seeks to maximize the value function (i.e., the max player)
while the other player wants to minimize it (i.e., the min
player). It is well-known since Neumann (1928) that the max
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and min operators in (6) can be exchanged without affecting
the solution. A pair of policies (µ⋆, ν⋆) is said to be a Nash
equilibrium (NE) of the matrix game if

V µ⋆,ν ≥ V µ⋆,ν⋆ ≥ V µ,ν⋆ ∀(µ, ν) ∈ ∆(A)×∆(B). (7)

In words, the NE corresponds to when both players play their
best-response strategies against their opponents.

Two-player zero-sum Markov games. Moving onto se-
quential decision-making, we consider an infinite-horizon
discounted Markov game which is defined as M =
{S,A,B, P, r, γ}, with discrete state space S, action spaces of
two players A and B, transition probability P , reward func-
tion r : S × A × B → [0, 1] and discount factor γ ∈ [0, 1). A
policy µ : S → ∆(A) (resp. ν : S → ∆(B)) defines how the
max player (resp. the min player) reacts to a given state s,
where the probability of taking action a ∈ A (resp. b ∈ B)
is µ(a|s) (resp. ν(b|s)). The transition probability kernel
P : S × A × B → ∆(S) defines the dynamics of the Markov
game, where P (s′|s, a, b) specifies the probability of transiting
to state s′ from state s when the players take actions a and
b respectively. The value function and Q-function of a given
policy pair (µ, ν) is defined in a similar way as in single-agent
RL:

V µ,ν(s) = E

[ ∞∑
t=0

γtr(st, at, bt)
∣∣ s0 = s

]
,

Qµ,ν(s, a, b) = E

[ ∞∑
t=0

γtr(st, at, bt)
∣∣ s0 = s, a0 = a, b0 = b

]
.

The minimax game value on state s is defined by

V ⋆(s) = max
µ

min
ν

V µ,ν(s) = min
ν

max
µ

V µ,ν(s).

Similarly, the minimax Q-function Q⋆(s, a, b) is defined by

Q⋆(s, a, b) = r(s, a, b) + γEs′∼P (·|s,a,b)V
⋆(s′). (8)

It is established by Shapley (1953) that there exists a pair
of stationary policy (µ⋆, ν⋆) attaining the minimax value on
all states (Filar and Vrieze, 2012), and is called the NE of
the Markov game. We seek to obtain a pair of ϵ-optimal NE
policy pair — denoted by ϵ-NE — (µ̂⋆, ν̂⋆) that satisfies

V µ,ν̂⋆

(s)− ϵ ≤ V µ̂⋆,ν̂⋆

(s) ≤ V µ̂⋆,µ(s) + ϵ

for any µ ∈ ∆(A)S , ν ∈ ∆(B)S and s ∈ S.
With the success of the NPG method in single-agent RL, it

is attempting to apply it in the context of two-player zero-
sum games, where each player executes the NPG updates
independently by treating the other player as part of the en-
vironment. Notably, the NPG dynamics coincide with the

Figure 2: Cycles of MWU trajectories in a rock-paper-scissors
game from a benign initialization close to the equilibrium.

well-studied MWU method, or Hedge, that stems from online
optimization and game theory, whose average-iterate policy
(i.e., ( 1

T

∑T
t=1 µ

(t), 1
T

∑T
t=1 ν

(t))) is shown to achieve a con-

verging NE-gap at the rate of O(1/
√
T ) for two-player zero-

sum matrix games. However, two technical challenges remain:
last-iterate convergence and generalization to Markov games,
which we shall discuss separately in the sequel.

3.2 Global last-iterate convergence

Average-iterate convergence guarantees fall short of determin-
ing if the learning trajectory converges towards NE (referred
to as last-iterate convergence that applies to (µ(T ), ν(T ))
alone) or enters recurrent cycles instead. In addition, for
large-scale applications that involve the use of neural net-
works, average-iterate convergence is also unsatisfactory as
averaging neural networks is intractable. Mertikopoulos et al.
(2018) demonstrated that MWU, when adopted by both
agents in a two-player zero-sum matrix game, suffers from
the Poincaré recurrence phenomenon that forbids the method
from converging. This holds for other methods in the family
of “Follow the Regularized Leader” (FTRL), which necessi-
tates algorithmic modifications to the original NPG/MWU
updates.

Optimism. Rakhlin and Sridharan (2013) proposed the use
of optimistic updates, which extrapolate the gradient infor-
mation with that from the previous iteration. In the con-
text of two-player zero-sum matrix games, Optimistic MWU
(OMWU) updates at the t-th iteration can be written as{

µ(t+1)(a) ∝ µ(t)(a) exp(η(2Aν(t) −Aν(t−1)))

ν(t+1)(b) ∝ ν(t)(b) exp(−η(2A⊤µ(t) −A⊤µ(t−1)))
.
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Compared with the original MWU method{
µ(t+1)(a) ∝ µ(t)(a) exp(ηAν(t))

ν(t+1)(b) ∝ ν(t)(b) exp(−ηA⊤µ(t))
,

OMWU estimates the reward for the next iteration by ap-
pending the terms Aν(t) − Aν(t−1) and A⊤µ(t) − A⊤µ(t−1)

to the current payoff vectors Aν(t) and A⊤µ(t). The up-
dates can be equivalently formalized as Algorithm 1, where
{µ̄(t), ν̄(t)}∞t=0 are auxiliary variables that can be viewed
as some “predictive” sequence for facilitating the analysis.
Rakhlin and Sridharan (2013) first proved that OMWU yields

Algorithm 1: OMWU for two-player zero-sum matrix
games

1 Input: Learning rate η, (optional) regularization
parameter τ .

2 Initialization: Set µ(0), ν(0), µ̄(0) and ν̄(0) as uniform
policies. Set τ = 0 when not using regularization.

3 for t = 0, · · · ,∞ do
4 When t ≥ 1, update µ̄(t) and ν̄(t) as{

µ̄(t)(a) ∝ µ̄(t−1)(a)1−ητ exp(ηAν(t))

ν̄(t)(b) ∝ ν̄(t−1)(b)1−ητ exp(−ηA⊤µ(t)).

Update µ(t+1) and ν(t+1) as{
µ(t+1)(a) ∝ µ̄(t)(a)1−ητ exp(ηAν(t))

ν(t+1)(b) ∝ ν̄(t)(b)1−ητ exp(−ηA⊤µ(t))
.

O(log T ) regret in two-player zero-sum matrix games, thus

achieving a faster Õ(1/T ) average-iterate convergence to NE.
Daskalakis et al. (2021) demonstrated that OMWU achieves
near-optimal O(poly(log T )) regret for multi-player general-
sum games as well. Daskalakis and Panageas (2019) estab-
lished asymptotic last-iterate convergence of OMWU assum-
ing that the NE is unique. Wei et al. (2021b) demonstrated
OMWU converges linearly to the NE under the same unique-
ness assumption.

Theorem 6 ((Wei et al., 2021b, informal)). For a two-player
zero-sum matrix game with unique NE ζ⋆ = (µ⋆, ν⋆), the last
iterate of OMWU ζ(T ) = (µ(T ), ν(T )) converges to ζ⋆ linearly
with constant learning rate η ≤ 1/8.

Wei et al. (2021b) also investigated optimistic gradient de-
scent ascent (OGDA), another variant of optimistic update
rules by focusing on projected gradient updates (2), and de-
rived global linear convergence guarantees without placing

assumptions on NE uniqueness. A concrete iteration com-
plexity, however, remains elusive as both convergence rates
depend on unspecified problem-dependent parameters.

Regularization. Regularization has been proven instru-
mental in enabling faster convergence for single-agent RL. In
the context of game theory, entropy regularization is closely
related to quantal response equilibrium (QRE) (McKelvey
and Palfrey, 1995), an extension to NE with bounded ra-
tionality. Formally speaking, when the two agents seek to
maximize their own entropy-regularized payoffs

max
µ∈∆(A)

min
ν∈∆(B)

V µ,ν
τ := µ⊤Aν + τH(µ)− τH(ν),

the resulting equilibrium ζ⋆τ = (µ⋆
τ , ν

⋆
τ ) is referred to as a QRE

and satisfies{
µ⋆
τ (a) ∝ exp([Aν⋆τ /τ ]a)

ν⋆τ (b) ∝ exp([A⊤µ⋆
τ/τ ]b)

, ∀a ∈ A, b ∈ B.

An approximate ϵ-QRE is defined in a similar way to ϵ-
NE, by replacing V µ,ν in (7) with its regularized counterpart
V µ,ν
τ , and ϵ/2-QRE is guaranteed to be an ϵ-NE by setting

τ = Õ(ϵ). Cen et al. (2021) proposed entropy-regularized
OMWU (summarized in Algorithm 1) to combine the ideas
of regularization and optimism, and proved the method con-
verges to the QRE at a linear rate without assumption on the
uniqueness of NE.

Theorem 7 ((Cen et al., 2021, informal)). With constant
learning rate 0 < η ≤ min{1/(2τ + 2), 1/4}, the last iterate
ζ(T ) = (µ(T ), ν(T )) generated by entropy-regularized OMWU
converges to the QRE ζ⋆τ at a linear rate 1− ητ .

This gives an iteration complexity of O
(
(1 + 1/τ) log 1/ϵ

)
for finding an ϵ-QRE in a last-iterate manner, or Õ

(
1/ϵ

)
for

finding an ϵ-NE by setting τ = Õ(ϵ). One might wonder
if using regularization alone can also ensure the last-iterate
convergence, which amounts to studying the update rule{

µ(t)(a) ∝ µ(t−1)(a)1−ητ exp(ηAν(t))

ν(t)(b) ∝ ν(t−1)(b)1−ητ exp(−ηA⊤µ(t))
.

The answer turns out to be yes, as investigated recently in
Sokota et al. (2023); Pattathil et al. (2023). The same con-
traction rate 1 − ητ can be obtained albeit with a more re-
strictive choice of learning rate η = O(τ), which translates to

an iteration complexity of Õ(1/ϵ2) for finding an ϵ-NE, slower

than the entropy-regularized OMWU by a factor of Õ
(
1/ϵ

)
.
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3.3 Extension to Markov games

Given some prescribed initial state distribution ρ, one can fo-
cus on solving the following saddle-point optimization prob-
lem

max
µ∈∆(A)|S|

min
ν∈∆(B)|S|

V µ,ν(ρ)

for two-player zero-sum Markov games. A key property for
two-player zero-sum matrix games is that the value function
V µ,ν is bilinear in the policy space, which unfortunately no
longer holds in the Markov setting. Two strategies have been
successful in establishing provable policy gradient methods
for two-player zero-sum Markov games, by either leveraging
tools from saddle-point optimization theory for nonconvex-
nonconcave functions or exploiting recursive structures of the
value function.

Conventional wisdom in nonconvex-nonconcave saddle-
point optimization suggests adopting two-timescale rules,
which enforces a much smaller learning rate on one of
the players. Daskalakis et al. (2020) demonstrated that
when the two players adopt projected gradient descent as-
cent (GDA) updates with two-timescale learning rates, the
method achieves an average-iterate convergence to ϵ-NE
within Õ(poly(ϵ−1, |S|, |A|, |B|)) iterations (omitting addi-
tional instance-dependent parameters). Zeng et al. (2022)
showed that softmax policy GDA updates with entropy regu-
larization yields a last-iterate convergence with an improved
iteration complexity with regard to ϵ−1.
However, two-timescale rules give asymmetric convergence

guarantees, i.e., only the slow learner is guaranteed to find an
approximate NE policy, while the fast learner approximates
the best response to the slow learner throughout the learning
process. A natural question arises: is it possible to design
symmetric algorithms with an improved iteration complexity?

Smooth value updates. Instead of sticking to policy
updates using vanilla gradient information ∇µV

µ,ν(ρ) and
∇νV

µ,ν(ρ), another line of works seek to divide the up-
dates into two parts, where the policy updates are pro-
vided by two-player zero-sum matrix game algorithms with
Q(t)(s) = [Q(t)(s, a, b)]a∈A,b∈B, where

Q(t)(s, a, b) = r(s, a, b) + γEs′∼P (·|s,a,b)

[
V (t−1)(s′)

]
, (9a)

presuming the role of payoff matrices for all s ∈ S, and the
value updates are given by

V (t)(s) = (1− αt)V
(t−1)(s) + αtf

(t)(s). (9b)

Here, αt > 0 is the learning rate for the value function and
f (t)(s) is a one-step look-ahead value estimator for state s,
typically defined as

f (t)(s) = µ(t)(s)⊤Q(t)(s)ν(t)(s), (10)

or

f (t)(s) = µ(t)(s)⊤Q(t)(s)ν(t)(s) + τH(µ(t)(s))− τH(ν(t)(s))
(11)

when we incorporate entropy regularization. These methods
are akin to the prevalent actor-critic type algorithms. The
algorithm procedure is summarized in Algorithm 2. Note that
when setting αt = 1 and f (t)(s) to the one-step minimax game
value as

f (t)(s) = max
µ(s)∈∆(A)

min
ν(s)∈∆(B)

µ(s)⊤Q(t)(s)ν(s),

we recover the classical value iteration for two-player zero-sum
Markov games.

Algorithm 2: Actor-critic for two-player zero-sum
Markov games

1 Input: Learning rate for Q-value function {αt}∞t=0,
learning rate for policies η, policy optimization
method for two-player zero-sum matrix game
matrix alg, (optional) regularization parameter τ .

2 Initialization: Set Q(0) = 0 and µ(0), ν(0) as uniform
policies.

3 for t = 0, 1, · · · do
4 for all s ∈ S do in parallel
5 Invoke matrix alg with payoff matrix Q(t)(s)

and learning rate η to update µ(t+1)(s),
ν(t+1)(s).

6 Update Q(t+1)(s) and V (t+1)(s) according to
(9) with learning rate αt+1.

Wei et al. (2021a) first demonstrated that Algorithm 2
with matrix alg OGDA and decaying learning rate αt =
2/(1−γ)+1
2/(1−γ)+t yields both average-iterate and last-iterate con-

vergences to NE. Cen et al. (2023) achieved an improved
convergence rate by adopting entropy regularization and the
OMWU method (e.g. Algorithm 1).

Theorem 8 ((Cen et al., 2023, Theorem 1)). Algorithm 2
with matrix alg entropy-regularized OMWU, entropy-
regularized value updates (11) and constant learning rates
η = O((1 − γ)3/|S|), αt = ητ guarantees last-iterate
convergence to the QRE at a linear rate 1− ητ .

The above theorem demonstrates an iteration complexity

of Õ
(

|S|
(1−γ)4τ log 1/ϵ

)
for finding an ϵ-QRE, or Õ

(
|S|

(1−γ)5ϵ

)
for finding an ϵ-NE. It remains an open problem to achieve
an iteration complexity with better dependency on |S| and
(1− γ)−1.
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4 Global convergence of policy gra-
dient methods in control

In this section, we briefly review policy gradient methods for
control, focusing on a standard control problem called linear
quadratic regulators (LQRs), based primarily on the excel-
lent work of Fazel et al. (2018). We refer interested readers
to Hu et al. (2023) for a recent comprehensive survey on the
developments of policy optimization for general control prob-
lems including but not limited to H∞ control, risk-sensitive
control, to name just a few.

4.1 Problem settings

Linear quadratic regulator (LQR). Consider a discrete-
time linear dynamic system

x(t+1) = Ax(t) +Bu(t),

where x(t) ∈ Rd and u(t) ∈ Rk are the state and the input
at time t, A ∈ Rd×d and B ∈ Rd×k specify system transition
matrices. The linear quadratic regulator (LQR) problem in
the infinite horizon is defined as

min
u(t)

Ex(0)∼D

[ ∞∑
t=0

(
x(t)⊤Qx(t) + u(t)⊤Ru(t)

)]
, (12)

where D determines the distribution of the initial state x(0),
Q ∈ Rd×d and R ∈ Rk×k are positive definite matrices
parametrizing the costs. Classical optimal control theory
(Anderson and Moore, 2007) tells us that under certain sta-
bility conditions (e.g., controllability), it is ensured that the
optimal cost is finite and can be achieved by a linear controller

u(t) = −K⋆x(t),

where K⋆ ∈ Rk×d is the optimal control gain matrix. From
an optimization perspective, it is therefore natural to cast the
LQR problem as optimizing over all linear controllers u(t) =
−Kx(t) with K ∈ Rk×d to minimize the cost:

min
K∈K

C(K) := Ex(0)∼D

[
x(0)⊤PKx(0)

]
,

where

PK =

∞∑
t=0

((A−BK)⊤)t(Q+K⊤RK)(A−BK)t.

The feasible set K = {K : ∥A − BK∥2 < 1} ensures PK is
well defined for all K ∈ K.

4.2 Policy gradient method

The policy gradient method for the LQR problem is simply
defined as

K(t+1) = K(t) − η∇KC(K(t)), (13)

where η > 0 is the learning rate. In addition, the policy
gradient ∇KC(K) can be written as

∇KC(K) = 2
(
(R+B⊤PKB)K −B⊤PKA

)
ΣK ,

where ΣK = Ex(0)∼D
[∑∞

t=0 x
(t)x(t)⊤] denotes the state cor-

relation matrix.
Like the RL problem, the objective function C(K) is non-

convex in general, which makes it challenging to claim a global
convergence guarantee. Fortunately, the LQR problem satis-
fies the following gradient dominance condition (Fazel et al.,
2018).

Lemma 2 (Gradient dominance). Suppose that λ =
σmin(Ex(0)∼D

[
x(0)x(0)⊤]) > 0. It holds that

C(K)− C(K⋆) ≤ ∥ΣK⋆∥2
λ2σmin(R)

∥∇KC(K)∥2F .

The gradient dominance property provides hope for attain-
ing global linear convergence of the policy gradient method
to the optimal policy, yet to complete the puzzle, another
desirable ingredient is the smoothness of the cost function
C(K). While this cannot be established in its full generality
as C(K) becomes infinity when K moves beyond K, fortu-
nately, smoothness can be established for any given sublevel
set Kγ̄ = {K ∈ K : C(K) ≤ γ̄}, which suffices to establish
the desired convergence results as follows.

Theorem 9 (Fazel et al. (2018)). Assume that C(K(0)) is
finite. With an appropriate constant learning rate

η = poly
(λσmin(Q)

C(K(0))
, ∥A∥−1

2 , ∥B∥−1
2 , ∥R∥−1

2 , σmin(R)
)
,

the policy gradient method (13) converges to the optimal policy
at a linear rate:

C(K(t+1))−C(K⋆) ≤
(
1− λ2σmin(R)η

∥ΣK⋆∥2

)(
C(K(t))−C(K⋆)

)
.

To find an ϵ-optimal control policy K(T ) satisfying
C(K(T )) − C(K⋆) ≤ ϵ, the above theorem ensures that the
policy gradient method takes no more than

∥ΣK⋆∥2
λ2σmin(R)η

log
C(K(0))− C(K⋆)

ϵ

iterations.
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4.3 Natural policy gradient method

To facilitate the development of NPG, we consider a linear
policy with additive Gaussian noise, specified as

u(t) ∼ π(·|x(t)) = N (−Kx(t), σ2I).

The NPG update rule (Kakade, 2002) then reads like

vec(K(t+1)) = vec(K(t))− η(FK(t)

D )†vec(∇KC(K(t))), (14)

where vec(K) flattens K ∈ Rk×d into a vector in row-major
order, and the Fisher information matrix FK

D ∈ Rkd×kd is
given by

FK
D = E

[ ∞∑
t=0

vec(∇K log π(u(t)|x(t)))vec(∇K log π(u(t)|x(t)))⊤

]

= σ−2E

[ ∞∑
t=0

diag(x(t)x(t)⊤, · · · , x(t)x(t)⊤)

]
= σ−2diag(ΣK , · · · ,ΣK).

Merging the dummy variance σ2 into the learning rate η, and
reshaping back into the matrix form, the NPG update rule
(14) can be equivalently rewritten as

K(t+1) = K(t) − η∇KC(K(t))Σ−1
K(t) ,

which modifies the update direction using the state correla-
tion matrix. This allows for an improved progress following
a single update, as demonstrated by the following lemma.

Lemma 3 (Fazel et al. (2018)). Assume that C(K(t)) is fi-
nite and the learning rate satisfies η ≤ 1

∥R+B⊤P
K(t)B∥2

, the

NPG update satisfies

C(K(t+1))− C(K⋆) ≤
(
1− λσmin(R)η

∥ΣK⋆∥2

)(
C(K(t))− C(K⋆)

)
.

The improvement is twofold: the convergence rate is im-
proved by a factor of λ; in addition, it allows for a larger
learning rate that would not be possible under a smoothness-
based analysis. By adopting η = 1

∥R∥2+∥B∥2
2C(K(0))λ−1 , one

can show that the learning rate requirement is met through-
out the trajectory, which leads to an iteration complexity of

∥ΣK⋆∥2
λσmin(R)η

log
C(K(0))− C(K⋆)

ϵ

for finding an ϵ-optimal control policy. Last but not least, it
is possible to achieve even-faster convergence rate by assum-
ing access to more complex oracle, i.e., the Gauss-Newton
method. The update rule is given by

K(t+1) = K(t) − η(R+B⊤PK(t)B)−1∇KC(K(t))Σ−1
K(t) ,

which allows a constant learning rate as large as η = 1 and
an iteration complexity of

∥ΣK⋆∥2
λ

log
C(K(0))− C(K⋆)

ϵ
.

5 Conclusions

Policy gradient methods remain to be at the forefront of data-
driven sequential decision making, due to its simplicity and
flexibility in integrating with other advances in computation
from adjacent fields such as high performance computing and
deep learning. Due to space limits, our focus is constrained on
the optimization aspects of policy gradient methods, assum-
ing access to exact gradient or policy evaluations. In reality,
these information need to estimated by samples collected via
various mechanisms and thus noisy, leading to deep interplays
between statistics and optimization. We hope this exposition
provides a teaser to invite more interest from the optimization
community to work in this area.
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