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PETRELS: Parallel Subspace Estimation and
Tracking by Recursive Least Squares from Partial
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Abstract—Many real world datasets exhibit an embedding
of low-dimensional structure in a high-dimensional manifold.
Examples include images, videos and internet traffic data. It is
of great significance to estimate and track the low-dimensional
structure with small storage requirements and computational
complexity when the data dimension is high. Therefore we
consider the problem of reconstructing a data stream from a
small subset of its entries, where the data is assumed to lie in a
low-dimensional linear subspace, possibly corrupted by noise. We
further consider tracking the change of the underlying subspace,
which can be applied to applications such as video denoising,
network monitoring and anomaly detection. Our setting can
be viewed as a sequential low-rank matrix completion problem
in which the subspace is learned in an online fashion. The
proposed algorithm, dubbed Parallel Estimation and Tracking
by REcursive Least Squares (PETRELS), first identifies the
underlying low-dimensional subspace, and then reconstructs the
missing entries via least-squares estimation if required. Subspace
identification is performed via a recursive procedure for each row
of the subspace matrix in parallel with discounting for previous
observations. Numerical examples are provided for direction-of-
arrival estimation and matrix completion, comparing PETRELS
with state of the art batch algorithms.

Index Terms—subspace identification and tracking, recursive
least squares, matrix completion, partial observations, online
algorithms

I. INTRODUCTION

When data is generated by a process that is governed
by a small number of parameters, it can be represented as
a low dimensional structure embedded in a much higher
dimensional space. If the embedding is assumed linear, then
the underlying low-dimensional structure becomes a linear
subspace. Subspace Identification and Tracking (SIT) of a data
stream plays an important role in various signal processing
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tasks such as online identification of network anomalies [2],
moving target localization [3], beamforming [4], and video
denoising [5].

A common way to determine low dimensional structure for
static data is by using Principal Component Analysis (PCA)
[6], which requires computing an eigendecomposition of an
appropriate correlation matrix. In order to attempt to reduce
the complexity in dynamic settings, typical SIT algorithms
maintain an estimate of the underlying subspace at each time
slot using all data collected at the current time and limited
historical data about the subspace trajectory [7], [8].

When the data dimension is high, it may be impossible
or prohibitively expensive to collect every data entry. In
recommender systems it is unrealistic to expect every user
to provide feedback on every product. In wireless sensor
networks every measurement drains battery power and it is
important to extend network lifetime by making fewer mea-
surements. Hence there is growing interest in identifying and
tracking a low-dimensional subspace from highly incomplete
observations of the data stream.

Recent advances in Compressive Sensing (CS) [9], [10],
[11] and Matrix Completion (MC) [12], [13] enable batch
inference of data structure from observations that are highly
incomplete with respect to the ambient dimension. CS enables
reconstruction of a single vector from a few attributes by
assuming it is sparse in a known basis or dictionary. MC recon-
structs a matrix from a small subset of its entries assuming the
matrix is low rank. It is equivalent to subspace identification
from incomplete batch data since matrix reconstruction is
straightforward once the row or column space is known.

MC does not require prior knowledge of rank and can be
accomplished by minimizing the nuclear norm of the matrix
[12], [13]. A common approach to render MC tractable is to
pass to a convex relaxation of rank minimization just as sparse
recovery can be made tractable by relying on ℓ1-minimization
[14]. Alternative approaches to MC include greedy algorithms
such as OptSpace [15] and ADMiRA [16] which require an
initial estimate of matrix rank.

The problem of testing whether a highly incomplete vector
lies in a given subspace is also clearly related to MC. Here it
is possible to show that hypothesis testing succeeds with high
probability when the number of observed entries is slightly
larger than the subspace rank [17]. We note that with high
probability it is also possible to estimate the covariance matrix
of a dataset from incomplete batch data [18].

Given partial observations from a data stream, we introduce
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a new SIT algorithm, Parallel Estimation and Tracking by
REcursive Least Squares, which we abbreviate as PETRELS.
The underlying low-dimensional subspace is identified by min-
imizing a geometrically discounted sum of projection residuals
on the observed entries at each time index. If missing entries
are required then they can be reconstructed via least squares
estimation. The discount factor maintains a balance between
capturing long term behavior and responding to changes in
that behavior. PETRELS represents the underlying subspace
as the row space of a matrix and the discount factor is applied
to each row of this matrix in parallel. The subspace is updated
recursively so that it is not necessary to retain historical data
indefinitely. Run time is on the order of O(r3) per time index,
where r is the subspace rank. Updating rows of the subspace
matrix in parallel renders run time independent of the ambient
dimension of the data stream.

If the underlying subspace is fixed and the data stream is
fully observed, then we show that PETRELS converges to the
true subspace by connecting to prior analysis of the Projection
Approximation Subspace Tracking (PAST) algorithm [7]. For
partially observed data, PETRELS is a second order stochastic
gradient descent algorithm. We show that it always converges
locally to a stationary point of the proposed objective function.

Section VI provides a numerical assessment of how well
PETRELS is able to respond to changes in the underlying
subspace. The context for the numerical examples is direction-
of-arrival estimation and we measure the impact of the fraction
of observed entries, the discount factor, and the subspace rank.
We compare performance against the GROUSE algorithm [19]
which uses rank-one updates to track the underlying subspace
on the Grassmannian manifold. The performance of GROUSE
is limited by the existence of “barriers” in the search path
[20] which results in GROUSE being trapped at local minima.
In contrast, updates in PETRELS are not restricted to the
Grassmannian manifold. We show that PETRELS is better able
to separate closely located modes and to respond quickly to
changes in the underlying scene in the context of direction-of-
arrival estimation. We also compare PETRELS with state of
the art batch MC algorithms and show that it is competitive
in terms of the tradeoff between run time and accuracy.

The rest of the paper is organized as follows. Section II
introduces the problem of subspace tracking and describes
prior work. Implementation of PETRELS is considered in Sec-
tion III, while Section IV addresses convergence when the data
stream is fully observed. Extensions to PETRELS that improve
robustness, reduce complexity, and incorporate compressive
measurements are presented in Section V. Numerical results
are presented in Section VI and conclusions in Section VII.

II. PROBLEM STATEMENT AND RELATED WORK

A. Problem Statement

We consider the following problem. At each time n, a vector
xn ∈ RM is generated as:

xn = Unan + nn ∈ RM , (1)

where the columns of Un ∈ RM×rn span a low-dimensional
subspace, the vector an ∈ Rrn specifies the linear combination

of columns, and nn is additive white Gaussian noise dis-
tributed as nn ∼ N (0, σ2IM ). When we analyze convergence
in Section IV we will make the additional assumption that
an ∼ N (0, Irn). The rank rn of the underlying subspace at
time n is allowed to change slowly over time. It is assumed to
be bounded above by a constant r but it is not required to be
known exactly at any specific time n. The entries in xn might
represent measurements in a sensor network, pixel values in a
video frame, or individual movie ratings.

We collect only partial entries of the full vector xn at time
n. Partial observations correspond to point-wise multiplication
of the vector xn by a binary mask Pn = diag{pn}, where
pn = [p1n, p2n, · · · , pMn]

T ∈ {0, 1}M with pmn = 1 if the
mth entry is observed at time n. The set of observed entries
at time n is denoted by

yn = pn ⊙ xn = Pnxn ∈ RM , (2)

where ⊙ stands for point-wise multiplication. We denote Ωn =
{m : pmn = 1} as the set of observed entries at time n. In
a random observation model every entry of the vector xn is
observed uniformly at random.

Given a sequence of incomplete observations (yt,pt)
n
t=1,

we seek to identify and track changes in the underlying
subspace. The output of our online algorithm at time n is an
M × r matrix Dn, where the rank of the estimated subspace
Dn is assumed known and fixed throughout the algorithm as
r. The target subspace is the column space of this matrix, and
is ideally equivalent to the column space of Un. The following
properties are desirable.

• Small storage: The storage required by the online algo-
rithm should not grow with the volume of historical data.

• Adaptivity: The online algorithm should respond quickly
to changes in the underlying subspace.

• Convergence: If the underlying subspace is constant then
the subspace generated from the online algorithm should
converge to the true subspace.

In Section III, we show that the algorithm proposed in this
paper satisfies the first two desiderata. In Section IV, we prove
that when the data stream is fully observed, our algorithm
converges to the true subspace. If the data stream is partially
observed then we are able to establish local convergence.

B. Conventional Subspace Identification and Tracking

The problem of subspace identification and tracking when
the data xn are fully observed has been widely studied in
the signal processing literature (see [21] and the references
therein). In this scenario, the Projection Approximation Sub-
space Tracking (PAST) algorithm [7] is most similar to our
algorithm so we begin by describing PAST.

For simplicity assume Un = U is fixed over time, and
consider a scalar function J(W) with respect to a subspace
W ∈ RM×r, given by

J(W) = E∥xn −WWTxn∥22, (3)

where the expectation is taken with respect to xn. Let Cx =
E[xnx

T
n ] = UUT + σ2IM be the data covariance matrix

assuming that an ∼ N (0, Ir). It is shown in [7] that the
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global minima of J(W) is the only stable stationary point,
and it is given by W = UrQ with orthogonal columns, where
Ur is composed of the r dominant eigenvectors of Cx, and
Q ∈ Cr×r is a unitary matrix. Without loss of generality, we
can choose W to be composed of orthogonal columns which
span the column space of U. This motivates PAST to optimize
the following function at time n without constraining W to
have orthogonal columns:

Wn = argmin
W∈RM×r

n∑
t=1

αn−t∥xt −WWTxt∥22 (4)

≈ argmin
W∈RM×r

n∑
t=1

αn−t∥xt −WWT
t−1xt∥22. (5)

The expectation in (3) is replaced in (4) by a sum in
which prior observations are discounted by a geometric factor
0 ≪ α ≤ 1. This sum is further approximated in (5) where
replacement of the second W by Wt−1 leads to a recursion
for Wn. The matrix Wn is found by first estimating the
coefficient vector ât as ât = WT

t−1xt, then updating the
matrix estimate as

Wn = argmin
W∈RM×r

n∑
t=1

αn−t∥xt −Wât∥22. (6)

The PAST algorithm belongs to the class of power-based
techniques, which include Oja’s method [22], the Novel In-
formation Criterion (NIC) method [23] and others. These
algorithms have been analyzed in [24] within a uniform frame-
work with slight variations for each approach. Specifically, the
subspace estimate Wn ∈ RM×r is updated at time n as

Wn = CnWn−1(W
T
n−1C

2
nWn−1)

−1/2, (7)

where Cn is the sample data covariance matrix given by

Cn = αnCn−1 + xnx
T
n , (8)

with 0 < αn ≤ 1. The normalization in (7) ensures that the
updated subspace Wn is orthogonal. This normalization is not
performed in all power-based algorithms.

If we were able to replace Cn in (7) by the ground truth
Cx, then it is shown in [24] that these power-based methods
will converge to the principal subspace spanned by the most
significant r eigenvectors of Cx. When the entries of the
data vector are fully observed, Cn converges rapidly to Cx,
explaining why power-based methods perform very well in
practice. However, if the fraction of entries observed at time
n is relatively small, then only a fraction of entries in Cn−1

are updated at time n so that convergence is slow. Therefore,
in the partially observed setting, it is ineffective to apply the
above methods without substantial modification.

C. Matrix Completion

When Un = U, our problem is closely related to the MC
problem. Assume X ∈ RM×n is a low-rank matrix, and P ∈
{0, 1}M×n is a binary mask matrix with 0 at missing entries
and 1 at observed entries. Let Y = P ⊙ X = [y1, . . . ,yn]
be the observed partial matrix where the missing entries are

filled in as zeros. MC aims to solve the following problem:

min
Z

rank(Z) s.t. Y −P⊙ Z = 0, (9)

namely, to find a matrix with minimal rank such that the
observed entries are satisfied. The rank constraint makes
this optimization problem intractable. However, given weak
conditions on X it can be shown that the solution coincides
with that of the following nuclear norm minimization problem
(see [12] for details):

min
Z

1

2
∥Y −P⊙ Z∥2F + µ∥Z∥∗. (10)

Here ∥Z∥∗ is the nuclear norm of Z, i.e. the sum of singular
values of Z, and µ > 0 is a regularization parameter. The
nuclear norm of Z can be expressed as [25]

∥Z∥∗ = min
U,V:Z=UVT

1

2

(
∥U∥2F + ∥V∥2F

)
(11)

where U ∈ CM×r and V ∈ Cn×r. Substituting (11) into (10)
we can rewrite the MC problem as

min
U,V

∥P⊙ (X−UVT )∥2F + µ
(
∥U∥2F + ∥V∥2F

)
. (12)

Our problem formulation can be viewed as an online way
of solving (12) which avoids large matrix multiplications. We
simply define a random process that first selects columns of X
uniformly and then selects a subset of entries uniformly from
the given column. MC reduces to the problem of identifying
the underlying column space since the matrix X can be
recovered from this estimate by the method of least squares.
The potential tradeoff between performance and complexity
is explored in Section VI where PETRELS is compared with
standard MC algorithms.

III. THE PETRELS ALGORITHM

We now describe our proposed Parallel Estimation and
Tracking by REcursive Least Squares (PETRELS) algorithm.

A. Objective Function

We assume that the rank r of the target subspace is known
and that it remains fixed throughout. Note that the dimension
of the true subspace may be smaller than r. Subspaces appear
throughout as the column spaces of matrices and we shall
describe our algorithm as a procedure for updating matrices.
Given an M × r matrix D, we define the total projection
residual fn(D) on the observed entries at time n by

fn(D) = min
a

∥Pn(xn −Da)∥22. (13)

At time n we select the r-dimensional subspace Dn that
minimizes the loss function Fn(D) given by

Dn = argmin
D∈RM×r

Fn(D) = argmin
D∈RM×r

n∑
t=1

λn−tft(D), (14)

where the parameter 0 ≪ λ ≤ 1 discounts past observations.
To motivate the loss function in (14) we note that if Un = U
is not changing over time, then the right hand side of (14) is
minimized to zero when Dn spans the subspace defined by
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U. If Un is slowly changing, then λ is used to control the
memory and tracking ability at time n.

Before developing PETRELS, we note that if there are
further constraints on the coefficients a’s, a regularization term
can be incorporated in fn(D) as:

fn(D) = min
a∈Rr

∥Pn(xn −Da)∥22 + β∥a∥p, (15)

where p ≥ 0. For example, p = 1 enforces a sparsity
constraint, and p = 2 enforces an energy constraint.

In (14) the discount factor λ is fixed, and the influence
of past observations decreases geometrically; a more general
online objective function can be given as

Fn(D) = λnFn−1(D) + fn(D), (16)

where the sequence {λn} is used to control the memory and
adaptivity of the algorithm in a more flexible way.

Fixing D, fn(D) can be written as

fn(D) = xT
n

(
Pn −PnD(DTPnD)†DTPn

)
xn, (17)

where † denotes the pseudo-inverse. Plugging this back into
(14) the exact optimization problem becomes:

Dn = argmin
D∈RM×r

n∑
t=1

λn−txT
t

[
Pt −PtD(DTPtD)†DTPt

]
xt.

This problem requires storing all previous observations and is
difficult to solve exactly. PETRELS provides an approximate
solution.

B. PETRELS

The proposed PETRELS algorithm is summarized by Al-
gorithm 1. At each time n, PETRELS alternates between
estimating the coefficient vector an and updating the subspace
Dn. The estimate ân for the coefficient vector an is obtained
by minimizing the projection residual on the subspace Dn−1

derived at time n− 1:

ân = argmin
a∈Rr

∥Pn(xn −Dn−1a)∥22

= (DT
n−1PnDn−1)

†DT
n−1yn, (18)

where D0 ∈ RM×r is a random subspace initialization. The
full vector xn is then estimated as:

x̂n = Dn−1ân. (19)

The subspace Dn is then updated by minimizing

Dn = argmin
D

n∑
t=1

λn−t∥Pt(xt −Dât)∥22, (20)

where ât, t = 1, · · · , n are estimates from (18). We have
simplified the problem of finding Dn by replacing the opti-
mal coefficients appearing in (14) with previously estimated
coefficients. The discount factor mitigates error propagation
and enables the algorithm to recover from losses incurred by
the use of these estimated coefficients.

The objective function in (20) decomposes into a paral-
lel set of smaller problems, one for each row of Dn =

Algorithm 1 PETRELS for SIT from Partial Observations
Input: a stream of vectors yn, observed patterns Pn and λ.
Initialization: an M × r random matrix D0 =
[d0

1,d
0
2, · · · ,d0

M ]T , and (R0
m)† = δIr, δ > 0 for all

m = 1, · · · ,M .
1: for n = 1, 2, · · · do
2: ân = (DT

n−1PnDn−1)
†DT

n−1yn.
3: If stream reconstruction is required: x̂n = Dn−1ân.
4: for m = 1, · · · ,M do
5: βn

m = 1 + λ−1aTn (R
n−1
m )†ân,

6: vn
m = λ−1(Rn−1

m )†ân,
7: (Rn

m)† = λ−1(Rn−1
m )† − pmn(β

n
m)−1vn

m(vn
m)T ,

8: dn
m = dn−1

m + pmn(xmn − âTnd
n−1
m )(Rn

m)†ân.
9: end for

10: end for

[dn
1 ,d

n
2 , · · · ,dn

M ]T . Thus

dn
m = argmin

dm

n∑
t=1

λn−tpmt(xmt − âTt dm)2, (21)

for m = 1, · · · ,M . To find the optimal dn
m, we set the

derivative of (21) equal to zero, resulting in(
n∑

t=1

λn−tpmtâtâ
T
t

)
dn
m =

n∑
t=1

λn−tpmtxmtât.

This equation can be rewritten as

Rn
mdn

m = snm, (22)

where Rn
m =

∑n
t=1 λ

n−tpmtâtâ
T
t and snm =∑n

t=1 λ
n−tpmtxmtât. Therefore, dn

m can be found as

dn
m = (Rn

m)†snm. (23)

When Rn
m is not invertible, we choose the least-norm solution.

We now show how (22) can be updated recursively. For
m = 1, . . . ,M , we first rewrite

Rn
m = λRn−1

m + pmnânâ
T
n , (24)

snm = λsn−1
m + pmnxmnân. (25)

Next, substitute (24) and (25) into (22) to obtain

Rn
mdn

m = λsn−1
m + pmnxmnân

= λRn−1
m dn−1

m + pmnxmnân

= Rn
mdn−1

m − pmnânâ
T
nd

n−1
m + pmnxmnân

= Rn
mdn−1

m + pmn(xmn − âTnd
n−1
m )ân, (26)

where dn−1
m is the estimate for row m at time n− 1. Hence

dn
m = dn−1

m + pmn(xmn − âTnd
n−1
m )(Rn

m)†ân. (27)

defines a recursive procedure for updating all rows of the
matrix Dn in parallel.

Finally we note that the matrix (Rn
m)† can be updated

without recourse to matrix inversion. We apply the Recursive
Least Squares (RLS) updating formula for the general pseudo-
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inverse matrix [26], [27] to obtain

(Rn
m)† = (λRn−1

m + pmnânâ
T
n )

†

= λ−1(Rn−1
m )† − pmnG

n
m. (28)

Here Gn
m = (βn

m)−1vn
m(vn

m)T , with βn
m and vn

m given as

βn
m = 1 + λ−1âTn (R

n−1
m )†ân,

vn
m = λ−1(Rn−1

m )†ân.

In RLS updating, the diagonal entries of the initial matrix
(R0

m)† are required to be large and for all m = 1, . . . ,M
we set (R0

m)† = δIr, δ > 0. RLS updating is in general
very efficient but care needs to be taken as finite precision
operations suffer from numerical instability when running for
a long time [28].

C. Second-Order Stochastic Gradient Descent

The PETRELS algorithm can be regarded as a second-order
stochastic gradient descent method to solve (14) by using
dn−1
m , m = 1, · · · ,M as a warm start at time n. Specifically,

we can write the gradient of fn(D) in (13) at Dn−1 as

∂fn(D)

∂D

∣∣∣
D=Dn−1

= −2Pn(xn −Dn−1ân)â
T
n , (29)

where ân is given in (18). Then the gradient of Fn(D) at
Dn−1 is given as

∂Fn(D)

∂D

∣∣∣
D=Dn−1

= −2
n∑

t=1

λn−tPt(xt −Dn−1ât)â
T
t .

The Hessian for each row of D at dn−1
m is therefore

Hn(d
n−1
m , λ) =

∂2Fn(D)

∂dm∂dT
m

∣∣∣
dm=dn−1

m

= 2
n∑

t=1

λn−tpmtâtâ
T
t . (30)

It follows that the update rule for each row dm can be written
as

dn
m = dn−1

m −H−1
n (dn−1

m , λ)
∂fn(D)

∂dn−1
m

, (31)

which is equivalent to second-order stochastic gradient de-
scent. Therefore, PETRELS converges to a stationary point
of Fn(D) [29], [30]. Compared with first-order algorithms,
PETRELS enjoys a faster convergence speed to the stationary
point [29], [30].

D. Comparison with GROUSE

GROUSE is an algorithm proposed by Balzano et al. [19]
for online identification of a low-rank subspace from highly
incomplete observations. It does not discount prior observa-
tions and can be viewed as optimizing (14) for λ = 1. In fact
GROUSE aims to solve the following optimization problem:

Dn = argmin
D∈Gr

Gn(D) = argmin
D∈Gr

n∑
t=1

ft(D), (32)

where Gr = {D ∈ RM×r : DTD = Ir} is the orthogonal
Grassmannian rather than RM×r.

The GROUSE algorithm performs first-order stochastic
gradient descent on the orthogonal Grassmannian. It updates
the subspace estimate along the direction of ∇fn(D)|D=Dn−1

on Gr, given by

Dn = Dn−1 −
[
(cos(σηn)− 1)

x̂n

∥x̂n∥2
+

sin(σηn)
rn

∥rn∥2

] âTn
∥ân∥2

, (33)

where σ = ∥x̂n∥2∥rn∥2 with x̂n given in (19), rn = Pn(xn−
x̂n), and ηn is the step-size at time n.

At time n GROUSE provides a fast rank one update of
Dn−1 by alternating between coefficient estimation (18) and
subspace estimation (33). Since GROUSE is a first order
gradient descent algorithm, given weak conditions on the step
size, specifically

lim
t→∞

ηt = 0 and
∞∑
t=1

ηt = ∞, (34)

it is guaranteed to converge to a stationary point on Gn(D).
However this stationary point may not be a global optimum
because of barriers in the search path on the Grassmannian
[20]. Estimation of direction-of-arrival in Section VI provides
an example where GROUSE is trapped at a local minima.

The performance of GROUSE depends strongly on proper
tuning of the step size to satisfy (34). The performance of
PETRELS depends on the discount factor λ, but without any
tuning (λ = 1) it can still converge to the global optimum
when the data is fully observed (see Section IV).

If we relax the objective function of GROUSE (32) to all
rank-r subspaces RM×r by setting

Dn = argmin
D∈RM×r

n∑
t=1

ft(D), (35)

then the objective function becomes equivalent to PETRELS
without discounting. It is then possible to solve (35) by second
order stochastic gradient descent with an appropriate step size.
The update rule for each row of Dn is then

dn
m = dn−1

m − γnH
−1
n (dn−1

m , λ = 1)
∂fn(D)

∂dn−1
m

, (36)

where Hn(d
n−1
m , λ = 1) is given in (30), and γn is the

step-size at time n. In this paper we do not investigate the
performance of PETRELS with this alternative update rule.

E. Complexity Issues

We now compare both storage complexity and computa-
tional complexity for PETRELS, GROUSE and the PAST
algorithm. The storage complexity of PAST and GROUSE
is O(Mr), which is the size of the low-rank subspace. On
the other hand, PETRELS has a larger storage complexity of
O(Mr2), which is the total size of Rn

m’s for each row. In
terms of computational complexity, PAST has a complexity
of O(Mr) per iteration, while PETRELS and GROUSE have
a similar complexity on the order of O(|Ωn|r3), where the
main contribution to complexity comes from computation
of the coefficient (18). Parallel implementation reduces the
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computational complexity of PETRELS to O(r3). We note
that partial observation can be used to reduce computational
complexity when the ambient dimension is high.

IV. GLOBAL CONVERGENCE WITH FULL OBSERVATIONS

PETRELS is a second order stochastic gradient descent,
hence even when data is only partially observed it converges
to a stationary point of Fn(D). In general, convergence to
a global optimum remains open. In this section we show
convergence to a global optimum for the fully observed setting.

When data is fully observed and past observations are not
discounted (λ = 1) PETRELS is essentially equivalent to
PAST [7] though the two algorithms differ in the method
of estimating coefficients. With the notation of Section II-B,
PAST forms the estimate ât = WT

t−1yt = WT
t−1xt whereas

PETRELS forms the estimate ât = (DT
t−1Dt−1)

−1DT
t−1xt.

Ljung [31] describes how Ordinary Differential Equations
(ODEs) may be used to analyze stochastic recursive al-
gorithms. This method is applied to PAST in [32] where
asymptotic convergence in continuous time follows from the
equilibrium behavior of the ODE:

Ṙ = E[ãnãTn ]−R = WTCxW −R, (37)

Ẇ = E[xn(xn −Wãn)
T ]R† = (I−WWT )CxWR†,

(38)

where ãn = WTxn, R = R(t) and W = W(t) are
continuous time versions of Rn =

∑n
t=1 âtâ

T
t and Wn, and

the derivatives are taken with respect to t. It is proved in [32]
that as t increases, W(t) converges to the global optima, i.e.
to a matrix which spans the eigenvectors of Cx corresponding
to the r largest eigenvalues.

The asymptotic dynamics of the PETRELS algorithm are
described by the following ODE:

Ṙ = E[ãnãTn ]−R

= (DTD)−1DTCxD(DTD)−1 −R, (39)

Ḋ = E[xn(xn −Dãn)
T ]R†

= (I−D(DTD)−1DT )CxD(DTD)−1R−1. (40)

Here ãn = (DTD)−1DTxn, R = R(t) and D = D(t)
are continuous-time versions of Rn and Dn. Now let D̃ =
D(DTD)−1/2 and R̃ = (DTD)1/2R(DTD)1/2. From (40),

DT Ḋ = DT (I−D(DTD)−1DT )CxD(DTD)−1R−1

= DTCxD(DTD)−1R−1 −DTCxD(DTD)−1R−1

= 0,

and
d

dt
(DTD) = DT Ḋ+ ḊTD = 0.

Furthermore
d

dt
f(DTD) = 0

for any function of DTD. Hence,

˙̃
D = Ḋ(DTD)−1/2 +D

d

dt
(DTD)−1/2 = Ḋ(DTD)−1/2,

and

˙̃
R =

d

dt
(DTD)−1/2R(DTD)1/2 + (DTD)1/2Ṙ(DTD)1/2

+ (DTD)1/2R
d

dt
(DTD)1/2 = (DTD)1/2Ṙ(DTD)1/2.

Therefore (39) and (40) can be rewritten as

˙̃
R = D̃TCxD̃− R̃,

˙̃
D = (I− D̃D̃T )CxD̃R̃†,

which is equivalent to the ODE given in (37) and (38)
that describes PAST. Hence the subspace estimate derived
by PETRELS converges asymptotically to the same global
optimum, that is to the rank-r principal subspace of Cx, with
the same dynamics as the PAST algorithm.

V. EXTENSIONS TO THE PETRELS ALGORITHM

A. Simplified Update Rule

If we remove the partial observation operator from the
objective function (20) then we obtain

Dn = argmin
D

F̂n(D) = argmin
D

n∑
t=1

λn−t∥x̂t −Dât∥22,

(41)

where ât and x̂t, t = 1, · · · , n are estimates from earlier steps
calculated as in (18) and (19). It remains true that dn

m =
argmindm

F̂n(dm) = dn−1
m if the corresponding mth entry of

xn is unobserved, i.e. m /∈ Ωn. Indeed,

F̂n(dm) =

n−1∑
t=1

λn−t∥x̂mt − dT
mât∥22 + ∥(dn−1

m − dm)T ât∥22,

= λF̂n−1(dm) + ∥(dn−1
m − dm)T ât∥22

≥ λF̂n−1(d
n−1
m ) = F̂n(d

n−1
m ).

The minimum is therefore obtained when dm = dn−1
m for

m /∈ Ωn.
This modification leads to a simplified update rule for Rn

m,
since now the updating formula for all rows is identical as
Rn

m = Rn = λRn−1+ ânâ
T
n for all m. Hence the row update

formula (27) is replaced by

Dn = Dn−1 +Pn(xn −Dn−1ân)â
T
nR

†
n, (42)

which further reduces the storage required by PETRELS from
O(Mr2), to O(Mr), i.e. the size of the subspace. Numerical
examples in Section VI suggest that this simplification leads
to slower convergence, but that it may still have an advantage
if the subspace rank is underestimated.

B. Incorporating Prior Information

It is possible to incorporate regularization terms into PE-
TRELS to encode prior information about the data stream. In
Section II-C, the data stream is partially observed columns
drawn from a low rank matrix, and the low rank prior is
encoded in (10) using the nuclear norm. In this Section we
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suppose that at time n the subspace Dn is updated according
to

Dn = argmin
D

n∑
t=1

λn−t∥Pt(xt −Dât)∥22 + µn∥D∥2F , (43)

where µn > 0 is the regularization parameter. It follows
from the analysis given in Section III-B that (43) decom-
poses into M parallel problems, one for each row of D =
[d1,d2, · · · ,dM ]T as

dn
m = argmin

dm

n∑
t=1

λn−tpmt(xmt − âTt dm)2 + µn∥dm∥22

=

(
n∑

t=1

λn−tpmtâtâ
T
t + µnI

)−1( n∑
t=1

λn−tpmtxmtât

)
= (Tn

m)−1snm.

The matrix Tn
m can be updated as

Tn
m = λTn−1

m + pmnâtâ
T
t + (µn − λµn−1)Ir,

and snm can be updated as in (25).

C. Extension to Compressive Measurements

Until now, we have focused on direct observation of data.
However, it is straightforward to modify PETRELS to handle
compressive measurements in which the observation at time
n is given by

ỹn = Φnxn, (44)

where ỹn ∈ R|Ωn|, and Φn ∈ R|Ωn|×M is the measurement
matrix. We estimate and track the underlying subspace from
{ỹt,Φt}∞t=1 by alternating between coefficient updates and
subspace estimates. At time n, given the subspace Dn−1

estimated at time n−1, we first estimate the coefficient vector
ân as

ân = min
a

∥ỹn −ΦnDn−1a∥22
= (DT

n−1Φ
T
nΦnDn−1)

†DT
n−1Φ

T
n ỹn, (45)

and then update the subspace by

Dn = min
D

n∑
t=1

λn−t∥ỹt −ΦtDât∥22. (46)

Partial observation is a special case of compressive measure-
ment where the matrices Φn are partial identity matrices. It
is not possible to parallelize updates for general measurement
matrices, but it is still possible to update subspaces recursively.
To see this, let d = vec(D), and dn = vec(Dn), where vec(·)
denotes column-wise vectorization. Note that

ΦnDân = (âTn ⊗Φn)d ≜ Ψnd,

where ⊗ denotes the Kronecker product. We rewrite (46) as

dn = min
d

n∑
t=1

λn−t∥ỹt −Ψtd∥22 = (Rn)†sn, (47)

where Rn =
∑n

t=1 λ
n−tΨT

t Ψt, and sn =
∑n

t=1 λ
n−tΨT

t ỹt.
We now use the Woodbury matrix identity [26] to recursively

update (Rn)† from (Rn−1)† as earlier, so that (47) becomes

dn = dn−1 + (Rn)†ΨT
nrn,

where rn = ỹn −Ψnd
n−1 is the projection residual at time

n. Note that at time n, the new update rule involves inversion
of a matrix of size |Ωn|r.

VI. NUMERICAL RESULTS

Our numerical results contain four parts. First we examine
the influence of parameters specified in the PETRELS algo-
rithm, such as discount factor, rank estimation, and its robust-
ness to noise level. Next we look at the problem of direction-
of-arrival estimation and show that PETRELS demonstrates
performance superior to GROUSE by identifying and tracking
all the targets almost perfectly even in low SNR. Thirdly, we
compare our approach with MC, and show that PETRELS
is at least competitive with state of the art batch algorithms.
Finally, we provide numerical simulations for the extensions
of the PETRELS algorithm.

A. Choice of Parameters

At each time n, a vector xn is generated as

xn = Dtruean + nn, (48)

where Dtrue is an r-dimensional subspace generated with i.i.d.
N (0, 1) entries, an is an r×1 vector with i.i.d. N (0, 1) entries,
and nn is an M ×1 Gaussian noise vector with i.i.d. N (0, ϵ2)
entries. We further fix the signal dimension M = 500 and the
subspace rank rtrue = 10. We assume that a fixed number
of entries in xn, denoted by K, are revealed each time. This
restriction is not necessary for PETRELS to work as is shown
in the MC simulations, but we make it here in order to get a
meaningful estimate of an. Denoting the estimated subspace at
time n by Dn, we use the normalized subspace reconstruction
error to examine the algorithm performance. This is calculated
as ∥PD⊥

n
Dtrue∥2F /∥Dtrue∥2F , where PD⊥

n
is the projection

operator onto the orthogonal complement of Dn.
The choice of discount factor λ plays an important role in

how fast the algorithm converges. We assume K = 50, so that
only 10% of the entries are observed, and the rank is given
accurately as r = 10 in a noise-free setting where ϵ = 0.
We run the algorithm to time n = 2000, and find that the
normalized subspace reconstruction error of the above data is
minimized when λ is around 0.98 as shown in Fig. 1. Hence,
we will keep λ = 0.98 hereafter.

In reality it is almost impossible to accurately estimate the
intrinsic rank in advance. Fortunately the convergence rate
of our algorithm degrades gracefully as the rank estimation
error increases. In Fig. 2, the evolution of normalized subspace
reconstruction error is plotted against data stream index, for
rank estimation r = 10, 12, 14, 16, 18. We only examine over-
estimation of the rank here since we can easily make it the
case in applications. In the next section we show examples for
the case of rank under-estimation.

Taking more measurements per time leads to faster con-
vergence, as shown in Fig. 3. Theoretically it requires M ∼
O(r log r) ≈ 23 measurements to test if an incomplete vector
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Fig. 1. The normalized subspace reconstruction error as a function of the
discount factor λ after running the algorithm to time n = 2000 when 50 out
of 500 entries of the signal are observed each time without noise.
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Fig. 2. Normalized subspace reconstruction error as a function of data stream
index when the rank is over-estimated when 50 out of 500 entries of the signal
are observed each time without noise.

is within a subspace of rank r [17]. The simulation shows our
algorithm can work even when M is close to this lower bound.

Finally, the robustness of PETRELS is tested against the
noise variance ϵ2 in Fig. 4, where the normalized subspace
reconstruction error is plotted as a function of the data
stream index for different noise levels. The estimated subspace
deviates from the ground truth as we increase the noise level,
hence the normalized subspace error degrades gracefully and
converges to an error floor determined by the noise variance.

We now consider a scenario where a subspace of rank
r = 10 changes abruptly at time index n = 3000 and
n = 5000, and examine the performance of GROUSE [19]
and PETRELS in Fig. 5 when the rank is over-estimated by 4
and the noise level is ϵ = 10−3. The normalized residual error
for the data stream, calculated as ∥Pn(xn − x̂n)∥2/∥Pnxn∥2
at each time n, is shown in Fig. 5 (a), and the normalized
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Fig. 3. Normalized subspace reconstruction error as a function of data stream
index when the number of entries observed per time M out of 500 entries
are varied with accurate rank estimation and no noise.
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Fig. 4. Normalized subspace error versus data stream index with different
noise level ϵ when 50 out of 500 entries of the signal are observed each time
with accurate rank estimation.

subspace error is shown in Fig. 5 (b) respectively. Both
PETRELS and GROUSE can successfully track the changed
subspace, but PETRELS tracks the change faster.

B. Direction-Of-Arrival Analysis

Given GROUSE [19] as a baseline, we evaluate the re-
silience of PETRELS to different data models and applica-
tions. We use the following example of direction-of-arrival
analysis in array processing to compare the performance of
these two methods. Assume there are M = 256 sensors from
a linear array, and the measurements from all sensors at time
n are given as

xn = VΣan + nn. (49)

Here V ∈ CM×p is a Vandermonde matrix given by

V = [α(ω1), · · · ,α(ωp)], (50)
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(a) Normalized residual error (b) Normalized subspace error

Fig. 5. Tracking a subspace with fixed rank r = 10. The rank is over-estimated by 4, the noise level is ϵ = 10−3, and 50 out of 500 entries of the signal
are observed each time for both GROUSE and PETRELS. (a) Normalized residual error. (b) Normalized subspace error.

where α(ωi) = [1, ej2πωi , · · · , ej2πωi(M−1)]]T , with 0 ≤
ωi < 1, and Σ = diag{d} = diag{d1, · · · , dp} is a diagonal
matrix which characterizes the amplitudes of each mode. The
coefficients an’s are generated with N (0, 1) entries, and the
noise is generated with N (0, ϵ2) entries, where ϵ = 0.1.

At each time slot we collect measurements from K = 30
sensors uniformly at random. We are interested in identifying
all {ωi}pi=1 and {di}pi=1. This can be done by applying the
well-known ESPRIT algorithm [33] to the estimated subspace
Dn of rank r at each time n, where r corresponds to the
number of modes and can be estimated, for example via
the Maximum Description Length (MDL) algorithm [34].
Specifically, let D1 and D2 be the submatrices of Dn with
the first and the last M − 1 rows of Dn. The the set of
directions can be recovered from the eigenvalues of the matrix
T = D†

1D2, denoted by λi, i = 1, · · · , r, given as

ωi =
1

2π
arg(λi), i = 1, · · · , r, (51)

where arg(λi) is the phase of the complex number λi in
[0, 2π). The ESPRIT algorithm also plays a role in recovery of
multi-path delays from low-rate samples of the channel output
[35].

In a dynamic setting when the underlying subspace is vary-
ing, PETRELS is superior to GROUSE in terms of discarding
out-of-date modes and picking up new modes. We divide
the running time into 4 segments, with the frequencies and
amplitudes in each segment specified as follows:

1) Start with the same frequencies

ω = [0.1769, 0.1992, 0.2116, 0.6776, 0.7599];

and amplitudes d = [0.3, 0.8, 0.5, 1, 0.1].
2) Change two modes (only frequencies) at stream index

1000:

ω = [0.1769, 0.1992, 0.4116, 0.6776, 0.8599];

and amplitudes d = [0.3, 0.8, 0.5, 1, 0.1].

3) Add one new mode at stream index 2000:

ω = [0.1769, 0.1992, 0.4116, 0.6776, 0.8599,0.9513];

and amplitudes d = [0.3, 0.8, 0.5, 1, 0.1,0.6].
4) Delete the weakest mode at stream index 3000:

ω = [0.1769, 0.1992, 0.4116, 0.6776, 0.9513];

and amplitudes d = [0.3, 0.8, 0.5, 1, 0.6].

Fig. 6 shows the ground truth of mode locations and
amplitudes for the scenario above. Note that there are three
closely located modes and one weak mode in the beginning,
and various modes entering and exiting the scene, which
makes the task challenging. We compare the performance of
PETRELS and GROUSE in Fig. 7. The rank specified in both
algorithms is r = 10, which is the number of estimated modes
at each time index; in our case it is twice the number of the
initial true modes.

The estimated mode locations and amplitudes of PETRELS
and GROUSE are shown against the data stream index re-
spectively in Fig. 7 (a) and (b). The color shows the ampli-
tude corresponding to the color bar. The direction-of-arrival
estimations in Fig. 7 (a) and (b) are further thresholded
with respect to an amplitude level 0.5, and the thresholded
results are shown in Fig. 7 (c) and (d) for PETRELS and
GROUSE respectively. PETRELS identifies all modes cor-
rectly. In particular, PETRELS distinguishes the three closely-
spaced modes perfectly in the beginning, and identifies the
weak modes that enter the scene at a later time. With GROUSE
the closely spaced nodes are erroneously estimated as one
mode, the weak mode is missing, and spurious modes have
been introduced. PETRELS also fully tracked the later changes
in accordance with the entrance and exit of each mode, while
GROUSE is not able to react to changes in the data model.

Since the number of estimated modes at each time is greater
than the number of true modes, the additional rank in the
estimated subspace contributes “auxiliary modes” that do not
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belong to the data model. In PETRELS these modes become
scatter points with small amplitudes as in Fig. 7 (a), so they
will not be identified as spurious targets in the scene. While
in GROUSE, these auxiliary modes are tracked and appear as
spurious modes as seen in Fig. 7 (b).
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Fig. 6. Ground truth of the actual mode locations and amplitudes in a
dynamic scenario.

C. Matrix Completion

We next compare performance of PETRELS for MC against
batch algorithms including LMaFit [36], FPCA [37], Singular
Value Thresholding (SVT) [38], OptSpace [15] and online
GROUSE [19]. The low-rank matrix is generated from a
matrix factorization model as X = UVT ∈ R1000×2000,
where U ∈ R1000×10 and V ∈ R2000×10. The entries in U and
V are generated from standard normal distribution N (0, 1)
(Gaussian data) or uniform distribution U [0, 1] (uniform data).
The sampling rate is taken to be 0.05, so only 5% of the entries
of X are revealed.

The running time is plotted against the normalized ma-
trix reconstruction error for Gaussian data and uniform data
respectively in Fig. 8 (a) and (b). The normalized matrix
reconstruction error is calculated as ∥X̂−X∥F /∥X∥F , where
X̂ is the reconstructed low-rank matrix. PETRELS matches
the performance of batch algorithms on Gaussian data and
improves upon the accuracy of most algorithms on uniform
data, where the Grassmaniann-based optimization approach
may encounter “barriers” for its convergence. Note that dif-
ferent algorithms have different input parameter requirements.
For example, OptSpace needs to specify the tolerance to
terminate the iterations, which directly determines the trade-off
between accuracy and running time; PETRELS and GROUSE
require an initial estimate of the rank. Our simulation here
only shows one particular realization and we simply conclude
that PETRELS is competitive.

D. PETRELS using Simplified Update Rule

We consider the same simulation setup as for Fig. 2, except
that a subspace of rank 10 is generated by D̂true = DtrueΣ,

where Σ is a diagonal matrix with 5 entries from N (0, 1) and
5 entries from 0.01 ·N (0, 1). We examine the performance of
the simplified PETRELS algorithm (with optimized λ = 0.9)
proposed in Section V A and the original PETRELS (with
optimized λ = 0.98) algorithm. We consider both when the
subspace rank is over-estimated as 12 and the rank is under-
estimated as 8. When the rank is over-estimated, the change in
(9) will introduce more errors and converges slower compared
with the original PETRELS algorithm; however, when the
subspace rank is under-estimated, the simplified PETRELS
performs better than PETRELS. This is an interesting feature
of the proposed simplification, and quantitative justification of
this phenomenon is beyond the scope of this paper. Intuitively,
when the rank is under-estimated, the simplified PETRELS
also uses the interpolated entries to update the subspace
estimate, which seems to help the performance.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e 

er
ro

r

 

 
PETRELS rank = 12
simplified rank = 12
PETRELS rank = 8
simplified rank − 8

Fig. 9. Normalized subspace reconstruction error against data stream index
when the rank is over-estimated as 12 or under-estimated as 8 for the original
PETRELS and modified algorithm.

E. PETRELS with Compressive Measurements

We assume the data stream is generated using (48), where
the subspace Dtrue ∈ R100×10, and each time the data
stream is measured using a matrix of size 20 × 100 with
i.i.d. standard Gaussian entries. The underlying subspace is
estimated via the modified PETRELS in Section V-C to handle
compressive measurements. Fig. 10 shows the normalized
subspace reconstruction error against the data stream index
with optimized λ = 0.97.

VII. CONCLUSIONS

We considered the problem of reconstructing a data stream
from a small subset of its entries, where the data stream is
assumed to lie in a low-dimensional linear subspace, possi-
bly corrupted by noise. This has significant implications for
lessening the storage burden and reducing complexity, as well
as tracking the changes in the subspace for applications such
as video denoising, network monitoring and anomaly detection
when the problem size is large. The well-known low-rank MC
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(c) PETRELS (thresholded) (d) GROUSE (thresholded)
Fig. 7. Tracking of mode changes in direction-of-arrival estimation using PETRELS and GROUSE algorithms: the estimated directions at each time for 10
modes are shown against the data stream in (a) and (b) for PETRELS and GROUSE respectively. The estimations in (a) and (b) are further thresholded with
respect to level 0.5, and the thresholded results are shown in (c) and (d) respectively. All changes are identified and tracked successfully by PETRELS, but
not by GROUSE.
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Fig. 8. Comparison of MC algorithms in terms of speed and accuracy: PETRELS is a competitive alternative for MC tasks when the low-rank matrix X is
generated from a factorization model X = UVT with the entries of U ∈ R1000×10 and V ∈ R2000×10 are from (a) N (0, 1); and (b) U [0, 1].
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Fig. 10. Normalized subspace reconstruction error against data stream index
when the size of the underlying subspace is 100× 10, and 20 measurements
are taken using a matrix of i.i.d. Gaussian entries at each time.

problem can be viewed as a batch version of our problem.
The PETRELS algorithm first identifies the underlying low-
dimensional subspace via a discounted recursive procedure for
each row of the subspace matrix in parallel, then reconstructs
the missing entries via least-squares estimation if required.
The discount factor allows the algorithm to capture long-term
behavior as well as track the changes of the data stream.
We have shown that PETRELS converges to a stationary
point given it is a second-order stochastic gradient descent
algorithm. When data is fully observed we further proved that
PETRELS actually converges globally by making a connection
to the PAST algorithm. We demonstrated demonstrate superior
performance of PETRELS in direction-of-arrival estimation
and showed that it is competitive with existing batch MC
algorithms.
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