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ABSTRACT

We consider the problem of reconstructing a data stream from a
small subset of its entries, where the data stream is assumed to lie in
a low-dimensional linear subspace, possibly corrupted by noise. It is
also important to track the change of underlying subspace for many
applications. This problem can be viewed as a sequential low-rank
matrix completion problem in which the subspace is learned in an
online fashion. The proposed algorithm, called Parallel Estimation
and Tracking by REcursive Least Squares (PETRELS), identifies the
underlying low-dimensional subspace via a recursive procedure for
each row of the subspace matrix in parallel, and then reconstructs the
missing entries via least-squares estimation if required. PETRELS
outperforms previous approaches by discounting observations in or-
der to capture long-term behavior of the data stream and be able to
adapt to it. Numerical examples are provided for direction-of-arrival
estimation and matrix completion, comparing PETRELS with state
of the art batch algorithms.

Index Terms— subspace estimation and tracking, recursive
least squares, matrix completion

1. INTRODUCTION

Many real world data can be viewed as an embedding of low-
dimensional structure in a high-dimensional manifold. When the
embedding is assumed linear, the underlying low-dimensional struc-
ture becomes a linear subspace. Subspace Identification and Track-
ing (SIT) plays an important role in various signal processing tasks
such as online identification of network anomalies [1], moving target
localization [2], beamforming [3], and denoising [4]. Conventional
SIT algorithms collect full measurements of the data stream at each
time, and subsequently update the subspace estimate by utilizing the
track record of the stream history in different ways [5, 6]. How-
ever, in high-dimensional problems, it might be expensive and even
impossible to collect data from all dimensions. For example in
wireless sensor networks, collecting from all sensors continuously
will quickly drain the battery power. Ideally we would prefer to only
collect data from a fixed budget of sensors each time to increase
the overall battery life, and still be able to identify the underlying
structure.

Recent advances in Matrix Completion (MC) [7] theory, which
enables reconstruction of a matrix from a few entries by assuming it
is low-rank, have made it possible to infer data structure from incom-
plete observations. Identifying the underlying low-rank structure in
MC is equivalent to subspace identification in a batch setting. When
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the number of observed entries is slightly larger than the subspace
dimension, it has been shown that with high probability, it is pos-
sible to test whether a highly incomplete vector of interest lies in a
known subspace [8]. The GROUSE algorithm [9] was subsequently
proposed for SIT from online partial observations using gradient de-
scent rank-one updates of the estimated subspace on a Grassman-
nian manifold. However, due to the existence of “barriers” in the
search path [10], GROUSE may be trapped at local minima. We
demonstrate this behavior in the simulation section in the context of
direction-of-arrival estimation.

In this paper we further study SIT given partial observations
from a stream. In our proposed algorithm, called Parallel Estimation
and Tracking by REcursive Least Squares (PETRELS), the underly-
ing low-dimensional subspace is identified via a recursive procedure
with discount factor for each row of the subspace matrix in parallel.
The missing entries are then reconstructed via least-squares estima-
tion if required. The discounting factor balances the algorithm’s abil-
ity to capture long term behavior and changes to that behavior to im-
prove adaptivity. We also benefit from the fact that our optimization
is not restricted to the Grassmannian which can be suboptimal and
lead to issues of convergence to local minima. We provide numerical
examples to measure the impact of the discount factor, and demon-
strate the advantage of PETRELS over GROUSE for direction-of-
arrival estimation. We also compare PETRELS with state of the art
batch matrix completion algorithms.

The rest of the paper is organized as follows. Section 2 for-
mulates the problem and Section 3 describes the algorithm in detail.
Numerical results are provided in Section 4, after which we conclude
in Section 5.

2. PROBLEM FORMULATION

At each time t, a vector xt is generated as,

xt = Utat + nt ∈ RM , (1)

where the columns of Ut ∈ RM×rt span a low-dimensional sub-
space, the vector at ∈ Rr specifying the linear combination of
columns and nt is additive noise. Assume only partial entries of
the full vector xt are observed, given by

yt = pt ⊙ xt = Ptxt ∈ RM , (2)

where Pt = diag[pt], pt = [p1t, p2t, · · · , pMt]
T ∈ {0, 1}M , and

pmt = 1 if the mth entry is observed at time t. We are interested
in identifying and tracking the changes in the subspace model, from
streaming partial observations (yt,Pt)

∞
t=1.

To the end, we aim at minimizing the following loss function at
each time n:

Dn = argmin
D∈RM×r

Fn(D) = argmin
D∈RM×r

n∑
t=1

λn−tft(D), (3)



where the discount factor 0 ≪ λ ≤ 1 discounts past observations,
D is the estimated subspace of rank r, where r is assumed known
and fixed throughout the algorithm (although it may not equal the
true subspace dimension), and

ft(D) = min
a

∥Pt(xt −Da)∥22, t = 1, · · · , n. (4)

To motivate the loss function in (3) we note that if Ut = U is not
changing over time, then the RHS of (3) is minimized to zero when
Dn spans the subspace defined by U. If Ut is slowly changing, then
λ is used to control the memory of the system and maintain track-
ing ability at time n. For example, by using λ → 1 the algorithm
gradually loses its ability to forget the past.

The GROUSE method can be viewed as optimizing (4) at each
time n using stochastic gradient descent on the Grassmannian de-
fined as {D ∈ RM×r : DTD = Ir}. The difference in the loss
function (3) with respect to that of GROUSE is adding of the dis-
count factor λ, and not restricting D to be unitary.

Fixing D, (4) is minimized when

a∗
t (D) = (DTPtD)†DTPtxt.

Substituting a∗
t (D) in (4), we have

ft(D) = xT
t

(
Pt −PtD(DTPtD)†DTPt

)
xt. (5)

Minimizing (5) over D is difficult. Instead, we propose PETRELS
to approximately solve this optimization problem.

Before developing PETRELS we note that if there are further
constraints on the coefficient at, then a regularization term can be
incorporated:

ft(D) = min
a∈Rr

∥Pt(Da− xt)∥22 + βt∥a∥p,

where p ≥ 0. For example, p = 1 enforces a sparse constraint on
at, and p = 2 enforces a norm constraint on at. In this formulation
the discount factor λ is fixed, and the influence of past estimates
decreases geometrically; a more general online objective function
can be given as

Dn = argmin
D∈RM×r

Fn(D) = argmin
D∈RM×r

λnFn−1(D) + fn(D).

However, for simplicity, we only consider equation (4) in this paper.

3. THE PETRELS ALGORITHM

3.1. Algorithm Details

The proposed PETRELS algorithm, as summarized by Algo-
rithm ??, alternates between coefficient estimation and subspace
update at each time n. In particular, the coefficient vector is esti-
mated by solving

an = argmin
a

∥Pn(xn −Dn−1a)∥22 (6)

= (DT
n−1PnDn−1)

†DT
n−1yn, (7)

where D0 is a random subspace initialization. The subspace Dn is
then updated by minimizing

Dn = argmin
D

n∑
t=1

λn−t∥Pt(xt −Dat)∥22, (8)

where at, t = 1, · · · , n are estimates from (6). The objec-
tive function in (8) can be decomposed for each row of Dn =

[dn
1 ,d

n
2 , · · · ,dn

M ]T as

dn
m = argmin

dm

n∑
t=1

λn−tpmt(xmt − aT
t dm)2 (9)

=

(
n∑

t=1

λn−tpmtata
T
t

)†( n∑
t=1

λn−tpmtxmtat

)
= dn−1

m + pmn(xmn − aT
nd

n−1
m )(Rn

m)†an, (10)

where Rn
m = λRn−1

m + pmtana
T
n . This results in a parallel pro-

cedure to update all rows of the subspace matrix Dn. Finally, by
the Recursive Least-Squares (RLS) updating formula, (Rn

m)† can
be easily updated without matrix inversion using

(Rn
m)† = (λRn−1

m + pmnana
T
n )

†

= λ−1(Rn−1
m )† + pmtG

n
m; (11)

where Gn
m = β−1vn

m(vn
m)T , with βn

m and vn
m given as

βn
m = 1 + λ−1aT

n (R
n−1
m )†an, (12)

vn
m = λ−1(Rn−1

m )†an. (13)

To enable the RLS procedure, the matrix (R0
m)† is initialized as a

matrix with large entries on the diagonal, which we choose arbi-
trarily as the identity matrix (R0

m)† = δIr , δ > 0 for all m =
1, · · · ,M .

3.2. Convergence

In the full observation regime, PETRELS becomes equivalent to the
well-known PAST [5] algorithm for subspace estimation, which is
proved to converge to the global optima. However at this point the
problem of deriving performance guarantees for PETRELS in the
partial observation regime remains open.

Algorithm 1 PETRELS for Subspace Estimation
Input: a stream of vectors yt and observed pattern Pt.
Initialization: an M × r random matrix D0, and (R0

m)† = δIr ,
δ > 0 for all m = 1, · · · ,M .

1: for n = 1, 2, · · · do
2: an = (DT

n−1PnDn−1)
†DT

n−1yn.
3: xn = Dn−1an.
4: for m = 1, · · · ,M do
5: βn

m = 1 + λ−1aT
n (R

n−1
m )†an,

6: vn
m = λ−1(Rn−1

m )†an,
7: (Rn

m)† = λ−1(Rn−1
m )† + pmtβ

−1vn
m(vn

m)T ,
8: dn

m = dn−1
m + pmn(xmn − aT

nd
n−1
m )(Rn

m)†an.
9: end for

10: end for

4. NUMERICAL RESULTS

We begin by examining the influence of the discount factor on the
performance. Next we look at direction-of-arrival estimation and
show that the proposed PETRELS algorithm demonstrates superior
performance over GROUSE by identifying and tracking all the tar-
gets almost perfectly even in low SNR. Finally we compare our ap-
proach with matrix completion, and show that PETRELS is at least
competitive with state of the art batch algorithms.



4.1. Choice of discounting factor

The choice of the discount factor λ plays an important role in how
fast the algorithm converges. At each time t, a vector xt of dimen-
sion m = 500 is generated as xt = Dtrueat, where Dtrue is an
(r = 10)-dimensional subspace generated with i.i.d. N (0, 1) en-
tries, at is an r × 1 vector with i.i.d. N (0, 1) entries. We assume
that a fixed number of K = 50 entries in xt, a mere 10% percent
of the full dimension, are revealed each time. This restriction is not
necessary, but we make it here in order to guarantee a meaningful es-
timate of at. Denoting the estimated subspace by D̂, we use the nor-
malized subspace reconstruction error to examine the algorithm per-
formance; this is calculated as ∥PD̂⊥

Dtrue∥2F /∥Dtrue∥2F , where

PD̂⊥
is the projector onto the orthogonal subspace D̂⊥. We run the

algorithm to time n = 2000 on the same data, and observe that the
normalized subspace reconstruction error is minimized when λ is
around 0.98; see Fig. 1. Hence, we keep λ = 0.98 hereafter.

Influences of other parameters including the initial estimated
rank, number of measurements and noise level are also examined
but not reported here due to limit of space.
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Fig. 1. The normalized subspace reconstruction error as a function
of λ after running the algorithm until n = 2000 when 50 out of 500
entries of the signal are observed each time without noise.

4.2. Direction-Of-Arrival Analysis

We evaluate the resilience of PETRELS to direction-of-arrival anal-
ysis in array processing given GROUSE [9] as a baseline. Assume
there are n = 256 sensors from a linear array, and the measurements
from all sensors at time t are

xt = VΣat + nt, t = 1, 2, · · · . (14)

Here V ∈ Cn×p is a Vandermonde matrix defined by

V = [α1(ω1), · · · ,αp(ωp)], (15)

where αi(ωi) = [1, ej2πωi , · · · , ej2πωi(n−1)]]T , 0 ≤ ωi < 1,
Σ = diag{d} = diag{d1, · · · , dp} is a diagonal matrix which char-
acterizes the amplitudes of each mode, the coefficients at are gener-
ated with N (0, 1) entries, and the noise is generated with N (0, ϵ2)
entries, where ϵ = 0.1.

Each time we collect measurements from K = 30 random sen-
sors. We are interested in identifying all {ωi}pi=1 and {di}pi=1. This

can be done by applying the well-known ESPRIT algorithm [11] to
the estimated subspace D̂ of rank r, where r is specified a-priori
corresponding to the number of modes to be estimated. Specifically,
if D1 = D̂(1 : n − 1) and D2 = D̂(2 : n) are the first and
the last n − 1 rows of D̂, then from the eigenvalues of the matrix
T = D†

1D2, denoted by λi, i = 1, · · · , r, the set of {ωi}pi=1 can be
recovered as

ωi =
1

2π
arg λi, i = 1, · · · , r. (16)

The ESPRIT algorithm also plays a crucial role in recovery of the
multipath delays from low-rate samples of the channel output from
transmitting pulse streams with known shape [12].

Now consider 5 scatters at directions (frequencies) specified
by ω = [0.1769, 0.1992, 0.2116, 0.6776, 0.7599], and amplitudes
d = [0.3, 0.8, 0.5, 1, 0.1]. Note that there are three closely located
modes and one weak mode, which makes the task challenging. We
compare the performance of the proposed PETRELS algorithm and
GROUSE. The rank specified in both algorithms is r = 10, which is
the estimated number of modes; in our case it is twice the number of
true modes. The estimated directions at each time for 10 modes are
shown in Fig. 2. The color shown for each estimated mode points
shows the amplitude corresponding to the color bar. The proposed
PETRELS algorithm identifies and tracks all modes correctly, as
shown by the 5 “lines” in Fig. 2 (a). It especially distinguishes the
three closely-spaced modes perfectly, and the weak mode is identi-
fied later than the strong modes. The auxiliary modes are exhibited
as “noise” in the scatter plot. With GROUSE the closely spaced
nodes are erroneously estimated as one mode, the weak mode is
missing, and spurious modes have been introduced.
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Fig. 3. Comparison with matrix completion batch algorithms shows
that PETRELS is competitive in terms of computational time and
accuracy.

4.3. Matrix Completion

Our algorithm can be viewed as an online version of MC, which
has potential advantages for dealing with data size changes and
small memory requirements. We compare performance of the
proposed PETRELS algorithm for MC against batch algorithms
LMaFit [13], FPCA [14], Singular Value Thresholding (SVT)
[15], OptSpace [16] and the online algorithm GROUSE. The
low-rank matrix is generated from a matrix factorization model
with X = UVT ∈ R1000×2000, where U ∈ R1000×10 and
V ∈ R2000×10. The sampling rate is taken to be 0.05, so that
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Fig. 2. Direction-Of-Arrival estimation using PETRELS and GROUSE algorithms: at each index, an estimation of 10 mode locations are
made with color denoting mode amplitudes. All directions are identified and tracked successfully by PETRELS, but not by GROUSE.

only 5% of all entries are revealed. The running time is plotted
against the normalized matrix reconstruction error, calculated as
∥X̂ − X∥F /∥X∥F ; all entries in U and V are generated from
the standard normal distribution N (0, 1). The proposed PETRELS
algorithm matches the performance of batch algorithms, as shown in
Fig. 3. Note that different algorithms have different input parameter
requirements. For example, OptSpace needs to specify the tolerance
to terminate the iterations, which directly decides the trade-off be-
tween accuracy and running time. Our simulation here only shows
one particular realization and we simply conclude that PETRELS is
competitive.

5. CONCLUSIONS
We considered the problem of reconstructing a data stream from a
small subset of its entries, where the data stream is assumed to lie
in a low-dimensional linear subspace, possibly corrupted by noise.
This has significant implications for lessening the storage burden and
reducing complexity, as well as tracking the changes for applications
such as network monitoring and anomaly detection when the prob-
lem size is large. The PETRELS algorithm first identifies the under-
lying low-dimensional subspace via a discounted recursive proce-
dure for each row of the subspace matrix in parallel, and then recon-
structs the missing entries via least-squares estimation if required.
The discount factor allows the algorithm capture long-term behavior
as well as track the changes of the data stream. We demonstrate su-
perior performance of PETRELS in direction-of-arrival estimation
and showed that it is competitive with state of the art batch matrix
completion algorithms.
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