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Recent successes in reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

At last — a computer program that
can beat a champion Go player PAg 484

ALL SYSTEMS 90

SAFEGUAR
TRANSPARE!

RL holds great promise in the next era of artificial intelligence.



Sample efficiency

Collecting data samples might be expensive or time-consuming
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Sample efficiency

Collecting data samples might be expensive or time-consuming
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Calls for design of sample-efficient RL algorithms!



Computational efficiency

Running RL algorithms might take a long time and space

many CPUs / GPUs / TPUs + computing hours



Computational efficiency

Running RL algorithms might take a long time and space
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many CPUs / GPUs / TPUs + computing hours

Calls for computationally efficient RL algorithms!



Recent advances in statistical RL

]

PTIRTINY An Analysis of Temporal-Difference Learning
PROGRAMMING with Function Approximation

finite-time &
finite-sample analysis

asymptotic
analysis

Reinforcement Learning:
Theory and Algorithms

Alekh Agarwal  NanJiang ~ Sham M. Kakade ~ Wen Sun
December 9, 2020

Non-asymptotic analyses are key to understand statistical
efficiency in modern RL.




Markov decision processes
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Markov decision processes
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Markov decision processes

state s;
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! next state
st41 ~ P(|st, a)

S: state space e A: action space

r(s,a) € [0,1]: immediate reward

m(-|s): policy (or action selection rule)

P(-]s,a): transition probabilities



Value function
action
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Value/Q-function function of policy 7
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Value function
state s @ a:tigrrz.‘ 50)
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si ~ P(lsi,ar)
Value/Q-function function of policy 7
o0
Vs € S: VT(s):=E Z'ytrt‘sozs
t=0
o0
t
Z“/ 7’t|80 =S40 =a
t=0

V(s,a) eSxA: Q7 (s,a):=E

e v€10,1) is the discount factor; ﬁ is effective horizon
e Expectation is w.r.t. the sampled trajectory under =



T4

Value function
state s action
N_W(.I"st) 70 1 T2 3
| | | |
d S S S
S | 5 @588 5-8-a
~r=4-=— environment |¢= —! a0 ar ay as as
s ~ P(lst,ar)
Value/Q-function function of policy 7
o0
Vs € S: VT(s):=E Zﬂ,/tm‘sozs
t=0
o0
¢
Z“/ 7’t|80 =S40 =a
t=0

V(s,a) eSxA: Q7 (s,a):=E

e v€10,1) is the discount factor; ﬁ is effective horizon
e Expectation is w.r.t. the sampled trajectory under =
e Given initial state distribution p, let V™(p) = E,.,V"(s)



Searching for the optimal policy
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Goal: find the optimal policy 7* that maximize V™ (p)

o optimal value / Q function: V* := V7™, Q* := Q™

e optimal policy 7*(s) = argmax,c 4 Q*(s, a)



Data source in RL

> Exploration

(s,a)

offline RL online RL generative model



Data source in RL

> Exploration

Recaldating .. recadating.”

offline RL online RL generative model

Our focus: offline RL without exploration J




Offline RL / Batch RL

e Sometimes we can not explore or generate new data

e But we have already stored tons of historical data

THE COMING! INAUTONOMOUS VEHICLES
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medical records data of self-driving  clicking times of ads
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Offline RL / Batch RL

e Sometimes we can not explore or generate new data

e But we have already stored tons of historical data

THECOMING INAUTONOMOUS VEHICLES
PO 3 i
” f\ $ HTONOHOLS VEHELES
, ﬂ z é\! s PERDAY.EACHDAY = "““;“
% 5 TR
medical records data of self-driving  clicking times of ads

Can we learn a good policy based solely on historical data
without active exploration?

10



Model-based offline RL is nearly minimax optimal

Yuxin Chen Yuting Wei
UPenn UPenn

Laixi Shi
CMU



A simplified model of history data from behavior policy

12



A simplified model of history data from behavior policy

G
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initial distribution behavior policy No longer transition kermel
arbitrary!
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A simplified model of history data from behavior policy

initial distribution behavior policy No longer transition kermel
arbitrary!

Goal of offline RL: given history data D := {(s;,a;, s})}Y,, find
an e-optimal policy 7 obeying

V¥p) = V7(p) <e

— in a sample-efficient manner
12



Challenges of offline RL

Partial coverage of state-action space:
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Challenges of offline RL

Partial coverage of state-action space:

TN - //’ ~ .
7 L \ / Practically, N
/
A L
_{ samples cover all (s,a) & all poI|C|es/ e Ristorical dataset D A
\ | ]
i RS )
N / pa—
m \\\ /// ‘( ™
i H \ | \ T2
T yi AN , 0c>°
] v AN 5 ST
N R S L

partial coverage

uniform coverage over entire space .
(inadequately explored)

(sufficiently explored)

Distribution shift:

distribution(D) # target distribution under 7*

13



How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)

where d” (s, a) is the state-action occupation density of policy .
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How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)

e captures distribution shift

e allows for partial coverage

14



How to quantify the distribution shift? — a refinement

Single-policy clipped concentrability coefficient (Li et al., '22)

_ min{d"™ (s,a),1/S}
Clipped = i d™ (s, a) > 1/5

where d” (s, a) is the state-action occupation density of policy .
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How to quantify the distribution shift? — a refinement

Single-policy clipped concentrability coefficient (Li et al., '22)

min{d"™ (s,a),1/S}
glipped = max b
s,a d™(s,a)

>1/8

where d” (s, a) is the state-action occupation density of policy .

e captures distribution shift

e allows for partial coverage

* *
® Cclipped < ¢

o Clinped < A (while

C* < SA) under full
coverage.

15



A “plug-in" model-based approach

— (Azar et al. '13, Agarwal et al. '19, Li et al. '20)

[ empirical MDP

planning [:"} =%
\Qj{ oracle Q
e.g. dynamic programming

- INEEEEEEEE

empirical P

N
~ 1
.. . . . / - / !
Empirical estimates: estimate P(s'|s,a) by N E ]1{3(@') =s'}
i=1
empiricam'equency

J/

Planning (e.g., value iteration) based on P:
Q(s,a) « r(s,a) +(P(-|s,a),V), V(s)=maxQ(s,a).
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Challenges in the sample-starved regime

l H N
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| |
truth: empirical estimate:
P < RISIAIXIS p

e Can't recover P faithfully if sample size < |S|?|.Al!

Issue: poor value estimates under partial and poor coverage. |
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Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

without

—
pessimism -._
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Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

W|thout
Pessimism :.: L with
pessnmlsm

Value iteration with lower confidence bound (VI-LCB):

Q(s,a) + max {r(s,a) + 7(13( | 3,a),17> — b(s,a; V) , 0},

uncertainty penalty

where V(s) = max, Q(s, a).

18



A benchmark of prior arts
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A benchmark of prior arts
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Can we close the gap with the minimax lower bound? J
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Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

Forany 0 < e < ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V*(p) = V7 (p) <€

with high prob., with sample complexity at most

5 SC::(Iipped )
1 npe
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Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

Forany 0 < e < ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V*(p) = V7(p) <e

with high prob., with sample complexity at most
5 SC::(Iipped
(1—9)%e )

e depends on distribution shift (as reflected by Cgj;;eq)

e full e-range (no burn-in cost)

20



Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

Forany v € [2/3,1), 8 > 2, Cfji peq = 87/S, and 0 < e < 42(1 ok
there exists some MDP and batch dataset such that no algorithm
succeeds if the sample size is below

().

21



Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

Forany v € [2/3,1), 8 > 2, Cfji peq = 87/S, and 0 < e < 42(1 ok
there exists some MDP and batch dataset such that no algorithm
succeeds if the sample size is below

e verifies the near-minimax optimality of the pessimistic
model-based algorithm

e improves upon prior results by allowing C%,

clipped = l/S

21



sample“
complexity

Model-based RL is minimax optimal with no burn-in cost! J




The finite-horizon case
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Offline RL meets distributional robustness

Laixi Shi
cMU



Safety and robustness in RL

—(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment % Test environment

25



Safety and robustness in RL

—(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment % Test environment

Can we learn optimal policies that are robust to model
perturbations from historical data?

25



Distributionally robust MDP
state s. a aﬁti?r?_ \St)
—_ -l To 1 ) T3 T4
P B 3 S0 O3 G20 &
4-=- environment — EL_(; ar ay as as
sit1 ~ P(-|si,ar)
Uncertainty set of the normal transition kernel P°:
U’(P°) {P KL(P I P") < 0’}
Robust value/Q function of policy 7
VseS: V™9(s):= inf E, try | s = s
(s) petiz(poy " [;7 t] 5 ]
V(s,a) €S x A: ™9(s,a):= inf [Ep try | so = s,a0 = a
(5 CECTE ) S
The optimal robust policy 7* maximizes V™7 (p) J
26




Distributionally robust Bellman's optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)
Robust Bellman’s optimality equation: the optimal robust

policy 7* and optimal robust value V*7 := V™7 satisfy

Q" (s,a) =r(s,a) +v  inf  (Pse, V™),
Psa€Ut(P2,)

V*9(s) = max Q@ (s,a)

27



Distributionally robust Bellman's optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust
policy 7* and optimal robust value V*7 := V™7 satisfy

Q"7 (s,a) =r(s,a)+~  inf (P, V™),
P o€U” (P2,)

V*9(s) = max Q@ (s,a)

Robust value iteration:

Q(s,a) « r(s,a) +~ inf (Psa, V),
Psa€U”(P2,)

where V' (s) = max, Q(s,a).

27



Distributionally robust offline RL

(s,a) ~ d° 8
b'§'°t . Nowinal Transition
arbitrary! kernel
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Distributionally robust offline RL

(s,a) ~ d® 8
b'f‘°t . Nowinal Transition
arbitrary! kernel

Goal of robust offline RL: given D := {(s;, a;,s;)}Y, from the
nominal environment P, find an e-optimal robust policy 7 obeying

V5 (p) = VT (p) <€

— in a sample-efficient manner

28



Prior art under full coverage

sample
complexity
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Prior art under full coverage
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Questions: Can we improve the sample efficiency and
allow partial coverage?

29



How to quantify the compounded distribution shift?
Robust single-policy concentrability coefficient

. min{d”*vp(s,a), %}
b = max -

(s,a,P)ES X AxU(P®) d°(s,a)
occupancy distribution of (7*,U(P?)) H

occupancy distribution of D

where d™" is the state-action occupation density of m under P.

v
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How to quantify the compounded distribution shift?

Robust single-policy concentrability coefficient

min{d”*vp(s, a), %}
max
(s,a,P)ES X AxXU(P°) db(s,a)
occupancy distribution of (m*,U(P°?))
occupancy distribution of D

* .
rob *—

HOO

where d™" is the state-action occupation density of m under P.

&

e captures distributional shift due
to behavior policy and historical dataset D
environment. o

e (. < A under full coverage.




Distributionally robust value iteration with pessimism

Distributionally robust value iteration (DRVI) with LCB:

~

Q(s,a) + max{r(s,a)+~  inf PV — b(s,a; V) , 0},
’PEL{”(P;(L) %/—/
uncertainty penalty

where V(s) = max, Q(s, a).

Key innovation: design the penalty term to capture the variability
in robust RL:

inf PV - inf PV
Peus(Pe,) Peuc(Pe,)

No closed form w.r.t. Psf’yaflsso’a due to U (-)

31



Sample complexity of DRVI-LCB

Theorem (Shi and Chi’22)

For any uncertainty level ¢ > 0 and small enough ¢, DRVI-LCB
outputs an e-optimal policy with high prob., with sample

complexity at most
5(_ SCh
Px (1 —7)%02e? )’

min

where Px.  is the smallest positive state transition probability of
the nominal kernel visited by the optimal robust policy 7*.
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Sample complexity of DRVI-LCB

Theorem (Shi and Chi’22)

For any uncertainty level ¢ > 0 and small enough ¢, DRVI-LCB
outputs an e-optimal policy with high prob., with sample

complexity at most
5(_ SCh
Px (1 —7)%02e? )’

min

where Px.  is the smallest positive state transition probability of
the nominal kernel visited by the optimal robust policy 7*.

e scales linearly with respect to S

o reflects the impact of distribution shift of offline dataset
(Cr,,) and also model shift level (o)

32



Minimax lower bound

Theorem (Shi and Chi’22)

Suppose that 1 > e®, S >log (=

and e < 1

7): O

rob

>8/S, o< log = -

(1)71, there exists some MDP and batch dataset
1—v

such that no algorithm succeeds if the sample size is below

Pmm

(1

’}/)20'262

SCry >
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Minimax lower bound

Theorem (Shi and Chi’22)

Suppose that 12= > ¢®, S > log (115), Cjy, > 8/8, 0 < log 11

and € (1)% there exists some MDP and batch dataset
1—v

such that no algorithm succeeds if the sample size is below

5 SCr,
Prin(L —7)%0% )

e the first lower bound for robust MDP with KL divergence

e Establishes the near minimax-optimality of DRVI-LCB up to
factors of 1/(1 — )

33



Compare to prior art under full coverage
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complexity
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Compare to prior art under full coverage

sample
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Our DRVI-LCB method is near minimax-optimal!
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Numerical experiments

0.254

DRVI-LCB
~—— DRVI

20 30 40 50

Index of states

DRVI-LCB
—— DRVI

Sample size N
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Numerical experiments

DRVI-LCB

a4 IR A D AN

DRVI-LCB

—— DRVI 0.12 —— DRVI

0 10 20 30 40 50 102 10°

Index of states Sample size N

Pessimism improves the sample efficiency in robust offline RL!

)
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Concluding remarks



Concluding remarks
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Model-based offline RL algorithms with pessimism are near
minimax-optimal in both nominal MDP and robust MDP!

R
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Thank you!

® Settling the sample complexity of model-based offline reinforcement
learning, arXiv:2204.05275.

® Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity, ICML 2022.

e Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity, arXiv:2208.05767.
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https://users.ece.cmu.edu/~yuejiec/
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