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Abstract—We present a novel method of constructing Doppler  ideal property is sensitive to Doppler effect. Off the zero-
resilient pulse train of Golay complementary waveforms, for Doppler axis the ambiguity function of Golay pairs of phase
which the range sidelobes of the pulse train ambiguity fundgbn coded waveforms has large range sidelobes, e.g., see][1],[2
vanish inside a desired Doppler interval. This is accomplised L . e '
by coordinating the transmission of a Golay pair of phase codd and [9]. The ambiguity funqt|on (_)f a pulse train of Golay
waveforms in time according to the I's and —1's in a biphase COomplementary waveforms, in which the two waveforms are
sequence. The magnitude of the range sidelobes of the pulsetransmitted alternatively in time over several pulse ritipet
train ambiguity function is shown to be proportional to the intervals (PRIs), suffers from the same problem. The sensit
magnitude spectrum of the biphase sequence. Range sidelasbe ity of Golay complementary waveforms to Doppler has been

inside a desired Doppler interval are suppressed by seleat . S .
a sequence whose spectrum has a high-order null at a Doppler & M&j0r barrier in adoption of these waveforms for radareuls

frequency inside the desired interval. We show that the spewm  COmpression. Various generalizations of complementamewa
of the biphase sequence obtained by oversampling the lengtH?  forms, including multiple complementary waveforms [7], Imu
Prouhet-Thue-Morse (PTM) sequence by a factor m has anMth-  tiphase (or polyphase) complementary waveforms [10],[11]

order null at all rational Doppler shifts 0o = 2ml/m, where 54 near-complementary waveforms [12] suffer from a simila
1 # 0 and m # 1 are co-prime integers. This spectrum also has

an (M — 1)th-order null at zero Doppler and (M — h — 1)th- problem. . . o .
order nulls at all Doppler shifts 6, = 2x1/(2"m), where [ # 0 A natural question to ask is whether or not it is possible
and m # 1 are again co-prime and1 < h < M — 1. to construct aDoppler resilient pulse train of Golay com-

plementary waveforms, for which the range sidelobes of the
ambiguity function vanish inside a desired Doppler intérva
This question was recently considered in [13],[14], wheiig i
Phase coding is a common technique in radar for construgkown that by carefully choosing the order in which a Golay
ing waveforms with impulse-like autocorrelation funct®onpair of phase coded waveforms is transmitted over time we
[1],[2]. In this technique, a long pulse is phase coded witkan clear out the range sidelobes of the pulse train amigiguit
a unimodular sequence and the autocorrelation functioheof function along modest (close to zero) Doppler shifts. The
coded waveform is controlled via the autocorrelation fiorct developments in [13],[14] led to the discovery that if the
of the unimodular sequence. A key issue in phase codingtiansmission of a Golay pair of phase coded waveforms is
the presence of range sidelobes in the ambiguity functiedordinated in time according to the entries in a biphase
of the coded waveforms. Range sidelobes due to a strogghuence then the magnitude of the range sidelobes can be
reflector can result in masking of nearby weak targets. It ¢ntrolled by shaping the spectrum of the biphase sequence
however impossible to design a single unimodular sequer[gs).
for which the aperiodic autocorrelation function has nogen  In this paper, we extend the result of [13]-[15] to construct
sidelobes. This has led to the idea of using complementgyise trains of Golay complementary waveforms, for which
sets of unimodular sequences [3]-[7] for phase coding.  the range sidelobes of the ambiguity function vanish inside
The most famous class of complementary sequences éegired Doppler interval away from zero. This is accomglish
Golay complementary sequences or Golay pairs introducediy coordinating the transmission of a Golay pair of phase
Marcel Golay [3],[8], which have the property that the sum afoded waveforms in time according to thé&s and —1's in
their autocorrelation functions vanishes at all delaygothan a (2 m)-PTM sequenceThe (2, m)-PTM sequence has
zero. Thus, if each sequence is transmitted separatelyh@ndiéngth2? x m and is obtained by repeating eatland—1 in
autocorrelation functions are added together the outpib@i the length2 PTM sequence. times, that is by oversampling
free of range sidelobes. In other words, the effective amityig a length2 PTM sequence by a factan. We show that
function of a Golay pair of phase coded waveforms is free @ie spectrum of thé2 m)-PTM sequence has/th-order
range sidelobes along the zero-Doppler axis. However, tliglls at all rational Doppler shift§, = 271/m, wherel # 0

_ _ andm # 1 are co-prime integers. This spectrum also has an
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FAQ550-05-1-0443. nulls at all§y = 271/(2"m), wherel # 0 andm # 1 are
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baseband Golay 1 baseband Golay 2

again co-prime and < h < M — 1. These high-order nulls : - - : ]
suppress the range sidelobes. Numerical examples deratenstr ol / \ /] o\ \ |
the annihilation of range sidelobes in the ambiguity fumrcti Y N ! — -
of (2M,m)-PTM pulse trains. e e W e e w
- baseband autocorr 1 . baseband autocorr 2
Il. GOoLAY COMPLEMENTARY WAVEFORMS SN / (IR A
Definition 1: Two length L unimodular sequences of com- ] a5
plex numbersz(¢) andy(¢) are Golay complementary if for o ey
k=—-(L-1),...,(L—1) the sum of their autocorrelation 5o / o\
functions satisfies —
Cz(k) + Oy (k) _ 2L5(k>, (1) -80 -60 -40 -20 Dglay 20 40 60 80
(@)
whereC, (k) is the autocorrelation of(¢) at lagk and (k) )
is the Kronecker delta function. Henceforth we may drop the Uie ‘ : s ‘ el B
discrete time indexX from z(¢) andy(¢) and simply use: and asf iy P
y. Each member of the pafr;, y) is called a Golay sequence. S — | Ml
The basgbarjd waveformy, (¢t) phase coded by the Golay  , — ::__'__:: —
sequencer is given by . :E: ]
L—1 %65 — _I_ — 0
5.(t) = x(O)Qt — IT,) 2 8 7— .
{=0 | < :
where€(¢) is a unit energy pulse shape of duratibnandT.. o — —— —N..
is the chip length. The ambiguity functiop,, (7, v) of s,(t) . m— ——
[ee} - _2 * Dapp\gr(rad) ! 2 ®
Yoo (1) = / so(t)5a T — T " dt ®) (b)
e Fig. 1. (a) The perfect autocorrelation property of a Golayr pf phase

— . . . coded waveforms (b) The ambiguity function of a Golay paipbése coded
wheres(t) is the complex conjugate of(t), andxa(7,v) IS waveforms seperated in time.

the ambiguity function of the pulse shap¥t).

If the complementary waveforms; (t) ands, (¢) are trans-
mitted separately in time, with & sec time interval between This means that along the zero-Doppler axis the ambiguity
the two transmissions, then the effective ambiguity fusreti function xs(7,v) is “free” of range sidelobe%.This per-
of the radar waveforn$(¢) = s, (t) + s, (t — T') is given by  fect autocorrelation property (ambiguity response aloepz

. Doppler axis) is illustrated in Fig. 1(a) for a Golay pair of
Xs(1,v) = Xs, (T, 1) + x5, (1,0). (4) phase coded waveforms.

Off the zero-Doppler axis however, the ambiguity function
has large sidelobes in delay (range) as Fig. 1(b) shows. The
color bar values are in dB. The range sidelobes persist for a
conventional pulse train of Golay complementary wavefqorms
where the transmitter alternates betweey(t) and s,(t)
during several PRIs. The range sidelobes in the ambiguity

Since the chip lengtfT,. is typically very small, the relative
Doppler shift over the duratioT, of a single waveform
is negligible compared to the relative Doppler shift oves th
PRI durationT’, and the ambiguity functiorys(7,~) can be
approximated by

L1 - function can cause masking of a weak target that is situated
xs(mv) =Y [Culk) + e Cy(k)xa(r +kTe,v).  near a strong reflector. Figure 2 shows the delay-Doppler map
k=—(L-1) 5) at the output of a matched filter, when a conventional pulse

) o °/  train of Golay complementary waveforms is transmitted over
Along the zero-Doppler axis/(= 0), the ambiguity function 56 pR|s. The horizontal axis shows Doppler and the vertical
xs(7,v) reduces to axis depicts delay. Color bar values are in dB. The radar
scene contains three stationary reflectors at differergesin
0)=2L 0). 6 . .
xs(7,0) xa(r,0) ©) and two slow-moving targets, which are 30dB weaker than the
1The ambiguity function of5(¢) has two range aliases (cross terms) WhicI%Statlon"’wy reflectors. This value has been chosen to make the

are offset from the zero-delay axis ByT". In this paper, we ignore the range

aliasing effects and only focus on ttmeainlobe of the ambiguity function, 2The shape of the autocorrelation function depends on thecautlation

which corresponds tos(7,v) given in (4). Range aliasing effects can befunction xq(7,0) for the pulse shap&X(t). The Golay complementary
accounted for using standard techniques devised for thisope (e.g. see property eliminates range sidelobes caused by replicag¢f, 0) at nonzero

[1]) and hence will not be further discussed. integer delays.



N=256, Alternati jith output in dB.

% wheref = vT is the relative Doppler shift over a PRI. The first
35333833553 233588838 term on the right-hand-side of (8) is free of range sidelobes
e due to the complementary property of Golay sequencasd
pesscss S Seesscsssssas y. The second term represents the range sidelobés, @s —
Cy (k) is not an impulse. The magnitude of the range sidelobes
Hisiiaadasisdnsasissaaiiaini is proportional to the magnitude of the spectrm(6) of the
“0 sequencéP, which is given by

Delay(sec)

o - -

N—-1
20 S’p(e) = Z pnejne. (9)
n=0

________________________ o The question is how to design the sequefté suppress
I ——— the range sidelobes along a desired Doppler interval. Oiye wa
o to accomplish this is to design the sequerReso that its
Fig. 2. Doppler induced range sidelobes in the ambiguityction of a _spgctrumS‘p(H_) ha.s a hlgh-or_de_r null at a Donler frequency
conventional (alternating) pulse train of Golay completasn waveforms inside the desired interval. This idea has been exploretdh-{
result in masking of weak targets by strong reflectors thatciwse by. [15], where it is shown that the spectrum of a PTM sequence
of length2M+1 has anMth-order null atd = 0.
Definition 3:[16],[17] The Prouhet-Thue-Morse (PTM) se-

slow-moving targets barely visible, and if they were slight quenceP = (p,).>0 over{—1,1} is defined by the following
weaker, it would not be possible to resolve them because fgkyrsions: -

the range sidelobes from the strong stationary reflectdis. T -1

Golay complementary sequences used in this example are Qg Dok = Di

size L = 64 and the pulse shape is a raised cosine. The chi%) Dokt = P = —Pk
length isT, = 100 nsec, the carrier frequency i§ GHz, and for all k > 0.

the PRI isT' = 50 psec. Example:The PTM sequence of length 8 is

7
[1l. PTM PULSE TRAINS OF GOLAY COMPLEMENTARY P=0rkeo = +1 =1 =1 +1 -1 +1 +1 —1.

WAVEFORMS The corresponding pulse train of Golay complementary wave-
It is natural to ask whether or not it is possible to corforms is given by
struct aDoppler resilientpulse train of Golay complementary o B _ _
waveforms, for which the range sidelobes of the pulse train Zp(t) = sa(t) + syt = T) & 8y(t = 2T) + 5,(t = 37)
ambiguity function vanish inside a desired Doppler interva +y(t = 4T) + s2(t = 5T) + s (t — 6T) + s (t = 7T).
In this section, we consider .the annihilation of range sides The ambiguity function ofZ» (¢) has a second-order null along
along modest Doppler shifts and show that by carefullye zero-Doppler axis.
choosing the order in which the Golay waveformst) and  Figure 3(a) shows the ambiguity function of a lengfki-=
sy(t) are transmitted in a pulse train we can clear out the) pTM pulse train of Golay complementary waveforms,
range sidelobes of the ambiguity function in an intervahglo \hich has a seventh-order null at zero-Doppler. The hogzon
the zero-Doppler axis. _ ~_, Xisis Doppler shiftin rad and the vertical axis is delayen.s
Definition 2: Consider a biphase sequer®e= {p.},—;. The magnitude of the pulse train ambiguity function is color
pn € {=1,1} of length N, where N is even. Letl represent coded and presented in dB scale. A zoom-in around zero-
sz(t) and let—1 represent, (). We define theP-pulse train  poppler is shown in Fig. 3(b), demonstrating that the range

Zp(t) of (sz(t),sy(t)) as sidelobes inside the Doppler interjal0.1, 0.1] rad have been
N—1 cleared out. They are at lea8) dB below the peak of the
Zp(t) = 1 Z [(1 4 pn)sa(t —nT) 4+ (1 = pp)s,(t —nT)]. ambiguity function. Figure 4 shows the effect of range sitiel
2 0 suppression in bringing out weak targets in the presence of
) strong reflectors for the five target scenario discussedeearl
The nth entry inSp(t) is s, (t) if p, =1 ands,(t) if p, = in Fig. 2. This example demonstrates the value of PTM pulse

—1. Consecutive entries are separated in time by a’PRI  trains for radar imaging.
The ambiguity function of theéP-pulse trainZp(t), after

ignoring the pulse shape ambiguity function and discregzi IV. OVERSAMPLED PTM PULSE TRAINS

in delay, can be written as [15] We now consider the design of biphase sequences whose

1 N-1 spectra have high-order nulls at Doppler frequencies dttzar
Xzp (k,0) = 5[Ca(k) + Cy (k)] > e zero. Consider the Taylor expansion of the spectiintf)
n=0 aroundf = 6y # 0:
1 N-1 oo )
ind
+ 50 =Gy 3 e (®) Sp(0) = 3 L P (00)(0 — o)’ (10)
n= t=0
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Fig. 3. Ambiguity function of a length?{ = 28) PTM pulse train of Golay
complementary waveforms: (a) the entire Doppler band (bpdler band
[-0.1,0.1] rad.
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Fig. 4. The PTM pulse train clears the Doppler induced rarigelabes
along modest Doppler shifts, and brings out the weak targets

where the coeﬁicientﬁ‘g) (0o) are given by

N-—-1

o) = [ Gese ) =i X atpern, @
d 0=00 =0

fort =0,1,2,--- . We wish to zero-force all the derivatives

f§;>(90) up to orderM, that is we wish to design the sequence

P so that

() =0, forall t=0,1,---,M (12)

We consider rational Doppler shiftg = 271/m, wherel # 0
andm # 1 are co-prime integers. We assume the lengti® of
is N = mgq for some integen. If we expres®9) <n < N —1
asn =rm-+1i, where0 <r <g—1land0<i:<m-—1,
then using the binomial expansion fof = (rm + i)t we can
write f}})(eo) as

t m—1 q—1
. t u Sy g2zl u
100 =303 (L S e [zr pmﬂ-]
u=0 =0 r=0
Define a lengthy sequenceb, }?_5 asb, = prm4i, 0 <7 <

q— 1. If {b,}9Z} satisfies

q—1
Zr“szo, forall 0 <u <t
r=0

(13)

then the coefﬂmenp“(t)( 6o) will be zero. It follows that the
zero-forcing condition in (13) will be satisfied {fb }‘1 é is
the PTM sequence of lengt¥. We note thatf ( b) is
automatically zero ag’” 'ei®it = 0. Therefore, to zero-
force the derlvatlvegfp (90) for all ¢ < M, it is sufficient

to selectP {pn}2r m=1 such that each{p,, i},
1=0,---,m—1Is the Iength2M PTM sequence. We call
such a sequence(@¥  m)-PTM sequencéThe (2M, m)-PTM
sequence has lengt®™ x m and is constructed from the
length2 PTM sequence by repeating eacland —1 in the
PTM sequencen times, that is by oversampling the PTM
sequence by a fact(m

Let P = {pn}i o=t pe the(2M m)-PTM sequence, that
is {pmﬂ}2 *1, i=0,- — 1 is a PTM sequence of
length 2*. Then the spectrunﬂp( ) of P has Mth-order
nulls at allfy = 2xl/m wherel # 0 andm # 1 are co-prime
integers.

Corollary: Let P be the(2,
spectrumSp(6) of P has

1) an(M — 1)th-order null atf, = 0.

2) (M — h— 1)th-order nulls at alp, = 271/(2"m), where

l andm # 1 are co-prime, and < h < M — 1.

Example: The spectrum of the(23,2)-PTM sequence,
shown in solid line in Fig. 5, has a third-order nullgt= =
rad, a second-order null & = 0 rad, first-order nulls at
6o = w/2 rad andd, = 3x/2 rad, and zeroth-order nulls at
6o = (2k+1)m/4 rad fork = 0,1, 2, 3. Fig. 5 also shows the
spectrum of the(22,2)-PTM sequence (dashed line), which
has a second-order null & = = rad, a first-order null at
6o = 0 rad, and zeroth-order nulls & = =/2 rad and
6o = 37/2 rad.

m)-PTM sequence. Then the
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Fig. 5. The spectra of23,2)- and (22, 2)-PTM sequences. (a)

Figure 6(a) shows the ambiguity function of 28, 3)-PTM
sequence of Golay complementary waveforms. The color bar
values are in dB. This ambiguity function has an eighth-orde

null at §, = +27/3, a seventh-order null at zero Doppler, 1

sixth-order nulls aty = +7/3, and so on. A zoom-in around ; ”
6y = 27 /3 is provided in Fig. 6(b) to demonstrate that range S “
sidelobes in this Doppler region are significantly suppedss “
The range sidelobes in this region are at lesstdB below 16 15

the peak of the ambiguity function.

V. CONCLUSIONS

. 21 212 214 216 2.2
Doppler(rad)

Doppler resilient pulse train of Golay complementary wave- (b)
forms are constructed by coordinating the transmission of a
Golay pair of phase coded waveforms in time according to thgy. 6.  Ambiguity function of the(2%,3)-PTM pulse train of Golay
1'sand—1's in a PTM sequence or its oversampled versionsemplementary waveforms: (a) the entire Doppler band (nZin around
The magnitude of the range sidelobes of the pulse train amfi=27/3.
guity function of the constructed pulse trains are propowdi

to the magnitude spectra 62/, m)-PTM sequences, which _ . .
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