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Abstract—We present a novel method of constructing aDoppler
resilient pulse train of Golay complementary waveforms, for
which the range sidelobes of the pulse train ambiguity function
vanish inside a desired Doppler interval. This is accomplished
by coordinating the transmission of a Golay pair of phase coded
waveforms in time according to the1’s and −1’s in a biphase
sequence. The magnitude of the range sidelobes of the pulse
train ambiguity function is shown to be proportional to the
magnitude spectrum of the biphase sequence. Range sidelobes
inside a desired Doppler interval are suppressed by selecting
a sequence whose spectrum has a high-order null at a Doppler
frequency inside the desired interval. We show that the spectrum
of the biphase sequence obtained by oversampling the length-2M

Prouhet-Thue-Morse (PTM) sequence by a factor m has anM th-
order null at all rational Doppler shifts θ0 = 2πl/m, where
l 6= 0 and m 6= 1 are co-prime integers. This spectrum also has
an (M − 1)th-order null at zero Doppler and (M − h − 1)th-
order nulls at all Doppler shifts θ0 = 2πl/(2hm), where l 6= 0
and m 6= 1 are again co-prime and1 ≤ h ≤ M − 1.

I. I NTRODUCTION

Phase coding is a common technique in radar for construct-
ing waveforms with impulse-like autocorrelation functions
[1],[2]. In this technique, a long pulse is phase coded with
a unimodular sequence and the autocorrelation function of the
coded waveform is controlled via the autocorrelation function
of the unimodular sequence. A key issue in phase coding is
the presence of range sidelobes in the ambiguity function
of the coded waveforms. Range sidelobes due to a strong
reflector can result in masking of nearby weak targets. It is
however impossible to design a single unimodular sequence
for which the aperiodic autocorrelation function has no range
sidelobes. This has led to the idea of using complementary
sets of unimodular sequences [3]–[7] for phase coding.

The most famous class of complementary sequences are
Golay complementary sequences or Golay pairs introduced by
Marcel Golay [3],[8], which have the property that the sum of
their autocorrelation functions vanishes at all delays other than
zero. Thus, if each sequence is transmitted separately and the
autocorrelation functions are added together the output will be
free of range sidelobes. In other words, the effective ambiguity
function of a Golay pair of phase coded waveforms is free of
range sidelobes along the zero-Doppler axis. However, this
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ideal property is sensitive to Doppler effect. Off the zero-
Doppler axis the ambiguity function of Golay pairs of phase
coded waveforms has large range sidelobes, e.g., see [1],[2]
and [9]. The ambiguity function of a pulse train of Golay
complementary waveforms, in which the two waveforms are
transmitted alternatively in time over several pulse repetition
intervals (PRIs), suffers from the same problem. The sensitiv-
ity of Golay complementary waveforms to Doppler has been
a major barrier in adoption of these waveforms for radar pulse
compression. Various generalizations of complementary wave-
forms, including multiple complementary waveforms [7], mul-
tiphase (or polyphase) complementary waveforms [10],[11],
and near-complementary waveforms [12] suffer from a similar
problem.

A natural question to ask is whether or not it is possible
to construct aDoppler resilient pulse train of Golay com-
plementary waveforms, for which the range sidelobes of the
ambiguity function vanish inside a desired Doppler interval.
This question was recently considered in [13],[14], where it is
shown that by carefully choosing the order in which a Golay
pair of phase coded waveforms is transmitted over time we
can clear out the range sidelobes of the pulse train ambiguity
function along modest (close to zero) Doppler shifts. The
developments in [13],[14] led to the discovery that if the
transmission of a Golay pair of phase coded waveforms is
coordinated in time according to the entries in a biphase
sequence then the magnitude of the range sidelobes can be
controlled by shaping the spectrum of the biphase sequence
[15].

In this paper, we extend the result of [13]–[15] to construct
pulse trains of Golay complementary waveforms, for which
the range sidelobes of the ambiguity function vanish insidea
desired Doppler interval away from zero. This is accomplished
by coordinating the transmission of a Golay pair of phase
coded waveforms in time according to the1’s and −1’s in
a (2M , m)-PTM sequence. The (2M , m)-PTM sequence has
length2M ×m and is obtained by repeating each1 and−1 in
the length-2M PTM sequencem times, that is by oversampling
a length-2M PTM sequence by a factorm. We show that
the spectrum of the(2M , m)-PTM sequence hasM th-order
nulls at all rational Doppler shiftsθ0 = 2πl/m, wherel 6= 0
andm 6= 1 are co-prime integers. This spectrum also has an
(M −1)th-order null at zero Doppler and(M −h−1)th-order
nulls at all θ0 = 2πl/(2hm), where l 6= 0 and m 6= 1 are



again co-prime and1 ≤ h ≤ M − 1. These high-order nulls
suppress the range sidelobes. Numerical examples demonstrate
the annihilation of range sidelobes in the ambiguity function
of (2M , m)-PTM pulse trains.

II. GOLAY COMPLEMENTARY WAVEFORMS

Definition 1: Two lengthL unimodular sequences of com-
plex numbersx(ℓ) and y(ℓ) are Golay complementary if for
k = −(L − 1), . . . , (L − 1) the sum of their autocorrelation
functions satisfies

Cx(k) + Cy(k) = 2Lδ(k), (1)

whereCx(k) is the autocorrelation ofx(ℓ) at lagk andδ(k)
is the Kronecker delta function. Henceforth we may drop the
discrete time indexℓ from x(ℓ) andy(ℓ) and simply usex and
y. Each member of the pair(x, y) is called a Golay sequence.

The baseband waveformsx(t) phase coded by the Golay
sequencex is given by

sx(t) =

L−1
∑

ℓ=0

x(ℓ)Ω(t − ℓTc) (2)

whereΩ(t) is a unit energy pulse shape of durationTc andTc

is the chip length. The ambiguity functionχsx
(τ, ν) of sx(t)

is given by

χsx
(τ, ν) =

∞
∫

−∞

sx(t)sx(t − τ)e−jνtdt (3)

wheres(t) is the complex conjugate ofs(t), andχΩ(τ, ν) is
the ambiguity function of the pulse shapeΩ(t).

If the complementary waveformssx(t) andsy(t) are trans-
mitted separately in time, with aT sec time interval between
the two transmissions, then the effective ambiguity function
of the radar waveformS(t) = sx(t) + sy(t− T ) is given by1

χS(τ, ν) = χsx
(τ, ν) + ejνT χsy

(τ, ν). (4)

Since the chip lengthTc is typically very small, the relative
Doppler shift over the durationLTc of a single waveform
is negligible compared to the relative Doppler shift over the
PRI durationT , and the ambiguity functionχS(τ, ν) can be
approximated by

χS(τ, ν) =
L−1
∑

k=−(L−1)

[Cx(k) + ejνT Cy(k)]χΩ(τ + kTc, ν).

(5)
Along the zero-Doppler axis (ν = 0), the ambiguity function

χS(τ, ν) reduces to

χS(τ, 0) = 2LχΩ(τ, 0). (6)

1The ambiguity function ofS(t) has two range aliases (cross terms) which
are offset from the zero-delay axis by±T . In this paper, we ignore the range
aliasing effects and only focus on themainlobeof the ambiguity function,
which corresponds toχS(τ, ν) given in (4). Range aliasing effects can be
accounted for using standard techniques devised for this purpose (e.g. see
[1]) and hence will not be further discussed.
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Fig. 1. (a) The perfect autocorrelation property of a Golay pair of phase
coded waveforms (b) The ambiguity function of a Golay pair ofphase coded
waveforms seperated in time.

This means that along the zero-Doppler axis the ambiguity
function χS(τ, ν) is “free” of range sidelobes.2 This per-
fect autocorrelation property (ambiguity response along zero-
Doppler axis) is illustrated in Fig. 1(a) for a Golay pair of
phase coded waveforms.

Off the zero-Doppler axis however, the ambiguity function
has large sidelobes in delay (range) as Fig. 1(b) shows. The
color bar values are in dB. The range sidelobes persist for a
conventional pulse train of Golay complementary waveforms,
where the transmitter alternates betweensx(t) and sy(t)
during several PRIs. The range sidelobes in the ambiguity
function can cause masking of a weak target that is situated
near a strong reflector. Figure 2 shows the delay-Doppler map
at the output of a matched filter, when a conventional pulse
train of Golay complementary waveforms is transmitted over
256 PRIs. The horizontal axis shows Doppler and the vertical
axis depicts delay. Color bar values are in dB. The radar
scene contains three stationary reflectors at different ranges
and two slow-moving targets, which are 30dB weaker than the
stationary reflectors. This value has been chosen to make the

2The shape of the autocorrelation function depends on the autocorrelation
function χΩ(τ, 0) for the pulse shapeΩ(t). The Golay complementary
property eliminates range sidelobes caused by replicas ofχΩ(τ, 0) at nonzero
integer delays.
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Fig. 2. Doppler induced range sidelobes in the ambiguity function of a
conventional (alternating) pulse train of Golay complementary waveforms
result in masking of weak targets by strong reflectors that are close by.

slow-moving targets barely visible, and if they were slightly
weaker, it would not be possible to resolve them because of
the range sidelobes from the strong stationary reflectors. The
Golay complementary sequences used in this example are of
sizeL = 64 and the pulse shape is a raised cosine. The chip
length isTc = 100 nsec, the carrier frequency is17 GHz, and
the PRI isT = 50 µsec.

III. PTM PULSE TRAINS OF GOLAY COMPLEMENTARY

WAVEFORMS

It is natural to ask whether or not it is possible to con-
struct aDoppler resilientpulse train of Golay complementary
waveforms, for which the range sidelobes of the pulse train
ambiguity function vanish inside a desired Doppler interval.
In this section, we consider the annihilation of range sidelobes
along modest Doppler shifts and show that by carefully
choosing the order in which the Golay waveformssx(t) and
sy(t) are transmitted in a pulse train we can clear out the
range sidelobes of the ambiguity function in an interval along
the zero-Doppler axis.

Definition 2: Consider a biphase sequenceP = {pn}
N−1
n=0 ,

pn ∈ {−1, 1} of lengthN , whereN is even. Let1 represent
sx(t) and let−1 representsy(t). We define theP-pulse train
ZP(t) of (sx(t), sy(t)) as

ZP(t) =
1

2

N−1
∑

n=0

[(1 + pn)sx(t − nT ) + (1 − pn)sy(t − nT )] .

(7)
The nth entry inSP(t) is sx(t) if pn = 1 andsy(t) if pn =
−1. Consecutive entries are separated in time by a PRIT .

The ambiguity function of theP-pulse trainZP(t), after
ignoring the pulse shape ambiguity function and discretizing
in delay, can be written as [15]

χZP (k, θ) =
1

2
[Cx(k) + Cy(k)]

N−1
∑

n=0

ejnθ

+
1

2
[Cx(k) − Cy(k)]

N−1
∑

n=0

pnejnθ (8)

whereθ = νT is the relative Doppler shift over a PRI. The first
term on the right-hand-side of (8) is free of range sidelobes
due to the complementary property of Golay sequencesx and
y. The second term represents the range sidelobes, asCx(k)−
Cy(k) is not an impulse. The magnitude of the range sidelobes
is proportional to the magnitude of the spectrumSP(θ) of the
sequenceP , which is given by

SP(θ) =

N−1
∑

n=0

pnejnθ. (9)

The question is how to design the sequenceP to suppress
the range sidelobes along a desired Doppler interval. One way
to accomplish this is to design the sequenceP so that its
spectrumSP(θ) has a high-order null at a Doppler frequency
inside the desired interval. This idea has been explored in [13]–
[15], where it is shown that the spectrum of a PTM sequence
of length2M+1 has anM th-order null atθ = 0.

Definition 3: [16],[17] The Prouhet-Thue-Morse (PTM) se-
quenceP = (pk)k≥0 over{−1, 1} is defined by the following
recursions:

1) p0 = 1
2) p2k = pk

3) p2k+1 = pk = −pk

for all k > 0.
Example:The PTM sequence of length 8 is

P = (pk)7k=0 = +1 − 1 − 1 + 1 − 1 + 1 + 1 − 1.

The corresponding pulse train of Golay complementary wave-
forms is given by

ZP(t) = sx(t) + sy(t − T ) + sy(t − 2T ) + sx(t − 3T )

+sy(t − 4T ) + sx(t − 5T ) + sx(t − 6T ) + sy(t − 7T ).

The ambiguity function ofZP(t) has a second-order null along
the zero-Doppler axis.

Figure 3(a) shows the ambiguity function of a length-(N =
28) PTM pulse train of Golay complementary waveforms,
which has a seventh-order null at zero-Doppler. The horizonal
axis is Doppler shift in rad and the vertical axis is delay in sec.
The magnitude of the pulse train ambiguity function is color
coded and presented in dB scale. A zoom-in around zero-
Doppler is shown in Fig. 3(b), demonstrating that the range
sidelobes inside the Doppler interval[−0.1, 0.1] rad have been
cleared out. They are at least80 dB below the peak of the
ambiguity function. Figure 4 shows the effect of range sidelobe
suppression in bringing out weak targets in the presence of
strong reflectors for the five target scenario discussed earlier
in Fig. 2. This example demonstrates the value of PTM pulse
trains for radar imaging.

IV. OVERSAMPLED PTM PULSE TRAINS

We now consider the design of biphase sequences whose
spectra have high-order nulls at Doppler frequencies otherthan
zero. Consider the Taylor expansion of the spectrumSP(θ)
aroundθ = θ0 6= 0:

SP(θ) =

∞
∑

t=0

1

n!
f

(t)
P (θ0)(θ − θ0)

t (10)



N=256, PTM with output in dB
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Fig. 3. Ambiguity function of a length-(N = 28) PTM pulse train of Golay
complementary waveforms: (a) the entire Doppler band (b) Doppler band
[−0.1, 0.1] rad.
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Fig. 4. The PTM pulse train clears the Doppler induced range sidelobes
along modest Doppler shifts, and brings out the weak targets.

where the coefficientsf (t)
P (θ0) are given by

f
(t)
P (θ0) =

[

dt

dθt
SP(θ)

]

θ=θ0

= jt

N−1
∑

n=0

ntpnejnθ0 , (11)

for t = 0, 1, 2, · · · . We wish to zero-force all the derivatives
f

(t)
P (θ0) up to orderM , that is we wish to design the sequence
P so that

f
(t)
P (θ0) = 0, for all t = 0, 1, · · · , M (12)

We consider rational Doppler shiftsθ0 = 2πl/m, wherel 6= 0
andm 6= 1 are co-prime integers. We assume the length ofP
is N = mq for some integerq. If we express0 ≤ n ≤ N − 1
as n = rm + i, where0 ≤ r ≤ q − 1 and 0 ≤ i ≤ m − 1,
then using the binomial expansion fornt = (rm + i)t we can
write f

(t)
P (θ0) as

f
(t)
P (θ0) = jt

t
∑

u=0

(

t

u

)

mu

m−1
∑

i=0

it−uej 2πli
m

[

q−1
∑

r=0

ruprm+i

]

Define a length-q sequence{br}
q−1
r=0 asbr = prm+i, 0 ≤ r ≤

q − 1. If {br}
q−1
r=0 satisfies

q−1
∑

r=0

rubr = 0, for all 0 ≤ u < t (13)

then the coefficientf (t)
P (θ0) will be zero. It follows that the

zero-forcing condition in (13) will be satisfied if{br}
q−1
r=0 is

the PTM sequence of length2t. We note thatf (M)
P (θ0) is

automatically zero as
∑m−1

i=0 ej 2πli
m = 0. Therefore, to zero-

force the derivativesf (t)
P (θ0) for all t ≤ M , it is sufficient

to select P = {pn}
2Mm−1
n=0 such that each{prm+i}

q−1
r=0,

i = 0, · · · , m − 1 is the length-2M PTM sequence. We call
such a sequence a(2M , m)-PTM sequence. The(2M , m)-PTM
sequence has length2M × m and is constructed from the
length-2M PTM sequence by repeating each1 and−1 in the
PTM sequencem times, that is by oversampling the PTM
sequence by a factorm.

Let P = {pn}
2M m−1
n=0 be the(2M , m)-PTM sequence, that

is {prm+i}
2M−1
r=0 , i = 0, · · · , m − 1 is a PTM sequence of

length 2M . Then the spectrumSP(θ) of P has M th-order
nulls at allθ0 = 2πl/m wherel 6= 0 andm 6= 1 are co-prime
integers.

Corollary: Let P be the(2M , m)-PTM sequence. Then the
spectrumSP(θ) of P has

1) an (M − 1)th-order null atθ0 = 0.
2) (M −h− 1)th-order nulls at allθ0 = 2πl/(2hm), where

l andm 6= 1 are co-prime, and1 ≤ h ≤ M − 1.

Example: The spectrum of the(23, 2)-PTM sequence,
shown in solid line in Fig. 5, has a third-order null atθ0 = π
rad, a second-order null atθ0 = 0 rad, first-order nulls at
θ0 = π/2 rad andθ0 = 3π/2 rad, and zeroth-order nulls at
θ0 = (2k + 1)π/4 rad fork = 0, 1, 2, 3. Fig. 5 also shows the
spectrum of the(22, 2)-PTM sequence (dashed line), which
has a second-order null atθ0 = π rad, a first-order null at
θ0 = 0 rad, and zeroth-order nulls atθ0 = π/2 rad and
θ0 = 3π/2 rad.
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Fig. 5. The spectra of(23, 2)- and (22, 2)-PTM sequences.

Figure 6(a) shows the ambiguity function of a(28, 3)-PTM
sequence of Golay complementary waveforms. The color bar
values are in dB. This ambiguity function has an eighth-order
null at θ0 = ±2π/3, a seventh-order null at zero Doppler,
sixth-order nulls atθ0 = ±π/3, and so on. A zoom-in around
θ0 = 2π/3 is provided in Fig. 6(b) to demonstrate that range
sidelobes in this Doppler region are significantly suppressed.
The range sidelobes in this region are at least80 dB below
the peak of the ambiguity function.

V. CONCLUSIONS

Doppler resilient pulse train of Golay complementary wave-
forms are constructed by coordinating the transmission of a
Golay pair of phase coded waveforms in time according to the
1’s and−1’s in a PTM sequence or its oversampled versions.
The magnitude of the range sidelobes of the pulse train ambi-
guity function of the constructed pulse trains are proportional
to the magnitude spectra of(2M , m)-PTM sequences, which
have high-order nulls at rational Doppler shiftsθ0 = 2πl/m,
where l 6= 0 and m 6= 1 are co-prime integers. These high-
order nulls suppress the range sidelobes of the pulse train
ambiguity function inside Doppler intervals where Doppler
shifts θ0 = 2πl/m lie in. Numerical examples demonstrate
the annihilation of range sidelobes in the ambiguity functions
of (2M , m)-PTM pulse trains.
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