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Inverse problems

Forward model: we interrogate the signal of interest x through
forward model A and make measurements y.
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inverse problem

Inverse problem: recover the signal of interest « from y.



Challenges: finding needles in a haystack

e Sampling constraints: sample-starved, low signal-to-noise ratio,
nonlinear measurements;

¢ lll-conditioned sources: weak and fine-grained information;

¢ Resiliency: miscalibration, missing data, corruptions, etc.

DALLE generated with the prompt “finding needles in the haystack”



Geometry as a prior: from low-rank to generative models
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Subspace models: Neural networks:

Sparsity, low-rank, ... GAN, VAE, diffusion models...



First vignette: low-rank models

An optimization vignette: preconditioning to accelerate nonconvex
ill-conditioned low-rank estimation
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Statistics meets optimization

Statistical model
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worst case average case




Second vignette: diffusion models

A sampling vignette: how can we leverage score-based generative
models for generation and inverse problems, efficiently and provably?
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Sampling meets optimization

o z" =max f(z) - z ~ p(x) o el

Optimization delivers
point estimate

Sampling provides
uncertainty quantification

Sampling as an alternative to optimization via energy-based modeling. J




Part 1:

Accelerating gradient descent for ill-conditioned
low-rank estimation



A canonical problem: low-rank matrix sensing

M € R™" 72 A()
rank(M) =r linear map

y = A(M) + noise
Recover M in the sample-starved regime:
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Low-rank matrix factorization

min  rank(Z) st. y=~A(Z)
ZeRnl ><‘n,2
Ly - A2
min Ny —
rank(Z)=r 2 Yy 2
scalable, but nonconvex! X YT

min £(X,Y) Hy Al XYT)H

XeR’nl XT,YER"’ZXT 2
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Statistics meets optimization

Statistical model

—)

worst case average case

Vanilla gradient descent (GD):

X1 =X, —nVxf(X,Y))
Y1 =Y, —nVy (X, Y7)

fort =0,1,... from a carefully chosen (e.g., spectral) initialization.
13



Low-rank matrix sensing: GD with balancing regularization

min fref (X, Y) Hy AXYT) H

S x|

e Spectral initialization: find an initial point
in the “basin of attraction”.

“Basin of attraction”
(X0, Yp) < SVD,.(A*(y))
¢ Gradient iterations:

X1 = Xt —nVx freg( X1, Yr)
Yii1 =Y. — 1 Vy freg(Xt, Y2)

fort=0,1,...
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Recap: GD for asymmetric low-rank matrix sensing

Theorem (Tu et al., ICML 2016)

Suppose M = X,Y," is rank-r and has a condition number
K = Omax(M)/omin(M). For low-rank matrix sensing with
i.i.d. Gaussian design, vanilla GD (with spectral initialization) achieves

1X:Y," — Mllp < £ omin(M)

« Computational: within O(rlog 1) iterations;
e Statistical: as long as the sample complexity satisfies

m > (ny + no)r?k2.

Similar results hold for many low-rank problems: matrix
completion, robust PCA, etc...

(Netrapalli et al. '13, Candes, Li, Soltanolkotabi '14, Sun and Luo '15, Chen and
Wainwright '15, Zheng and Lafferty '15, Ma et al. '17, ....)
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Global linear convergence of vanilla GD
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Similar results hold for many low-rank problems

)

14, Sun and Luo '15, Chen

(Tu et al. '16, Netrapalli et al. '13, Candes, Li, Soltanolkotabi '

and Wainwright '15 Zheng and Lafferty '15, Ma et al. '17. ....)
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What could go wrong?
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Condition number can be large
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Must mind the condition number! J

Data source: www.epa.gov/water-research/epanet
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www.epa.gov/water-research/epanet

Getting rid of the condition number?
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Our recipe: scaled gradient descent (ScaledGD)

1
fX,y) =2 Hy—A(XYT)H e Spectral initialization: find an initial point

in the “basin of attraction”.

2
2
e Scaled gradient iterations:

Xi1 =X — vaf(Xt,Yi) (Y;TYt)_l
diti
precon i1tioner

Y1 =Y - Vy (X, V) (X, X)) !

————
v preconditioner

fort=0,1,...

ScaledGD is a preconditioned gradient method
without balancing regularization! J
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ScaledGD for low-rank matrix completion
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Huge computational saving: ScaledGD converges in an
k-independent manner with a minimal overhead!
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What could go wrong with vanilla GD?

Low-rank matrix factorization:

F(X,Y) HXYT x v )

The rank-1 scalar case: M, = X,Y, and M; = X;Y;.

Unbalanced factor. Suppose X; = /KM, Y; = /K1 M; for some
large K > 1, GD updates follows

Xt+1 = Xt — n(Xt}/t — M )}/;5 M ’I’](Mt M ) K_lMt7
Yiv1 =Y —n(XeYe — M) Xy = VKT My — n(My — My )N/ K M.

The learning rate is set as 7 o K ! to avoid gradient explosion of Y7,
resulting in slow convergence of X;.

Vanilla GD suffers from unbalancing. J

...unless using a balanced initialization, see (Ma et al., 2021).
22



A closer peek at the caveats of vanilla GD

Low-rank matrix factorization:

ol 0
0 o2

*

1
oy O . ol
The rank-2 case: M, = [ } and M, = [ 2] with & = %.
t

/ ~+1
Balanced, but ill-conditioned factors. Let X; = Y; = [ It 0 ] .

GD update follows
X1 =Y = \/07751[1_77((71} ) 0
o 0 Vo[l —n(o? — o))

The learning rate is set as i oc (¢})~! to avoid gradient explosion of

the top diagonal entry, resulting in slow convergence of the other.

Vanilla GD suffers from ill-conditioning. )
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ScaledGD as a quasi-Newton method

Low-rank matrix factorization:

F(X,Y) HXYT xv"| )

ScaledGD is equivalent to:

b R e R e

The preconditioners are chosen as the inverse of the block diagonal
approximation of the Hessian to low-rank matrix factorization.
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ScaledGD is insensitive to ill-conditioning

Recall the rank-2 case with balanced, but ill-conditioned factors.

e GD update follows

oT[1 = (ot — o) 0
Xit1 =Y = t Lo
0 of[l —n(of — o?)]
The learning rate is set as 7 oc (o))t
e ScaledGD update follows
1
Vol =n(l = Z4)] 0
X1 =Y = ! 5 o2
0 o3[l —n(1 - )]
The learning rate is set as 1 o< 1.
ScaledGD is insensitive to ill-conditioning. )
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Key properties of ScaledGD

Invariance to invertible transforms: (Tanner and Wei, '16; Mishra '16)

(X+,Y)

M,=X,Y]

W -

1
i
l T
! M =XinY,
XY _
Kot Vi) (X141Q.Y11Q ™)
New distance metric as Lyapunov function:
2

a2 (| X Xl . H B 1/2
dist ({Y}’{Y*])icgelg{(r) (XQ - X%, .

n H(YQ’T - Y*)zi/zHi —

+ a careful trajectory-based analysis - -
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Theoretical guarantees of ScaledGD

Theorem (Tong, Ma and Chi, JMLR 2021)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD with
spectral initialization achieves

1X.Y," — M|lp < € omin(M)

o Computational: within O(log 1) iterations;
e Statistical: the sample complexity satisfies

m > (ny + ng)rik?.

Strict improvement over vanilla GD: provable acceleration at the
same sample complexity!

27



ScaledGD works more broadly

v 717 7 v
v v 7
v 77 v 7
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robust PCA matrix completion
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Tucker tensor recovery




Generalization to tensors

neurons

High-order tensors capture multi-way interactions across modalities.

trial 1
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Low-rank tensor under Tucker decomposition

Low-rank Tucker decomposition of a tensor:

T(i1 i, i3) = Y S(j1, 2, J3)U (ir, 1)V (i, j2) W (i3, js)

J1,J2,33

g w

=U,V,W)-8S,
where U € R"*" |V € R™*™2, W ¢ R™*" and § € RM*72x"3,
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Evidence that tensor problems are more challenging

Low-rank tensor recovery
Recover low-rank T from y = A(T).

e Computation hardness: the nuclear norm of a tensor is NP-hard
to compute (Hillar and Lim, '13);

e Computational barrier: polynomial-time algorithm exists when
the sample size is above Q(n3/2) (Barak and Moitra, '16);

e Little existing results for the Tucker case: no provably efficient
first-order algorithm for low-rank tensor completion (Han, Zhang,
Willett, '20).
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How to construct scaled gradients for tensors?

min  f(F) = % AU, V, W) - S) - yl|?

F=(U,V,W,S)

J

Step 1: unfolding the tensor along mode-1:

My (T)

U

Mi(S)(V @ W)IT

I\—Y—l
f]T

Step 2: Treat this as a matrix problem for updating factor U':
Ups1 = Uy = nVu f(F) (U] U) ™

Step 3: update the core tensor S:

S =St = n((0TO) L (V, V)L (W W) TY) Vs f(R)

Key property: invariance to parameterization.

32



ScaledGD for low-rank tensor completion

Theorem (Tong et. al., JMLR 2022)

For low-rank tensor completion under Bernoulli sampling, assume
n = ny = ne = ng, ScaledGD with spectral initialization and projection
achieves
(U, Vi, Wi) - S; = Tlp S € - omin(T)
e Computational: within O(log 1) iterations;
e Statistical: as long as the sample complexity satisfies
3/2,.5/2,,3/2

n3p > p k3 logn.

First provable linear convergence at a near-optimal sample complexity
for low-Tucker-rank tensor completion!
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Numerical evidence

min

F=(U,V,W.,S)

= ScaledGD ||
- RegularizedGD
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The benefit of ScaledGD is

10 12 14 16 18 20

even more evident for tensors! )
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Tensor robust principal component analysis

Data = Sparse + Low-rank

Theorem (Dong et al., 2022)

For a low-rank plus sparse tensor, ScaledGD with spectral initialization
and iteration-varying thresholding converges at a constant rate, as long
as the corruption level per fiber satisfies

a< L
~ 23

Can use selective mode updates to accelerate computation!

35



Unrolling for saliency detection in materials data

Unrolling ScaledGD + self-supervised learning for tensor RPCA

materials data

“Deep Unfolded Tensor Robust PCA with Self-supervised Learning”, Dong, Shah, Donegan, and Chi, ICASSP 2023.
36



Robustness to outliers and corruptions?

M € R A() %
rank(M) = r linear map Yy
N
.
\ |
= b
waicious attacks
i

y = AM)+ s, AM)={{A;, M)},

outliers

Arbitrary but sparse outliers: ||s|jo < a-m, where 0 < a < 1is
fraction of outliers.

37



Dealing with outliers: subgradient methods

Least absolute deviation (LAD):

win f(X,Y) = Hy -~ A(XYT)H1

)

¢ Median-truncated spectral initialization:
(Li et.al.'19).

e Subgradient iterations: (Charisopoulos
et.al.'19; Li et al'18)

X1 =Xy = Ox [( X4, Y7)

— Yii1 =Y — Oy f( X, Vi)

Suffer from similar slow down due to ill-conditioning. J
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Dealing with outliers: scaled subgradient methods

Least absolute deviation (LAD):

pp SO = [y —acavT)|

)

1

e Median-truncated spectral initialization:
(Li et.al.'19).

Scaled subgradient iterations:
Xer1 =X~ Ox f(Xe Ya) (V,'Y0) !
diti
preconditioner

Y1 =Y -0y f( X, Y2) (X, X)) !
N—————

preconditioner

where 7; is set as Polyak's or geometric decaying
stepsize.
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Performance guarantees

| matrix sensing || quadratic sensing

Subgradient Method K log L 5 oo L
(Charisopoulos et al, '19) (I—2a)? 98¢ (T—2a)? %8 ¢
ScaledSM L ogl r_logl
(Tong, Ma, Chi, TSP '21) (1-2a)? S e (1-20)7 75 e

—ScaledSM r = 1
- ScaledSM £ = 5
102 —ScaledSM « = 10
-=-ScaledSM & = 20
VanillaSM & = 1
10 VanillaSM & = 5
VanillaSM & = 10
VanillaSM & = 20

Relative error
5,

1070

1072
0 200 800 1000

401 00
Iteration count

Robustness to both ill-conditioning and adversarial corruptions! )
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What if we do not know the exact rank?

So far we have assumed the exact rank is given.... what if we do not
know the exact rank?

Misspecification by overparameterization:

M=XX', XeR™, k6 >y

ScaledGD:()\):

X=X, —nVxf(Xy) (X X)) (X, X, + A7
———
preconditioner preconditioner

analysis break down and might be unstable...
add regularization to stabilize the preconditioner

41



Does preconditioning hurt generalization?

e Infinitely many global minima, not all generalize
e Can we still guarantee generalization?

optimization generalization

WHEN DOES PRECONDITIONING HELP OR HURT GEN-
ERALIZATION?

*Shun-ichi Amari', Jimmy Ba%3, Roger Grosse’3, Xuechen Li*, Atsushi Nitanda®®,
Taiji Suzuki®®, Denny Wu??, Ji Xu’
IRIKEN CBS, 2University of Toronto, ®Vector Institute, “Google Research, Brain Team,
5University of Tokyo, SRIKEN AIP, “Columbia University
amari@brain.riken.jp, {jba, rgrosse, lxuechen, dennywu}@cs.toronto.edu,
{nitanda,taiji}@mist.i.u-tokyo.ac.jp, jixu@cs.columbia.edu
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Theoretical guarantees

Theorem (Xu, Shen, Ma, Chi, ICML 2023)

For low-rank matrix sensing with i.i.d. Gaussian design, ScaledGD(\)
with A < omin (M), n < 1, and small random initialization
Xo ~ aN(0,1/n) with sufficiently small o achieves

HXtXtT — M|r < € omin(M)
e Computational: within O(log rlog(kn) + log L) iterations;
e Statistical: the sample complexity satisfies

m > nr?poly(k).

e Our analysis also enables exact convergence under random
initialization with correct rank specification.

43



Comparison with overparameterized GD

error

5 kA w3 log(1/¢)

& >

(Stoger and Soltanolkotabi, '21)

log(1/¢) GD

ScaledGD

[

iteration

ScaledGD picks up the signal component much faster than GD even

from small random initialization!

44



A peek at the analysis: three-phased learning

Signal strength

Alignment angle to A* A (M)

Reconstruction error

»

iteration

Phase llI:
local convergence

Phase I: : Phase Il:

approximating | amplifying
power method : the signal

Phase Ill: the reconstruction error decays exponentially with a

constant rate
45



Near minimax-optimality
Noisy and approximately low-rank case:

yi = (A;, M)+ &, where & ~ N(O,O’Q)

Theorem (Xu, Shen, Chi, Ma, '23)

For low-rank matrix sensing with i.i.d. Gaussian design, and sufficiently
small noise level, overparameterized ScaledGD(\) with the same
configuration as before achieves

HXtXtT —M|r S KZO'\/TLT+/€2HM — M, ||r,

noise approx. lowrank

where M, is the best rank-r approximation of M .

e first near minimax-optimal result up to x?;
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Summary: preconditioning helps!

Preconditioning

—

47



Part 2:

Towards demystifying score-based diffusion models
for generation and inverse problems



Generative models

training data new samples

Generative

modeling

e Given training data X®™ ~ py.io (1<i< N)inR?
—_———
from a general distribution

e Generate new samples Y ~ pyata

49



From generative models to generative Al

Generative Al is transforming nearly every field of our society.

)

50



Approaching generative modeling via density estimation?

Suppose we to learn the distribution directly (parameterized by 6):

e_fe(x)
Zg

po(x) =

where Zy is a normalizing constant depending on 6.
e Use maximum likelihood to estimate 6,

N
1 .
meaxiz; og po(z;)

and then sample from the learned py(x).

e Intractable! Why?

51



Score function is all you need

The (Stein’s) score function of a distribution p(x)
is defined as

s(z) = Vzlogp(z).

Note that

e—fo(x)
s(z) = Vg log

b
= —Vafo(x) — Vilog Zy = =V fo(7)

getting rid of the annoying Zy!

Charles Stein
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Score function of Gaussian distribution

PDF Log PDF
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Support Support Support

(Figure credit: internet)

The score function points towards regions of higher probability. J
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Score function of Gaussian mixtures

(Figure credit: internet)

The score function points towards regions of higher probability.

J
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Score function is all you need: Langevin dynamics

Unadjusted Langevin algorithm (ULA): from some ¢, perform
iterative sampling

Ty = T+ ns(w) + /202,
where z; ~ N(0,I) and 7 is some learning rate.
e In continuous-time, ULA recovers the Langevin dynamic:

dX, = —Vf(X,)dr +V2dB-

e When 1 — 0, z; converges to a sample from p(z) under some
regularity conditions.

e Only needs the score function to sample.
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Score-based generative model via Langevin dynamics

STTTTTIIIIIIiLi
VT - Sl
i - =
LR B B § S
NV A A
N P SRR, N
—) i cli0li000 w—
“““““ o a4 40y .
scorg :::j,::,::::::;;;;:; Langevin
matching - - - *H iH dynamics
| il
PN
Data samples Scores New samples
iid.
{x1, %9, xn} X p(x) so(x) ~ Vxlogp(x)
(Figure credit: Y. Song)
Dismay performance in practice. Why? )

https://yang-song.net/blog/2021/score/
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Manifold hypothesis

e Real-world data live on low-dimensional manifold.
o Reliable score estimation is available only in high-density regions.

e However, our initial sample is highly likely in low density regions
(where score estimates are poor).

Data scores Estimated scores

Data density

(Figure credit: Y. Song)
https://yang-song.net/blog/2021/score/
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Adding noise to data

e To improve data coverage (and score estimation), we can add

noise to it.

this makes the data distribution different from what we

e However,

want.
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Perturbed scores

Perturbed density

(Figure credit: Y. Song)

https://yang-song.net/blog/2021/score/
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Key idea: noise annealing

Annealing: introducing data perturbation at multiple noise levels.

01

(Figure credit: Y. Song)
https://yang-song.net/blog/2021/score/
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State-of-the-art diffusion models

Inspired by nonequilibrium thermodynamics

— Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli '15

Diffusion models

Stable Diffusion

60



A high-level description of diffusion models

noise noise

noise noise noise

o forward process (training): (progressively) diffuse data into noise

e reverse process (sampling): convert pure noise into desired data
61



d
How to learn a reverse process s.t. YV, = X; (1<t <T)?

It is feasible as long as one knows the score function

(Anderson'82; Haussmann and Pardoux'86; Song et el.’20)...

aY, = (¥, + Vlogpx,..(V,)) dr

. dX, = —X.dr +V2dB, & .
data dist ~ (Xo — X7 =~ noise dist

Forward SDE: Ornstein-Uhlenbeck Process

.'
o+
o+
o
o

dY, = (Y, + 2V logpx, (V1)) d7 + V2dB,
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Score is all you need

e score functions of marginals of forward process: Vlogpx, (X)
—_———

w.rt. X
v — Tz N
-7 W x/////, N\
< ST
o7 NN, SO
A X A

S ////>>i\\ //
Yo 4‘ Yl 4‘ Y'Q D T 000 Ct 4‘ YT
si()  s2() s7(:)

1. score learning/matching: learn estimates s;(-) for Vlogpx, (-)

2. data generation: sampling w/ the aid of score estimates {s.(-)}
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Score matching via denoising

X =vVaXo+vV1—aN0,I)

Tweedie’s formula (Hyvarinen, 2005; Vincent, 2011):

1 — —
- ExOdiatavétNN(Ovld) [Et | Qo + 1 — Qe = .’1}'] .

si(z) =
o) = -

X0 ~ Pdata;

MMSE denoising

Noise b // 1
ARRETY Gxaxs | 3xazxs / Poitwise
Segmentation ' ¥ / emeorer)
map N I !
Linear and Reshape Scal,shit
’ i
B Layer Nom

LayerNorm

' | J
1 EE Nx DT Block

i 1 \
KR TR [ Patchity  Embed
| < \

Y oo t o \
iy g Vv Noised mesnt we
e e it Latent ! \ |
o 32x32x4 L N Input Tokens. Conditoning
DiT Block with adaLN-Zero

Latent Diffusion Transformer

U-Net Diffusion Transformers
[Ronneberger, Fischer, Brox, 2015] [Peebles and Xie, 2022]



From score networks to downstream tasks

&< decouple
score learning < X — downstream tasks

our focus

Sampling (unconditional generation):

When and how fast do stochastic/deterministic samplers converge?

Acceleration:

Can we accelerate the convergence of stochastic and deterministic
diffusion samplers provably?

Inverse problems (conditional generation):

Can we design provably robust posterior samplers using unconditional
diffusion priors?
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Non-asymptotic convergence for diffusion-based
generative models



Two mainstream approaches

— Ho, Jain, Abbeel 20

Xo ~ pdatay Xt = /1= BiXie1 + VBN(0, 1), 1<t<T

1. A stochastic sampler: denoising diffusion probabilistic models

DDPM
YTNN(07[d>
1
Vit = e (Y4 A1) + BN L), #=T 1

~~ random component
deterministic component

67



Probability flow ODE

— Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole 20

X0 ~ Pdatas Xt = V1= B Xe 1+ VBN(0,1g), 1<t<T

2. A deterministic sampler based on probability flow ODE

YTNN(Ovld)
Y; ! Y, + ﬁ Y; t="T 1
t—1 — m(t ( t)) — 4L,

purely deterministic

68



Towards understanding the non-asymptotic convergence

Question: can we understand non-asymptotic convergence of diffusion
models in discrete time?

4y, = (V: +Vlogpx, . (02) dr

»

dX, = —X,dr +V2dB . .
X < = “» X7 ~ noise dist
Forward SDE: Ornstein-Uhlenbeck Process .

data dist ~ Xo
>,

dY, = (Y, + 2V logpx, . (Yy)) dr +V2dB,

Sources of errors:
e initialization error (dealing with the gap between X and Y7)
e discretization error.

e score estimation error
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Prior approaches

— Li, Lu, Tan'22

— Chen, Lee, Lu'22

— Chen, Chewi, Li, Li, Salim, Zhang '22
— Chen, Daras, Dimakis '23

— Chen, Chewi, Lee, Li, Lu, Salim '23

continuous-time limits via
SDE/ODE toolbox (e.g., Girsanov thm)

discrete-time
diffusion process

control discretization error

e Built upon toolboxes from SDE/ODE

e Existing analyses were inadequate for deterministic samplers

This work: a non-asymptotic framework that analyzes discrete-time
processes directly + accommodates deterministic samplers
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Assumption on target data distribution

e Minimal data assumptions:
P(| Xoll2 < T™) =1

for arbitrarily large constant cp > 0

e learning rates: for some large constants ¢y, c; > 0,

1
b=

cilogT . c1log T\t
ﬂt_ngmm{ﬂl(lnL 1Tg ),1}
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Non-asymptotic complexity of generation

Theorem (Li, Wei, Chen, Chi, ICLR 2024)
Suppose we have perfect scores: s;(-) = Vlogpx,(:) for all t.

o For the deterministic sampler (DDIM-type/prob. flow ODE),
2
v (pxl,Pyl) < d? up to log factor.

e For the stochastic sampler (DDPM-type),
d2

57
VT

TV (p X1, pyl) up to log factor.

e first polynomial-time bounds for plain probability flow ODE

e The deterministic samplers are faster than the stochastic ones.
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Assumption on score estimation error

e (5 error: score function estimate obeys

1 T
TZXIE% [Hst( _St H } = score

t=1

Needed for both stochastic and deterministic samplers

e Jacobian error: denote by Jgx = %igf and J,, = % the Jacobian
matrices of s7(-) and s:(-), which obey

1 T
f Z XIeq {HJSt (X) a Jst H} < €Jacobi-

t=1

Needed for deterministic samplers (counterexamples exist)
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Non-asymptotic rates with score estimation errors

Theorem (Li, Wei, Chen, Chi, ICLR 2024)

With score estimation errors,

e For the deterministic sampler (DDIM-type/prob. flow ODE),

d2
TV(q1,p1) S T+ Vdescore + dE jacobi  UP to log factor.

e For the stochastic sampler (DDPM-type),

TV(g,p1) S —=+ Vdescore up to log factor.

o

e The dependency with d can be improved to d: see (Benton et al,

2024) for the stochastic sampler, and (Li et al., 2024) for the
deterministic sampler.

Fast convergence for general data distribution, as long as we have
good score estimates.
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Acceleration?

Low sampling speed!
100s-1000s steps

50k images: DDPM (20h) vs. single-step GANs (< 1min)

A
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Acceleration?

o .
\,dc‘p ------ +| distilled model [~===-~__
’(’.\l R ~o

&\ﬁ //, o \\\\
7 training-based \
pretrained diffusion model
(pretrained scores) -
. training-free -~

Sao

e Training-based methods: progressive distillation (Salimans et al.,
2022), consistency model (Song et al., 2023)... @
&)

additional training steps are required 2
o Training-free methods: DPM-Solver/++ (Lu et al., 2022ab),

UniPC (Zhao et al., 2023)...
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Can we develop training-free deterministic (resp. stochastic) samplers
that converge provably faster than DDIM (resp. DDPM)?
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Acceleration of DDIM via high-order ODE discretization

Solving the probability flow ODE (@; := [[}_, cu with a; = 1 — 3,):

_ 1o a1 .
X(at—l):@X(at)‘F 2 =, \/’YT)’ S’Y(X(’Y)) dy

approximated by?

Qat

Scheme 1: s* (X (y)) ~ s, (X(a1)) ~ s¢(Xy)

].*Oét

s¢(X;)) original DDIM

Scheme 2: 85 (X(y)) ~ 8(Xy) + S5 (st (Xt) — S (Xt+1))

X (@) ~ \/% (X(at) 41 ;at st(Xt))
+ e (4220 (50 - vaTEsa (X)) ) Ours

DPM-Solver-2 (Lu et al, 2022a): to construct second-order ODE solver
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Non-asymptotic rate of accelerated deterministic sampler

Theorem (Li et al. 2024, informal)
The accelerated deterministic sampler obeys
6

~ T2 \/_55core + ngaCObl

TV(px,,pv;) S

o Improved rate O(1/T?2) compared with vanilla DDIM O(1/T)

Sampled images with 5 NFEs: crisper and less noisy
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Acceleration of DDPM via higher-order approximation

Characterizing py, ||x,:
PXo|Xi=ae = N (17 (21), 2f (1))
o pi (o) = 7= (@ + (1 — ) 57 (1))
o Si(m) =(1on) (T + — 2L () ) (@)

simple approximation I in DDPM analysis

Constructing py, ,|y,—, ~ N (it (), 2F (24)):

Y, 1 = \/%(Y; + 1_20“ Zy + %Zj applying DDPM at ®(Y;, Z;)

=0(Y,Z4)

+ (1 — o) (5(%) — 4/ &) J:(Y»Zt)) Ours
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Non-asymptotic rate of accelerated stochastic sampler

Theorem (Li et al. 2024, informal)

The accelerated stochastic sampler obeys

d3
TV(pole) ,s T + \/ggscore‘

e Improved rate O(1/T) compared with vanilla DDPM O(1/v/T)

e (5 score error assumption suffices (no need of Jacobian errors)
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Score-based diffusion model for inverse problems

Score-based generative prior &
> <yl > it SRTTREN <

likelihood

xNPXo(')

— = y~plle)
D%

&rse pr.m/

Posterior sampling: sample from

- Xy

s1() = Vlogpx, ()

p(ly) o< p(-) p(y|x) = p(-) exp (L(;y))
};:ﬁ:r log-likelihood

Score-based implicit prior: the data prior p(-) is accessed through its

unconditional score functions s;(-) = Vlogpyx,(-).
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A highly incomplete list of prior work

Song et al., 2021)
Laumont et al., 2022)
Kawar et al., 2022)
Trippe et al., 2022)
Graikos et al., 2022)
Chung et al., 2023)
Cardoso et al., 2023)
Song et al., 2023)
Mardani et al., 2023)
Feng et al., 2023)
Chen et al., 2023)
Coeurdoux et al., 2023)
Wu et al., 2022)

(
(
(
(
(
(
(
(
(
(
(
(
(
(Dou and Song, 2024)

Majority of the existing algorithms are heuristic and/or tailored to
linear inverse problems.




Towards provably efficient and accurate inversion

MCGdiff (Cardoso et al, 23)
@

Asymptotic exact,
compute expensive

Compute cheap, but
low fidelity

DPS (Chung et al, 22) High fidelity,

compute efficient

Goal: develop provably compute-efficient and high-fidelity
diffusion-based inversion methods for arbitrary forward model.
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Our approach: diffusion plug-and-play (DPnP)

Inspired by (Bouman and Buzzard, 2023; Vono et al., 2019; Lee et al., 2021)

p(-y) oc exp <logp(‘) + L(; y))

Given an annealing schedule {n;},

Proximal consistency sampler:
1 \/ Readily implementable by, e.g.,
2
ey xexp (£039) = gzl <2l MALA
Diffusion denoising sampler:
. 1 . % @ How do we implement this step using
T41 X €Xp logp(') - 272|| C T Tl H ® diffusion score functions?
"
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Diffusion denoising sampler

Posterior sampling for AWGN denoising:
1 = 2 x| A
exp (logp(z) — =5l — By l) ) o pla* | 2" + mow = By, )
2n;, 2 2
where w ~ N(0, 1).

e Key insight: this can be solved by diffusion!

e stochastic/deterministic samplers via reversing properly defined
forward processes (e.g., heat flow or Ornstein-Uhlenbeck process),
whose score functions can be mapped from s;(-).

e The resulting update rules are similar to, but not the same as, the
ones used for generation.
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Schematic view of DPnP

Proximal Diffusion Proximal Diffusion
consistency denoising |:> consistency denoising
sampler sampler sampler sampler

,‘ .

e Each iteration of DPnP contains a “full” reverse denoising process
with multiple denoising steps.

e But, it can be easily combined with acceleration schemes, such as
distillation, to speed up.
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Our theory

Theorem (Xu and Chi, 2024)
Set constant ny, = n > 0. Define a stationary distribution 7, by

71—77(33) X p(x)qn(x), qn(x) = ef05v) *pT]E(x)a

where € ~ N(0,1;) and = denotes convolution. There exists
A:= A(p, L,n) € (0,1), such that for any accuracy level € > 0, with

K =< 5 log(1/e), we have

1 1
TV(pzi. ™) S e/ (P2, | ) + 1_ )\(GDDS + epcs) log (€>7
N— ———

init error
sampler error

where epcs and epps are the total variation error of PCS and DDS.

e A diminishing schedule {n;} ensures asymptotic consistency.

DPnP is the first provably-robust posterior sampling method for
nonlinear inverse problems using unconditional diffusion priors.
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Numerical experiments

Phase retrieval: recover an unknown image from the magnitude of its
masked Fourier transform.

DPS DPnP
(Chung et al, 2023) (ours)

Observation Ground truth

DPnP recovers the fine-grained details more faithfully. ]
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Numerical experiments

Quantized sensing: recover an unknown image from its one-bit
dithered measurements.

DPS DPnP
(Chung et al, 2023) (ours)

Observation Ground truth

DPnP recovers the fine-grained details more faithfully. )
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Numerical experiments

Super resolution: recover an unknown image from its 4x
downsampled version.

DPS
(Chung et al, 2023)

Observation Ground truth

DPnP recovers the fine-grained details more faithfully.
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More metrics

Table: Performance on the ImageNet 256 x 256 validation dataset.

Super-resolution Phase retrieval Quantized sensing Time
(4x, linear) (nonlinear) (nonlinear) per sample
Algorithm LPIPS | PSNR 1 LPIPS] PSNR® LPIPS] PSNR T
DPnP-DDIM (ours) 0.416 21.6 0.562 134 0.363 23.0 ~ 240s
DPS 0.473 20.2 0.677 13.4 0.542 18.7 ~ 150s

LGD-MC (n = 5) 0.416 20.9 0.592 12.8 0.384 22.3 ~ 150s

Table: Performance on the FFHQ 256 x 256 validation dataset.

Super-resolution Phase retrieval Quantized sensing Time
(4x, linear) (nonlinear) (nonlinear) per sample
Algorithm LPIPS | PSNR1 LPIPS| PSNR?T LPIPS| PSNR T
DPnP-DDIM (ours) 0.301 24.2 0.376 224 0.293 24.2 ~ 90s
DPS 0.331 23.1 0.490 17.4 0.367 21.7 ~ 60s
LGD-MC (n = 5) 0.318 23.9 0.522 16.4 0.317 23.9 ~ 60s

DPnP achieves better performance with a bit more compute. | o




Summary: diffusion models

MCGdiff (Cardoso et al, 23)

(]
3 ®
Q.
g Asymptotic exact,
(] compute expensive
Compute cheap, but
low fidelity
e High fideli
igh fidelity,
DPS (Chung et al, 22) GG
Fidelity

Diffusion models are showing great promise in generative Al for Science.J
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Selected references: nonconvex low-rank estimation
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2. Spectral Methods for Data Science: A Statistical Perspective, Y. Chen, Y. Chi,
J. Fan and C. Ma, Foundations and Trends in Machine Learning, 2021.

3. Accelerating ill-conditioned low-rank matrix estimation via scaled gradient
descent, T. Tong, C. Ma, and Y. Chi, Journal of Machine Learning Research,
2021.

4. Scaling and scalability: Provable nonconvex low-rank tensor estimation from
incomplete measurements, T. Tong, C. Ma, A. Prater-Bennette, E. Tripp, and
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. Sampling is as easy as learning the score: theory for diffusion models with
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Zhang, ICLR, 2023.

. Towards Non-Asymptotic Convergence for Diffusion-Based Generative Models,
G. Li, Y. Wei, Y. Chen and Y. Chi, ICLR, 2024.

. Accelerating Convergence of Score-Based Diffusion Models, Provably, G. Li, Y.
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Thanks!
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https://users.ece.cmu.edu/~yuejiec/
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