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Abstract

Communication efficiency is a major challenge in federated learning (FL). In client-server schemes,
the server constitutes a bottleneck, and while decentralized setups spread communications, they do not
necessarily reduce them due to slower convergence. We propose Multi-Token Coordinate Descent (MTCD),
a communication-efficient algorithm for semi-decentralized vertical federated learning, exploiting both
client-server and client-client communications when each client holds a small subset of features. Our
multi-token method can be seen as a parallel Markov chain (block) coordinate descent algorithm and
it subsumes the client-server and decentralized setups as special cases. We obtain a convergence rate
of O(1/T ) for nonconvex objectives when tokens roam over disjoint subsets of clients and for convex
objectives when they roam over possibly overlapping subsets. Numerical results show that MTCD improves
the state-of-the-art communication efficiency and allows for a tunable amount of parallel communications.

1 Introduction
Federated Learning (FL) is a machine learning paradigm where data is distributed across a set of clients
who collaborate to learn a model without sharing local data (McMahan et al., 2017). Most FL literature
considers data distributed by samples (horizontal FL), where each client holds all the features of a subset of
the samples, yet recently there has been a growing interest on feature-distributed setups (vertical FL), where
each client holds a subset of the features for all samples (He et al., 2018; Chen et al., 2020; Alghunaim et al.,
2021; Liu et al., 2022b; Castiglia et al., 2022). Vertical FL may be of particular interest for applications using,
for example, time series data measured by personal devices to learn a model of some cross-client phenomenon
of interest (e.g. meteorological), where each sample corresponds to the data collected across the devices at a
given timestamp. Another example involves performing a computer vision task using multiple views of the
same object, where a sample corresponds to the concatenation of views from different devices.

FL often deals with the client-server setup, where a server is connected to all clients and the clients do not
communicate with each other, forming a star-shaped topology. However, such schemes have a single point of
failure and suffer from a communication bottleneck on the server (Lian et al., 2017). On the other hand, there
is extensive literature on decentralized optimization, where there is no server—from earlier work motivated by
applications such as wireless sensor networks and multiagent control (Nedic and Ozdaglar, 2009; Duchi et al.,
2012; Qu and Li, 2018), to recent work motivated by FL (Koloskova et al., 2020; Li et al., 2020; Zhao et al.,
2022). Yet, these algorithms often converge slowly in sparse and large networks (Nedic et al., 2018) and,
although they spread the communication load across the network, they tend to have poor communication
efficiency. Semi-Decentralized FL (SDFL) uses both client-server and client-client communications, reducing
the overhead at the server (Lin et al., 2021) while avoiding the shortcomings of decentralized setups and
being able to handle multiple clusters of clients.
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When concerned with the communications between clients, the use of a token method (Bertsekas, 1997;
Nedic and Bertsekas, 2001; Ram et al., 2009; Johansson et al., 2010; Mao et al., 2020; Hendrikx, 2022),
where a model-embedding token follows a random walk over a communication graph (undergoing local
updates), allows for better communication efficiency (Hendrikx, 2022) than the more common consensus-based
methods (Nedic and Ozdaglar, 2009; Duchi et al., 2012; Qu and Li, 2018; Koloskova et al., 2020). Yet, the
convergence rate of token methods degrades even faster for larger and sparser networks, due to a lack of
parallel communications (Hendrikx, 2022). Based on the idea that performing multiple random walks in
parallel leads to a linear speed-up in the cover time (Alon et al., 2008), multi-token methods (Ye et al., 2020;
Chen et al., 2022; Hendrikx, 2022) mitigate this problem by running multiple tokens simultaneously and
combining them.

1.1 Our contribution
Motivated by the above observations, we propose an SDFL multi-token algorithm for vertical FL. Our main
contributions are as follows.

• We introduce Multi-Token Coordinate Descent (MTCD), which, to the best of our knowledge, is the
first multi-token method leveraging the SDFL scheme to achieve a flexible degree of dependence on the
server, recovering both client-server and fully decentralized FL as special cases;

• We show that MTCD converges at a rate of O(1/T ) for nonconvex objectives when tokens roam over
disjoint subsets of clients and for convex objectives when they roam over possibly overlapping subsets
of clients;

• Numerical experiments on both synthetic and real data and for a variety of communication setups show
that MTCD improves the state-of-the-art communication efficiency.

1.2 Related works
Coordinate descent. Coordinate Descent (CD) methods (Wright, 2015), where (blocks of) coordinates are
updated sequentially, rather than simultaneously, are natural candidates for optimization in feature-distributed
learning. The block selection is most often cyclic (Beck and Tetruashvili, 2013) or independent and identically
distributed at random (Nesterov, 2012; Richtárik and Takáč, 2012). In contrast, Sun et al. (2019) considers
block selection following a Markov chain. Several extensions to CD have been proposed, such as acceleration
and parallelization (Fercoq and Richtárik, 2015) and distributed CD methods (Liu et al., 2022b; Chen et al.,
2022).

Vertical FL. Existing vertical FL works include He et al. (2018), which generalizes Smith et al. (2018) to
the decentralized setting. Both works use primal-dual optimization techniques, as does DCPA (Alghunaim
et al., 2021), a state-of-the-art decentralized method. In contrast, the following methods work in the primal
domain, allowing them to learn more general models. In (Chen et al., 2020), a CD-based method is used,
but no local updates are performed, while Liu et al. (2022b) does consider local updates. This latter work
and Castiglia et al. (2022), which introduces the use of compressed embeddings, lowering the communication
cost, are particularly close to our method. Note that the communication costs in vertical FL methods typically
depend on the number of samples (or batch size, in the case of stochastic methods) (Alghunaim et al., 2021;
Liu et al., 2022b; Castiglia et al., 2022), further highlighting the importance of communication efficiency. An
interesting line of work related to vertical FL is hybrid FL (Zhang et al., 2021b), which deals with datasets
distributed both by samples and features. For a more detailed survey of vertical FL methods, see (Wei et al.,
2022; Liu et al., 2022a).

Semi-Decentralized FL. Recently, SDFL approaches have been proposed to lower communication costs
and deal with data heterogeneity (Lin et al., 2021; Guo et al., 2021), and to handle intermittent connections,
latency, and stragglers (Bian and Xu, 2022; Yemini et al., 2022). Additionally, other SDFL works deal with
(multi-layered) hierarchical networks (Zhang et al., 2021a; Hosseinalipour et al., 2022). SDFL is also referred
to as hybrid FL sometimes, but we opt for the term semi-decentralized FL to avoid confusion with the data
partitioning setting mentioned above.
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Figure 1: A split neural network, where K embeddings are obtained from neural networks, before an
aggregation mechanism H is applied and its result is inputted into a fusion neural network.

2 Problem setup
We consider a dataset X ∈ RN×d with N d-dimensional samples distributed by features across a set of
clients [K] := {1, . . . ,K}. Client k holds its local data Xk ∈ RN×dk and we have X = [X1, · · · ,XK ].
Note that d1 + · · ·+ dK = d. We consider a broad class of machine learning models, know as split neural
networks (Ceballos et al., 2020), illustrated in Figure 1.

In split neural networks, each client has an associated local model hk(· ;Xk) : Θk 7→ Hk parameterized
by θk ∈ Θk, which extracts a (typically lower-dimensional) representation of Xk. For simplicity, we
write hk(θk) := hk(θk;Xk). These embeddings, hk(θk), are then combined using an aggregation mechanism
H : H1×· · ·×HK 7→ H to form H(h1(θ1), . . . , hK(θK)), which is used as input to a fusion model φ : H×Θ0 7→
R, parameterized by θ0. Although more aggregation mechanisms are possible (Ceballos et al., 2020), we focus
on aggregation by concatenation (the most general case) and by sum. While θk ∈ Θk is associated with Xk,
acting as a local model for client k, our fusion model θ0 can be learned at different locations, depending on
whether we consider the existence of a server. Split neural networks include, for example, generalized linear
models, such as linear regression, logistic regression, and support vector machines, where hk(θk) = Xkθk for
k ∈ [K] and Θ0 is an empty set.

Let Θ denote a parameter space such that Θ = Θ0 ×Θ1 × · · · ×ΘK and f : Θ 7→ R denote our objective
function, our goal is to solve the following optimization problem, which encompasses the training of split
neural networks:

min
θ∈Θ

{
f(θ) := φ

(
H
(
h1(θ1;X1), . . . , hK(θK ;XK)

)
, θ0

)}
, (1)

where the labels y are included in the loss function, which we assume to be known by all clients.
Throughout the paper, we consider Problem (1) and assume f is an L-smooth function. The standard

definition of L-smoothness is given below. We define and assume f? := minθ f(θ) > −∞.

Assumption 1 (Smoothness). A differentiable function f : Rd 7→ R is L-smooth if there exists some
L ∈ (0,∞):

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀ x,y ∈ Rd. (A1)

3 Proposed method

3.1 The fully decentralized setting
We start by introducing a simple, special case of our algorithm, which we refer to as Single-Token Coordinate
Descent (STCD). This method, which is also a subroutine of our general algorithm, is closely related to Sun
et al. (2019) and the application mentioned therein, taken from Mao et al. (2020). Yet, we work in the primal
domain and on a feature-distributed setting.

Setup. In this section, we do not require the existence of a server. We solve Problem (1) in a fully
decentralized manner, communicating through channels described by a communication graph G = (V, E),
where V := [K] is the vertex set and E the edge set. We denote the set of neighbors of client k by

3



Algorithm 1: Single-Token Coordinate Descent
Input : initial point θ0,0, initial client k0, step-size η, number of hops S, number of local updates Q

1 Z0,0 ← {H(h1(θ0,0
1 ;X1), . . . , hK(θ0,0

K ;XK)),θ0,0
0 }

2 θS,Q,ZS,Q, kS ← TokenRoaming(θ0,0,Z0,0, k0,X, S,Q)
3 Function TokenRoaming(θ,Z, k,D,S,Q):
4 θ0,0,Z0,0, k0 ← θ,Z, k
5 for s = 0, . . . , S do
6 for q = 0, . . . , Q− 1 in client ks do
7 Compute θs,q+1

ks via a CD step (2), using Zs,q, θs,qks , and Dks

8 Compute Zs,q+1 from Zs,q, θs,qks , θ
s,q+1
ks , and Dks

9 Client ks sends Zs,Q to client ks+1 ∼ U(N̄ks)
10 θs+1,0,Zs+1,0 ← θs,Q,Zs,Q

11 return θS,Q,ZS,Q, kS

Nk := {i : {i, k} ∈ E} and define N̄k := Nk ∪ {k}. In this section only, θ0 is associated with some client k,
which is responsible for updating both the local model it holds, θk, and the fusion model θ0.1

Token. Since all clients know φ, if a client knows Z := {H(h1(θ1), . . . , hK(θK)),θ0}, it can compute f . We
call Z our token. The size of the token depends on the model being considered. For example, if Hk ⊆ RNE
for all k (i.e., we have an E-dimensional embedding per sample) and we do aggregation by concatenation,
then Z is of size KNE + dim(Θ0), where dim(·) denotes the dimensionality of a space. Yet, for aggregation
by sum, we drop the dependency on K. In particular, for generalized linear models, Z = {Xθ} is of size N .

The token suffices to perform local CD steps. We have seen that a client holding Z can compute f .
Yet, more importantly, if client k has access to its local data Xk and local model θk, then holding Z enables
it to compute the partial gradient with respect to θk,

∇kf(θ) := ∇θkf(θ) = ∇θkφ (H(h1(θ1), . . . , hK(θK)),θ0)

=
dφ (H(h1(θ1), . . . , hK(θK)),θ0)

dH(h1(θ1), . . . , hK(θK))
· dH(h1(θ1), . . . , hK(θK))

dhk(θk)
· dhk(θk)

dθk
,

where Z is used in the computation of the first two terms. This will allow client k to update its local model θk.
We now describe STCD, summarized in Algorithm 1, where U denotes the uniform distribution. We index

θ and Z with two counters: one for the sequence of clients (and thus coordinate block) visited while roaming
and one for the local updates at each client. To simplify the description of the algorithm, we omit θ0 for
the rest of Section 3.1, as if it were part of the local model of the client it is associated with for updating
purposes. Yet, θk does not leave k but θ0 does, as θ0 is part of the token.

• Initialization: The token Zs,q must always be in accordance with θs,q. So, as Z0,0 starts at client k0,
this client must know {H(h1(θ0,0

1 ), . . . , hK(θ0,0
K )),θ0,0

0 }. For some models, we can achieve this by
initializing the local models θ0,0

k such that the embeddings hk(θ0,0
k ) are independent of local data Xk.

When this is not possible, the clients can send their initial embeddings to k0 as a prelude.

• Updating the local model and the token: as explained above, the client holding the token after s
hops, ks, can compute the partial gradient with respect to its local model θks locally. This allows it to
perform a CD step. Further, to lower communication costs, we do Q local CD updates at each client.
That is, for q = 0, . . . , Q− 1:

θs,q+1
ks = θs,qks − η∇ksf(θs,q) (2)

1We do this for alignment with the analysis in Sun et al. (2019), where all blocks are selected following a Markov Chain.
However, in practice, we may want to update θ0 at each client instead, in which case the analysis would need to be adjusted.

4



and θs,q+1
k = θs,qk for k 6= ks. We must now update Z accordingly. To compute Zs,q+1, we use Zs,q,

hks(θ
s,q+1
ks ), and hks(θ

s,q
ks ), which are held by ks. For example, for aggregation by sum, we have

H(h1(θs,q+1
1 ), . . . , hK(θs,q+1

K )) = H(h1(θs,q1 ), . . . , hK(θs,qK )) + hks(θ
s,q+1
ks )− hks(θs,qks ).

This allows us to perform multiple local CD steps. Further, after these Q steps, the updated token can
be sent to client ks+1. Thus, by induction, we keep the token up-to-date throughout our algorithm.

• Communicating the token: the token is communicated to a neighbor of ks. This results in a sequence
of clients (and blocks) that follows a Markov Chain.

In essence, STCD is a technique allowing for Markov Chain Coordinate Descent (Sun et al., 2019) to be
performed in feature-distributed setups. In terms of the progress made in the parameter space, Algorithm 1
differs from Sun et al. (2019) only in that we consider local updates with Q > 1.

Convergence guarantees. If f is an L-smooth function (A1) with a nonempty set of minimizers and
(θi)ri=1 is a sequence generated by Algorithm 1, Sun et al. (2019) give convergence guarantees for Q = 1. In
particular, let r = sQ+ q, we have under mild assumptions on the Markov chain (for example, if the Markov
chain is time-homogeneous, irreducible, and aperiodic) that limr→∞ E‖∇f(θr)‖ = 0 and, let ∆ := f

(
θ0
)
−f?,

E
[
min
i∈[r]
‖∇f(θi)‖2

]
≤ (Ω1(τ − 1)2 + Ω2)∆

r
, (3)

where Ω1 and Ω2 are constants that depend on the minimum value of the stationary distribution of the
Markov chain πmin, the step-size η, and the smoothness constant L. Further, τ denotes the πmin

2 -mixing time
of the the Markov chain. (We present all the aforementioned Markov chain-related terms in Appendix A.)
While Sun et al. (2019) only consider Q = 1 explicitly, their analysis can also cover the Q > 1 case. To see
this, consider a virtual dynamic graph Gr = (V, Er) where V is the original vertex set and, recalling that E is
the original edge set,

Er =

{
E if r mod Q = 0,

{{i, i} : i ∈ V} otherwise.

Running STCD on Gr with a single local update is equivalent to running STCD on the original graph G
with Q local updates. This dynamic graph preserves the properties required for the analysis to hold. To see
this, let P denote the transition matrix of a random walk on the original graph G and let P (r) denote the
transition matrix of a random walk on Gr. Note that P (r) = I for all r mod Q 6= 0, where I denotes the
identity matrix, and P (r) = P for all r mod Q = 0. Assuming, for simplicity, that R ≥ Q, we have that
P (r)P (r + 1) . . .P (r +R) = P bR/Qc. We thus recover the results in Sun et al. (2019) up to a factor of Q in
the mixing time. (That is, in (3), we replace τ by Qτ .)

Limitations. The decentralized token algorithm in this section has an appealing simplicity. However,
while it outperforms state-of-the-art feature-distributed learning algorithms in a variety of setups, as we
will see in Section 4, its performance deteriorates faster with network connectivity than these decentralized
consensus-based algorithms and its convergence per iteration can be rather slow. These problems will be
mitigated by the more general multi-token method presented next.

3.2 Semi-decentralized setting
In Section 3.1, we introduced a special case of MTCD where a single token roams over a fully decentralized
set of clients. We now present our method in the semi-decentralized setting, which subsumes the setting in
Section 3.1 as a special case. Multi-token CD alternates between a roaming step and a syncing step.

• Roaming. We start with multiple, matching tokens at a subset of the clients. As each token performs a
different random walk realization, they undergo different sequences of CD updates, becoming distinct.

• Syncing. To leverage these parallel computations while keeping our model estimates coupled, we
periodically sync the roaming tokens at the server, combining the progress of multiple CD sequences.
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Figure 2: Semi-decentralized setup. Client-server communications are represented by dashed blue lines and
client-client communications by solid green lines.

By alternating between these two steps, we get a communication-efficient algorithm with a flexible degree
of parallelization, depending on the number of tokens and the frequency at which we sync them. This allows
us to smoothly control the trade off between the communication efficiency of settings with less parallel
computations and the faster iteration convergence of settings with more parallel computations.

We further generalize STCD by allowing the use of stochastic gradient estimates. Let B ∈ RB×d denote a
mini-batch of size B defined by a random set of indices B ⊆ [N ], we make the following standard assumptions
that our gradient estimate is unbiased and has a bounded variance. For clarity, we make the dependency on
X explicit by writing ∇f(θ;X) = ∇f(θ).

Assumption 2 (Unbiased gradients). For any mini-batch B, the stochastic gradient is unbiased:

EB[∇f(θ;B)] = ∇f(θ;X), ∀ θ ∈ Rd. (A2)

Assumption 3 (Bounded variance). For any mini-batch B, there exists a constant σ ≥ 0 such that:

EB‖∇f(θ;B)−∇f(θ;X)‖2 ≤ σ2

B
, ∀ θ ∈ Rd. (A3)

Setup. In addition to a communication graph G = (V, E), we now also consider the existence of a central
server with links to all clients, as illustrated in Figure 2. The existence of a server brings a change to the
model partitioning: θ0 is now updated at the server. Further, we now have Γ tokens roaming simultaneously.
Each token Zγ has an associated model estimate θ(γ), for γ ∈ [Γ]. Thus, during the roaming step, each
client k must now keep up to Γ local model estimates θk(γ) in memory.2 To simplify the description of the
algorithm, we define [Γ]0 := [Γ] ∪ {0}, with token γ = 0 staying at the server throughout the roaming step.

We now describe MTCD, summarized in Algorithm 2, where kt,sγ denotes the client holding token γ after
t synchronizations and s hops and Pγ denotes a distribution over the clients, for γ ∈ [Γ]. We index θ and Z
with three counters: one for synchronizations at the server and two matching the counters used in STCD. For
simplicity, we write Zt := Zt,0,01 = · · · = Zt,0,0Γ and θt := θt,0,0(1) = · · · = θt,0,0(Γ).

• Initialization: all model-token pairs (θ(γ),Zγ) are initialized to the same values. As in STCD, Zγ
must be in accordance with θ(γ).

• Roaming: The server samples a set of indices Bt and communicates it to each client k, which returns
its local embedding hk(θtk;Bt). This allows the server to compute token Zt and send copies of it to start
the roaming step at kt,0γ ∼ Pγ , where Pγ(k) := P(kt,0γ = k). Note that P0 is a point mass distribution
with support over the server, k = 0 (a node without neighbors). As Zγ reaches client kt,sγ , it is used
to perform a local CD step on model estimate θ(γ) with respect to block kt,sγ and is then updated
accordingly. Each Zγ roams for S hops, as in STCD. In parallel, θ0(0) is updated at the server.

• Syncing: after S hops, each client combines its model estimates, obtaining θt+1
k =

∑Γ
γ=1 wkγθ

t,S,Q
k (γ).

We cover the choice of wk := (wk1, . . . , wkΓ), which lies in the Γ-dimensional probability simplex, later.

2In practice, it suffices to to add a copy of θt as a new token visits during a given roaming step (with a maximum of Γ model
estimates at a client), resetting the number of copies when syncing.
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Algorithm 2: Multi-Token Coordinate Descent
Input : initial point θ0, step-size η, number of hops S, number of local updates Q,

model estimates combination weights {wkγ}, distributions {Pγ}
1 for t = 0, . . . , T − 1 do
2 Server samples batch indices Bt ⊆ [N ] and sends them to clients
3 for k ∈ [K] in parallel do
4 Client k sends its local embedding hk(θtk;Bt) to the server

5 Server computes token Zt ← {H(h1(θt1;Bt), . . . , hK(θtK ;Bt)),θt0}
6 for γ ∈ [Γ]0 in parallel do
7 Server sends Zt to kt,0γ ∼ Pγ
8 θt,S,Q(γ),Zt,S,Qγ , kt,Sγ ← TokenRoaming(θt,Zt, kt,0γ ,Bt, S,Q)

9 for k ∈ [K]0 in parallel do
10 θt+1

k =
∑Γ
γ=1 wkγθ

t,S,Q
k (γ)

Recovering client-server and decentralized setups. On the one hand, if no client-server communications
are available (S →∞), our algorithm is reduced to a fully decentralized one, recovering STCD. On the other
hand, if the edge set E is empty, we recover the client-server setting. In this case, if we assign a token to each
client (Γ = K and each Pγ has support over a single different client), we get full participation, as in Liu et al.
(2022b). In contrast, if Γ < K, we recover a partial participation client-server scheme. To the best of our
knowledge, this is the first partial participation vertical FL algorithm with multiple local updates.

In general, as we increase the amount of parallel computations (by increasing Γ) and client-server
communications (by lowering S), the communication efficiency and the number of iterations needed to
converge both decrease. Given this trade-off, we see that our choice of S and Γ depends on the application.

Having introduced the general MTCD algorithm, we now go over two particular instances of it, both for
semi-decentralized setups, and present convergence guarantees for each.

Setting with a token per cluster. We now present some convergence guarantees for MTCD in the
case where we have C disjoint clusters of clients C1, . . . , CC and one token roams each cluster, hence Γ = C.
Without loss of generality, we assume γ roams Cγ , allowing us to use γ and c interchangeably. Thus, Pγ has
support over Cγ , and only over Cγ . We also define a cluster containing only the server, C0 := {0}.

These clusters may correspond to the natural topology of the communication graph, due to physical
limitations or to privacy constraints preventing communications between clients in different clusters (e.g.,
households or companies). Yet, we may also generate artificial partitioning of the original graph, prior to
learning our model, in order to allow for the use of multiple tokens while avoiding overlapping trajectories,
rather than having a single token roaming over a too large (and thus poorly connected) graph.

Since in this setting the blocks of coordinates being updated in each model estimate are disjoint, we let
wk ∈ RΓ be the one-hot encoding for the token that visits client k, thus combining the model estimates by
simply taking the updated version of each block.

Theorem 1. Let f have a nonempty set of minimizers and let all f(·;B) be L-smooth (A1) and have an
unbiased gradient (A2) with a bounded variance (A3). If (θt) is a sequence generated by Algorithm 2 with
η ∈

(
0, ρ

(L+1)SQ(ρ+Se(1+e))

)
under the token per cluster setting (that is, P , G, and wk as explained above)

and P(kt,0γ = k) > 0 for all γ and k ∈ Cγ , then:

E

[
1

T

T−1∑
t=0

∥∥∇f (θt)∥∥2

]
= O

(
∆

T
+
σ2

B

)
, (4)

where the expectation is over {kt,sc } and {Bt}. Here, ∆ := f
(
θ0
)
− f?.

Encouragingly, we see that, for full batch (exact gradient), we recover the O(∆/T ) rate of convergence
for the (expected) squared norm of the gradient of centralized CD methods. Further, for mini-batches,
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by choosing a sufficiently large batch size B = Ω(σ2/ε) we can preserve the iteration complexity to reach
E
[

1
T

∑T−1
t=0 ‖∇f (θt)‖2

]
≤ ε.

Setting with overlapping token trajectories. We now present some convergence guarantees for MTCD
in the setting where we allow for overlapping token trajectories. We propose choosing the convex combination
weights to be wk = ( 1

Γ , . . . ,
1
Γ ) ∈ RΓ for all k, thus combining the model estimates by averaging them. We

also consider, for simplicity, that Pγ = P , and assume that distribution P has support over all clients.
In this setting, to handle the periodic combination by averaging of the model estimates, we develop

convergence guarantees for convex objectives. The standard definition of convexity is given below.

Assumption 4 (Convexity). A function f : Rd 7→ R is convex if for all a ∈ [0, 1]:

f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y), ∀ x,y ∈ Rd. (A4)

Theorem 2. Let f be convex (A4) and have a nonempty set of minimizers and let all f(·;B) be L-
smooth (A1) and have an unbiased gradient (A2) with a bounded variance (A3). If (θt) is a sequence
generated by Algorithm 2 with for η ∈

(
0, ρ′

(L+1)SQ(ρ′+Se(1+e))

)
under the overlapping tokens setting (that is,

P , G, and wk as explained above) and P(kt,0γ = k) > 0 for all γ ∈ [Γ] and k ∈ [K], then:

E

[
1

T

T−1∑
t=0

∥∥∇f (θt)∥∥2

]
= O

(
∆

T
+
σ2

B

)
,

where the expectation is over {kt,sγ } and {Bt}. Here, ∆ := f
(
θ0
)
− f?.

As in the token per cluster setting, we recover the O(∆/T ) rate for the (expected) squared norm of the
gradient when the exact gradient is used, matching the rate of centralized CD methods, and, for a sufficiently
large mini-batch size B = Ω(σ2/ε), we preserve the iteration complexity to reach E

[
1
T

∑T−1
t=0 ‖∇f (θt)‖2

]
≤ ε.

4 Experiments
We test our method empirically, comparing it to DCPA (Alghunaim et al., 2021), a state-of-the-art fully
decentralized method, and a standard vertical FL (S-VFL) method which, since we do not consider compression
in our experiments, coincides with both C-VFL (Castiglia et al., 2022) and FedBCD (Liu et al., 2022b).
Note that, while some trajectories have a small variance, making the confidence interval hard to see, all
experiments are run for 5 seeds.

4.1 Convex problems
In this section, we use CVXPY (Diamond and Boyd, 2016) to obtain f?, to use the (relative) suboptimality
gap f(θt)−f?

f? as a metric. We define iteration as the cumulative number of hops and denote by CC2C and
CC2S the cost of Client-To-Client and Client-To-Server communications, respectively, whose ratio is important
for SDFL. For simplicity, we assume CC2S is the same for communications from the client to the server and
vice-versa, although this is often not the case. Throughout Section 4, we consider CC2S/CC2C = 100 when
plotting the suboptimality gap with respect to the communication cost, multiplying the number of CC2C

communications by 0.01 (each communication unit is the size of the token, which varies with the setup)
before adding them to the number of C2S communications, to obtain the communication costs. For MTCD,
we assume a uniform distribution over the clients when resuming roaming. In Section 4.1, we allow for the
tokens to overlap.

We perform ridge regression on a dataset generated following the same process as (Alghunaim et al., 2021),
with N = 1000 samples and d = 2000 features split evenly across clients. We have f(θ) = ‖Xθ − y‖22 /2 +
α‖θ‖22/2, with α = 10. For this problem, we use η = 10−5 and Q = 20 for MTCD and η = 5 × 10−7 and
Q = 20 for S-VFL. For DCPA, we use µw = 0.01, µy = 0.0003, and µx = 0.03.

8



We perform sparse logistic regression on the Gisette dataset (Guyon et al., 2004), where N = 6000 and
d = 5000, again split evenly across clients. Let s(z) := (1 + e−z)−1 and β = 1:

f(θ) = −
∑
n

[
yn log s(x>n θ) + (1− yn) log(1− s(x>n θ))

]
+ β‖θ‖1, yn ∈ {0, 1}, n ∈ [N ].

where xn and yn denote samples and labels, respectively. We use η = 10−4 and Q = 30 for MTCD and
µw = 0.001, µy = 0.00003, µx = 0.003 for DCPA.3

Figure 3: The left four plots correspond to an Erdős–Rényi graph with p = 0.4 and right four plots to a path
graph, all with K = 40. The top row concerns ridge regression and the bottom row concerns sparse logistic
regression. We consider a communication unit consisting of N scalars. The S →∞ MTCD run has Γ = 1.

Fully decentralized setting. In Figure 3, we see that, while MTCD with S → ∞ and Γ = 1 (that is,
STCD) does not improve upon DCPA in terms of progress per iteration, it is significantly more communication
efficient. Yet, STCD is particularly vulnerable to poorly connected networks, as seen when going from an
Erdős–Rényi graph to a path graph. Note that, for sparse logistic regression, while the proximal term used to
handle the regularizer is not covered by our analysis, it does well empirically. Figure 4 shows additional ridge
regression experiments in the N � d regime across six different graph topologies.

SDFL setting. We now tackle the same ridge regression problem, now focusing on path graphs, where
poor connectivity is a greater challenge. In Figure 5, we see in the top row that our method improves upon
the communication efficiency of the other methods. When plotting the number of communications needed to
attain a suboptimality gap of 10−4 for each CC2C/CC2S , we see that, for different values of CC2C/CC2S , the
communication efficiency of SDFL methods varies. In the bottom row, we see that, as we increase the syncing
frequency, the convergence per iterations speeds up and the communication efficiency decreases, as expected.
This illustrates the flexibility of our method, which allows us to choose a regime at which to operate.

4.2 Neural network training
We train an MVCNN (Su et al., 2015) model on ModelNet10 (Wu et al., 2015), a dataset of 3D CAD models.
We consider 12 clients split into two clusters of six clients, each capturing a different (2D) view of each object,
and run MTCD for both complete and path graphs with S = 6. We use a fixed η = 0.001 for S-VFL. When
running MTCD on 2 complete graph clusters with 6 clients each, we also start with η = 0.001 but halve it
every 20 epochs. On the path graph clusters, we start with η = 0.0005 and halve it every 20 epochs. For
both both types of graph, we use S = 6. We use Q = 10 and a batch size of 64 for both MTCD and S-VFL.

3In DCPA, the lack of a closed form solution for the proximal operator of the convex conjugate of the logistic regression loss
leads to the need to solve a local optimization problem at each client at every iteration.
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(a) Complete graph (αG = 40) (b) Erdős–Rényi graph with p = 0.4 (αG = 7.7)

(c) Erdős–Rényi graph with p = 0.2 (αG = 1.4) (d) Grid graph (5× 8) (αG = 0.15)

(e) Cycle graph (αG = 0.025) (f) Path graph (αG = 0.0061)

Figure 4: Ridge regression with N = 4000 and d = 200 across six different network topologies, all with
K = 40 clients. Each communication unit consists of N scalars. The MTCD run has Γ = 1. Algebraic
connectivity, αG , is the second smallest eigenvalue of the Laplacian matrix of graph G.

Figure 5: Experiment on a K = 80 path graph. For the top row, the MTCD run with S →∞ has Γ = 1 and
the one with S = 64 has Γ = 2. For the bottom row, all MTCD runs have Γ = 2.
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We also train a ResNet18 (He et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009), for K = 4 and two
clusters (2 clients each). For MTCD, we use S = 2. We use a fixed η = 0.0001, Q = 10 and a batch size of
100 for both S-VFL and MTCD. For MTCD, we use S = 2.

In Figure 6, we present the results of the ModelNet10 and the CIFAR-10 experiments, both in the
token-per-cluster setting. In both, we observe a similar performace in terms of convergence per iteration, but
that MTCD outperforms the baseline in communication efficiency.

Figure 6: The two plots on the left regard ModelNet10 and the two on the right regard CIFAR-10. We use
{h1(θ1), . . . , hK(θK),θ0} as a communication unit and, for simplicity, we assume that the embeddings and
the server model have the same size.

5 Conclusions
We formalize the multi-token SDFL scheme and propose MTCD, a communication-efficient SDFL algorithm
for vertical FL. We provide convergence guarantees for our method and show empirically the improved
communication efficiency of our algorithm as well as the power of endowing decentralized methods with
periodical client-server communications. A natural extension to this work is to consider compression and
privacy mechanisms, such as differential privacy.
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A Preliminaries
If a function is L-smooth (A1), then the following quadratic upper bound holds:

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖x− y‖2, ∀ x,y ∈ Rd. (5)

Definition 1 (Markov chain). A sequence of random variables (Zt)t≥0 is a finite-state space K Markov chain
if, for all i, j ∈ K,

P(Zt+1 = j | Z0, . . . , Zt−1, Zt = i) = P(Zt+1 = j | Zt = i) =: (P (t))ij ,

where P (t) ∈ R|K|×|K| is called the transition matrix. A Markov chain is said to be:

• time-homogeneous if the transition matrix is constant, that is, P (t) = P for all t;

• irreducible if, starting from any state, all states can be reached eventually, that is, there exists a t such
that (P t)ij > 0 for all i, j ∈ K;

• aperiodic if gcd({t ≥ 1: (P t)ii > 0}) = 1 for all states i ∈ K, that is, if all states have period 1, where
the period of a state i is defined as the greatest common divisor of the set of times when it is possible
for the Markov chain to return to starting position i;

• reversible if πiPij = πjPji for all i, j ∈ K, where π = (π1, . . . , π|K|) is the stationary distribution, which
is defined as the distribution satisfying π> = π>P .

A Markov chain is a lazy random walk (henceforth referred to simply as a random walk) if its states
correspond to nodes of a graph and

Pij =

{
1

d(i)+1 if j ∈ N̄i,
0 otherwise,

where d(i) denote the degree of node i. A random walk on a static, connected, and undirected graph specifies
a finite-state, time-homogeneous, irreducible, and aperiodic Markov chain. If a Markov chain is irreducible
and aperiodic, every row of P t will converge to a unique stationary distribution π, as shown in (Levin and
Peres, 2017). We define πmin := mini πi and denote by dmax and dmin the maximum and minimum degrees of
any node k ∈ K, respectively.

Definition 2 (Mixing time). We say τε is the ε-mixing time of a Markov chain if

τε := min

{
t : sup

i∈K
dTV

((
P t
)
i:
,π
)
≤ ε
}
,

where dTV is the total variation distance. For countable sets, our case, dTV (x,y) = ‖x− y‖1/2.

We use the following result in our analysis.
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Algorithm 3: Markov chain coordinate descent (token roaming)
Input : initial point v0,0, initial block k0, step-size η, block samples S, updates per block Q

1 vS,Q ← M(v0,0, k0, η, S,Q, ψ)
2 FunctionM(v, k, η, S,Q, ψ):
3 v0,0, k0 ← v, k
4 for s = 0, . . . , S − 1 do
5 for q = 0, . . . , Q− 1 do
6 vs,q+1 ← vs,q − η∇̄ksψ (vs,q)

7 vs+1,0 ← vs,Q

8 ks+1 ∼ Pks:
9 return vS,Q

Remark (Grönwall-Bellman lemma). Let a, b ≥ 0 be constants, if sequence (un)Nn=0 satisfies

un ≤ a+ b

n−1∑
i=0

ui, 0 ≤ n ≤ N, then un ≤ a(1 + b)n, 0 ≤ n ≤ N. (6)

Proof. The n = 0 base case is trivial. For the induction step, we assume the result we want to show holds for
0 ≤ n ≤ k − 1 and notice that:

uk ≤ a+ b

k−1∑
i=0

ui ≤ a+ b

k−1∑
i=0

a(1 + b)i = a

(
1 + b

k−1∑
i=0

(1 + b)i

)
(a)

≤ a(1 + b)k,

where in (a) we use the finite sum of a geometric series, which is equal to the expression that follows for the
case b > 0 and, to handle b = 0, we can use Bernoulli’s inequality.

Consider the set of vectors {a1, . . . ,an}, using the Cauchy–Schwarz inequality we have that:∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

≤ n
n∑
i=1

‖ai‖2 . (7)

B Token roaming lemmas
Lemmas 1, 2, and 3 concern token roaming. Yet, for clarity, we abstract away the tokens and communications,
studying a setup-agnostic Markov chain coordinate descent instead, summarized in Algorithm 3. We consider
ψ : Rd′ → R, a partitioning of [d′] with blocks k ∈ K, and let ∇̄kψ (v) ∈ Rd′ denote a vector whose block k
corresponds to ∇kψ (v) and all other entries are zeros. Note that ki is fixed for i = 0 and a random variable
for i ∈ [S]. We further define the surrogate offset as δi,j := ∇̄kiψ

(
vi,j
)
−∇ψ

(
v0,0

)
. As mentioned in the

paper, token roaming is closely related to (Sun et al., 2019), yet our analysis differs significantly, since the
results in (Sun et al., 2019) require S → ∞ and our end goal is to study the convergence of MTCD with
respect to syncing steps, for a finite number of hops S.

Lemma 1. If
(
vi,j
)
is a sequence generated by Algorithm 3, ψ is L-smooth, and η ∈

(
0, 1

LSQ

]
, then:

‖δs,qks ‖ ≤ C1

∥∥∇ψ (v0,0
)∥∥ , C1 := ηeLSQ. (8)

Proof. Let (4) denote the triangle inequality and
∑
i,j denote

∑s
i=0

∑q̃s(i)
j=0 , where q̃s(i) is q − 1 if i = s and

Q− 1 otherwise, we first upper bound ‖δs,qks ‖ with the sum of the norm of the blocks of the gradient used to
update v0,0 to vs,q:

‖δs,qks ‖ =
∥∥∇ksψ (vs,q)−∇ksψ

(
v0,0

)∥∥
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(A1)
≤ L

∥∥vs,q − v0,0
∥∥

= ηL

∥∥∥∥∥∥
∑
i,j

∇̄kiψ
(
vi,j
)∥∥∥∥∥∥

(4)

≤ ηL
∑
i,j

∥∥∇̄kiψ (vi,j)∥∥
= ηL

∑
i,j

∥∥∇kiψ (vi,j)∥∥ .
We now use the definition of δi,j and the triangle inequality in order to be able to exploit the fact that
‖∇ψ(v0,0)‖ is fixed, allowing us to resort to the Grönwall-Bellman lemma:

‖δs,qks ‖
(4)

≤ ηL
∑
i,j

(∥∥∇kiψ (v0,0
)∥∥+

∥∥∥δi,jki ∥∥∥)
(a)

≤ ηL(Qs+ q)
∥∥∇ψ (v0,0

)∥∥+ ηL
∑
i,j

∥∥∥δi,jki ∥∥∥
≤ ηLSQ

∥∥∇ψ (v0,0
)∥∥+ ηL

∑
i,j

∥∥∥δi,jki ∥∥∥
(6)
≤ ηLSQ

∥∥∇ψ (v0,0
)∥∥ (1 + ηL)

Qs+q

≤ ηLSQ
∥∥∇ψ (v0,0

)∥∥ (1 + ηL)
SQ

≤ ηeLSQ
∥∥∇ψ (v0,0

)∥∥ ,
where in (a) we use the fact that ‖∇kiψ(v0,0)‖ ≤ ‖∇ψ(v0,0)‖ and in the last inequality we use our upper
bound on the step-size η ≤ 1

LSQ and the fact that (1 + 1
u )u < e for all u > 0, thus arriving at (8).

Lemma 2. If (vs,q) is a sequence generated by Algorithm 3 and P(kS = k) > 0 for all k, then:

E

[
S∑
s=0

Q−1∑
q=0

∥∥∇ksψ (v0,0
)∥∥2

]
≥ ρQ

∥∥∇ψ (v0,0
)∥∥2

, (9)

where the expectation is taken over {ks}Ss=1 and P(kS = k) ≥ ρ > 0 for all k. We can obtain different lower
bounds on ρ depending on the assumptions we make:

• If P is a lazy random walk on a graph, then ρ ≥ (1/(dmax + 1))S;

• If the graph is static, connected, and undirected and S ≥ 3 log(2|E|/(dmin+1))
2λ , where λ := 1− λ2 ∈ (0, 1),

with λ2 denoting the second largest eigenvalue of P in absolute value, then ρ ≥ dmin+1
4|E| .

While P(kS = k) > 0 is an assumption needed for Lemma 2, it brings no loss of generality for the theorems
where Lemma 2 is used, where this property always holds. This will become clear when we prove the theorems.

Proof. Let
∑
s,q denote

∑S
s=0

∑Q−1
q=0 , we have that

E

[∑
s,q

∥∥∇ksψ (v0,0
)∥∥2

]
=
∑
s,q

∑
k∈K

P(ks = k)
∥∥∇kψ (v0,0

)∥∥2
=
∑
k∈K

Q
∑
s

P(ks = k)
∥∥∇kψ (v0,0

)∥∥2
,

and, using the fact that
∥∥∇kψ (v0,0

)∥∥2 ≥ 0, we get:∑
k∈K

Q
∑
s

P(ks = k)
∥∥∇kψ (v0,0

)∥∥2 ≥
∑
k∈K

QP(kS = k)
∥∥∇kψ (v0,0

)∥∥2
.

We now obtain two different lower bounds on P(kS = k), for different sets of assumptions:
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• If P is a lazy random walk on a graph, ρ ≥ (1/dmax + 1)S follows directly from the assumption that
P(kS = k) > 0 and the transition probabilities of the random walk:

P(kS) =
∑

k1,...,kS−2

[
S−2∏
i=0

P(ki+1 | ki)

]
≥ 0 =⇒ P(kS = k) ≥

(
1

dmax + 1

)S
;

• To avoid an exponential dependency on S we can further assume that the graph is static, connected, and
undirected,4 and that S ≥ τ , where τ is the πmin

2 -mixing time. It follows from the definition of mixing
time (Definition 2) that |

(
P S
)
ij
− πj | ≤ πmin for all i, j and therefore

(
P S
)
ij
≥ πmin

2 . (If
(
P S
)
ij
< πmin

2 ,
then πmin −

(
P S
)
ij
> πmin

2 , contradicting the definition of πmin

2 -mixing time.) We can now easily verify

that, for a random walk, π =
(
d(k)+1

2|E|

)
k∈V

, and thus:

(
P S
)
k0k
≥ dmin + 1

4|E|
.

We now want to upper bound τ with respect to properties of P , to know for what values of S this
bound holds. For a reversible, aperiodic, and irreducible Markov chain, our case, we have (Paulin, 2015,
Proposition 3.3):

τ ≤ 3 log(1/πmin)

2λ
=

3 log(2|E|/(dmin + 1))

2λ
.

We now use one of these bounds on ρ and the fact that
∑
k∈K ‖∇kψ (v)‖2 = ‖∇ψ (v)‖2 to arrive at (9).

Note that, in the special case of a random walk on complete graph we have P(ks = k) = 1/|K| for all k,
allowing us to avoid the inequalities above altogether and get:

E

[
S∑
s=0

Q−1∑
q=0

∥∥∇ksψ (v0,0
)∥∥2

]
=
SQ

|K|
∥∥∇ψ (v0,0

)∥∥2
.

Lemma 3. Assume ψ is L-smooth and let
(
vi,j
)
be a sequence generated by Algorithm 3 with η ∈

(
0, 1

(L+1)SQ

]
.

If
Ψ := Ψ1 + Ψ2,

where
Ψ1 :=

〈
∇ψ

(
v0,0

)
,vS,Q − v0,0

〉
and

Ψ2 :=
L+ 1

2

∥∥vS,Q − v0,0
∥∥2
,

then

Ψ ≤ ηSQC1(1 + η(L+ 1)SQC1)
∥∥∇ψ (v0,0

)∥∥2
+ η(η(L+ 1)SQ− 1)

S−1∑
s=0

Q−1∑
q=0

∥∥∇ksψ (v0,0
)∥∥2

. (10)

Proof. Let
∑
s,q denote

∑S
s=0

∑Q−1
q=0 , we first upper bound Ψ1 and then Ψ2.

Bounding Ψ1. We first use the Algorithm 3 update relating vS,Q with v0,0 and the definition of δs,q:

Ψ1 =
〈
∇ψ

(
v0,0

)
,vS,Q − v0,0

〉
= −η

〈
∇ψ

(
v0,0

)
,
∑
s,q

∇̄ksψ (vs,q)

〉
= −η

∑
s,q

〈
∇ksψ

(
v0,0

)
,∇ksψ (vs,q)

〉
4Similar bounds can be found for more general graphs, but we focus on this case for simplicity.
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= −η
∑
s,q

〈
∇ksψ

(
v0,0

)
,∇ksψ

(
v0,0

)
+ δs,qks

〉
= −η

∑
s,q

∥∥∇ksψ (v0,0
)∥∥2 − η

∑
s,q

〈
∇ksψ

(
v0,0

)
, δs,qks

〉
.

Now, using first the Cauchy–Schwarz inequality and then Lemma 1, we have

Ψ1 ≤ −η
∑
s,q

∥∥∇ksψ (v0,0
)∥∥2

+ η
∑
s,q

∥∥∇ksψ (v0,0
)∥∥ ‖δs,qks ‖

(8)
≤ −η

∑
s,q

∥∥∇ksψ (v0,0
)∥∥2

+ ηC1

∑
s,q

∥∥∇ψ (v0,0
)∥∥2

= −η
∑
s,q

∥∥∇ksψ (v0,0
)∥∥2

+ ηSQC1

∥∥∇ψ (v0,0
)∥∥2

. (11)

Bounding Ψ2. Similarly to bounding Ψ1, we first use the update relating vS−1,Q−1 with v0,0 and the
definition of δi,j

Ψ2 =
L+ 1

2

∥∥vS,Q − v0,0
∥∥2

=
η2(L+ 1)

2

∥∥∥∥∥∑
s,q

∇̄ksψ (vs,q)

∥∥∥∥∥
2

(7)
≤ η2(L+ 1)SQ

2

∑
s,q

∥∥∇̄ksψ (vs,q)
∥∥2

=
η2(L+ 1)SQ

2

∑
s,q

‖∇ksψ (vs,q)‖2

(7)
≤ η2(L+ 1)SQ

∑
s,q

(
‖δs,qks ‖

2
+
∥∥∇ksψ (v0,0

)∥∥2
)
,

and then use Lemma 1, to obtain

Ψ2

(8)
≤ η2(L+ 1)SQ

∑
s,q

(
C2

1

∥∥∇ψ (v0,0
)∥∥2

+
∥∥∇ksψ (v0,0

)∥∥2
)

= η2(L+ 1)S2Q2C2
1

∥∥∇ψ (v0,0
)∥∥2

+ η2(L+ 1)SQ
∑
s,q

∥∥∇ksψ (v0,0
)∥∥2

. (12)

Finally, we get (10) by summing (11) and (12).

C Proof of Theorem 1
For the sake of clarity and simplicity, we now consider a setup-agnostic stochastic disjoint parallel Markov
chain coordinate descent, presented in Algorithm 4, which abstracts away the tokens and communications of
MTCD while remaining mathematically equivalent. MapM is as defined in Algorithm 3.

In this setup, only block θCγ (γ) of θ(γ) is updated during the roaming step. Since C1, . . . , CΓ are disjoint,
no coordinate is updated simultaneously for different model estimates. This allows us to use the simpler
notation θ = (θC1(1), . . . ,θCΓ(Γ)), focusing on the blocks of θ(1), . . . ,θ(Γ) which are updated during the
roaming step and seeing their concatenation as a single model estimate.

We define Vtc as the sub-block of coordinates in block Cc with a nonzero probability of being updated
during roaming step t, Vtc := {k ∈ Cc :

∑S−1
s=0 P(kt,sc = k | kt,0c ) > 0}. Further, we denote by f tc as the marginal

function of f which keeps block Vtc of θ as a variable and is parameterized by the remaining coordinates of θ
after the last sync, f tc(θ

t,s,q
Vtc

) = f(θt,s,qVtc
;θt−Vtc

). Similarly, Vt :=
⋃
c Vtc and f t(θt,s,qVt ) = f(θt,s,qVt ;θt−Vt).

In the proof that follows, we let
∑
s,
∑
q,
∑
c and

∑
k denote

∑S
s=0,

∑Q
q=0,

∑C
c=0, and

∑K
k=0, respectively.
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Algorithm 4: Stochastic disjoint parallel Markov chain coordinate descent
Input : initial point θ0, step-size η, block samples S, updates per block Q

1 for t = 0, . . . , T − 1 do
2 for c = 0, . . . , C in parallel do
3 Samples batch indices Bt ⊆ [N ]
4 kt,0c ∼ Pc
5 θt,S,QCc ←M(θtCc , k

t,0
c , η, S,Q, f tc(·;Bt))

6 θt+1 ← (θt,S,QC0 , . . . ,θt,S,QCC )

Proof. It follows from L-smoothness, in particular from (5), that

f(θt+1)− f(θt) ≤ 〈∇f(θt),θt+1 − θt〉+
L

2
‖θt+1 − θt‖2

=
∑
c

[〈
∇f tc

(
θtVtc

)
,θt+1
Vtc
− θtVtc

〉
+
L

2

∥∥∥θt+1
Vtc
− θtVtc

∥∥∥2
]
.

Now, let gtc := ∇f tc
(
θtVtc

;X
)

= ∇f tc
(
θtVtc

)
and g̃tc := ∇f tc

(
θtVtc

;Bt
)
, we have

f(θt+1)− f(θt) ≤
∑
c

[〈
g̃tc,θ

t+1
Vtc
− θtVtc

〉
+
〈
gtc − g̃tc,θt+1

Vtc
− θtVtc

〉
+
L

2

∥∥∥θt+1
Vtc
− θtVtc

∥∥∥2
]

≤
∑
c

[〈
g̃tc,θ

t+1
Vtc
− θtVtc

〉
+
L+ 1

2

∥∥∥θt+1
Vtc
− θtVtc

∥∥∥2

+
1

2
‖gtc − g̃tc‖2

]
,

using the fact that 〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2 on the term
〈
gtc − g̃tc,θt+1

Vtc
− θtVtc

〉
. We now define and assume

ζ := η(L+ 1)SQ < 1 and use Lemma 3 to bound the first two terms, with ψ as f tc(·;Bt):

f(θt+1)− f(θt) ≤
∑
c

[
ηSQC1(1 + ζC1)

∥∥g̃tc∥∥2
+ η(ζ − 1)

∑
s,q

∥∥∥g̃tckt,sc ∥∥∥2

+
1

2
‖gtc − g̃tc‖2

]
,

where C1 = ηeLSQ. Let σt,s denote the sigma algebra σ(k0,0, . . . ,k0,S−1, . . . ,kt,0, . . . ,kt,s−1) and Eσ be a
shorthand for the conditional expectation E[· | σ]. We take the conditional expectation Eσt,1 on both sides of
the inequality above and, since ζ ≤ 1, it follows from Lemma 2 that

Eσ
t,1 [

f(θt+1)
]
− f(θt) ≤ − ηQ(ρ(1− ζ)− SC1(1 + ζC1))︸ ︷︷ ︸

=:C2

∑
c

∥∥g̃tc∥∥2
+

1

2

∑
c

‖gtc − g̃tc‖2

= −C2

∥∥g̃t∥∥2
+

1

2
‖gt − g̃t‖2,

where gt := ∇f t (θtVt) = ∇f t (θtVt ;X) and g̃t := ∇f t (θtVt ;Bt). Now, taking Eσt,0 on both sides, we have

Eσ
t,0 [

f(θt+1)
]
− f(θt) ≤ Eσ

t,0

[∑
k

I{k ∈ Vt}
(
−C2

∥∥∇kf (θt;Bt)∥∥2
+

1

2

∥∥∇kf (θt;X)−∇kf (θt;Bt)∥∥2
)]

= −C2

∑
k

P(k ∈ Vt)
∥∥∇kf (θt;Bt)∥∥2

+
1

2

∑
k

P(k ∈ Vt)
∥∥∇kf (θt;X)−∇kf (θt;Bt)∥∥2

≤ −pC2

∥∥∇f (θt;Bt)∥∥2
+

1

2

∥∥∇f (θt;X)−∇f (θt;Bt)∥∥2
,

where in the last inequality we use the fact that, for k in cluster c(k), P(k ∈ Vt) ≥ P(kt,0c(k) = k) ≥ p to bound
the first term and P(k ∈ Vt) ≤ 1 to bound the second term. To obtain a simpler, more interpretable constant,
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we bound C2. Since ζ > C1 = ηeLSQ, and using the fact that ζ ∈ (0, 1) =⇒ ζ3 < ζ, we have

C2 ≥ ηQ
(
ρ(1− ζ)− Seζ(1 + eζ2)

)
= ηQ

(
ρ− (ρ+ Se)ζ − Se2ζ3

)
≥ ηQ

(
ρ− (ρ+ Se(1 + e))ζ

)
=: C3.

For η ∈
(

0, ρ
(L+1)SQ(ρ+Se(1+e))

)
, which satisfies the bounds imposed on η by the lemmas, C3 > 0. We now

take EBt := EBt [· | B0, . . . ,Bt−1] and lower bound C2 with C3:

EBtEσ
t,0 [

f(θt+1)
]
− f(θt) ≤ −pC3EBt

∥∥∇f (θt;Bt)∥∥2
+

1

2
EBt

∥∥∇f (θt;X)−∇f (θt;Bt)∥∥2

≤ −pC3

∥∥∇f (θt;X)∥∥2
+

(
1

2
− pC3

)
EBt

∥∥∇f (θt;X)−∇f (θt;Bt)∥∥2
,

where we used the fact that E‖X‖2 = ‖EX‖2 + E‖X − EX‖2 and (A2) on the first term. Now, noting that
1
2 − pC3 ≥ 0 always holds, it follows from the bounded variance assumption (A3) that

EBtEσ
t,0 [

f(θt+1)
]
− f(θt) ≤ −pC3

∥∥∇f(θt)
∥∥2

+

(
1

2
− pC3

)
σ2

B
.

We now take the expected value with respect to all {kt,sc } and {Bt} and rearrange the terms, we get that

E
∥∥∇f (θt)∥∥2 ≤ 1

pC3
E
[
f
(
θt
)
− f

(
θt+1

)]
+

(
1

2pC3
− 1

)
σ2

B
.

Finally, we sum over t ∈ {0, . . . , T − 1}, getting a telescoping sum, and divide by T . Dropping the −σ2/B
term, using the fact that f? ≤ f(θ) for all θ, and defining C4 := 1

pC3
, we finally arrive at

E

[
1

T

T−1∑
t=0

∥∥∇f (θt)∥∥2

]
≤ C4∆

T
+
C4σ

2

2B
.

D Proof of Theorem 2
For the sake of clarity and simplicity, we again consider a setup-agnostic version of our method which abstracts
away the tokens and communications of MTCD while remaining mathematically equivalent. A stochastic
parallel Markov chain coordinate descent where we allow for overlapping blocks of coordinates to be updated
simultaneously is presented in Algorithm 5. Similarly to Appendix C, mapM is as defined in Algorithm 3
and we define Vtγ := {k ∈ V :

∑S−1
s=0 P(kt,sγ = k | kt,0γ ) > 0}, f tγ(θt,s,qVtγ

) = f(θt,s,qVtγ
;θt−Vtγ

), Vt :=
⋃
γ Vtγ , and

f t(θt,s,qVt ) = f(θt,s,qVt ;θt−Vt).

Algorithm 5: Stochastic parallel Markov chain coordinate descent (with overlapping blocks)
Input : initial point θ0, step-size η, block samples S, updates per block Q

1 for t = 0, . . . , T − 1 do
2 for γ = 0, . . . ,Γ in parallel do
3 Samples batch indices Bt ⊆ [N ]
4 kt,0γ ∼ P
5 θt,S,QVtγ

(γ)←M(θtVtγ
, kt,0γ , η, S,Q, f tγ(·;Bt))

6 θt+1(1), . . . ,θt+1(Γ) = 1
Γ

∑Γ
γ=1 θ

t,S,Q(γ)

The following proof resembles that of Theorem 1, yet we now use the convexity assumption to handle the
averaging of model estimates. We let

∑
s,
∑
q, and

∑
γ denote

∑S
s=0,

∑Q
q=0, and

∑Γ
γ=0, respectively.
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Proof. It follows from the convexity assumption (A4) that:

f(θt+1)− f(θt) = f

(
1

Γ

∑
γ

θt,S,Q(γ)

)
− f

(
θt
)
≤ 1

Γ

∑
γ

(
f
(
θt,S,Q(γ)

)
− f

(
θt
))
.

Therefore, resorting to L-smoothness, in particular (5), we have that,

f(θt+1)− f(θt) ≤ 1

Γ

∑
γ

(〈
∇f(θt),θt,S,Q(γ)− θt

〉
+
L

2
‖θt,S,Q(γ)− θt‖2

)
=

1

Γ

∑
γ

(〈
∇f tγ(θtVtγ ),θt,S,QVtγ

(γ)− θtVtγ
〉

+
L

2
‖θt,S,QVtγ

(γ)− θtVtγ‖
2

)

and, defining gtγ := ∇f tγ
(
θtVtγ

;X
)

= ∇f tγ
(
θtVtγ

)
and g̃tγ := ∇f tγ

(
θtVtγ

;Bt
)
, we arrive at

f(θt+1)− f(θt) ≤ 1

Γ

∑
γ

(〈
g̃tγ ,θ

t,S,Q
Vtγ

(γ)− θtVtγ
〉

+
〈
gtγ − g̃tγ ,θ

t,S,Q
Vtγ

(γ)− θtVtγ
〉

+
L

2
‖θt,S,QVtγ

(γ)− θtVtγ‖
2

)
≤ 1

Γ

∑
γ

(〈
g̃tγ ,θ

t,S,Q
Vtγ

(γ)− θtVtγ
〉

+
L+ 1

2
‖θt,S,QVtγ

(γ)− θtVtγ‖
2 +

1

2
‖gtγ − g̃tγ‖2

)
,

where we used 〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2 on the term
〈
gtγ − g̃tγ ,θ

t,S,Q
Vtγ

(γ)− θtVtγ
〉
. We now define and assume

ζ := η(L+ 1)SQ < 1 and use Lemma 3 to bound the first two terms, with ψ as f tγ(·;Bt):

f(θt+1)− f(θt) ≤ 1

Γ

∑
γ

(
ηSQC1(1 + ζC1)

∥∥g̃tγ∥∥2
+ η(ζ − 1)

∑
s,q

∥∥∥g̃tγkt,sγ ∥∥∥2

+
1

2
‖gtγ − g̃tγ‖2

)

≤ ηSQC1(1 + ζC1)
∥∥g̃t∥∥2

+
η(ζ − 1)

Γ

∑
γ,s,q

∥∥∥g̃tγkt,sγ ∥∥∥2

+
1

2
‖gt − g̃t‖2,

where gt := ∇f t (θtVt) = ∇f t (θtVt ;X) and g̃t := ∇f t (θtVt ;Bt) and the last inequality follows from the
fact that ‖∇f t(θtVt)‖2 ≤

∑
γ‖∇f tγ(θtVtγ

)‖2. We take the conditional expectation Eσt,1 on both sides of the
inequality above and, since ζ ≤ 1, it follows from Lemma 2 that:

Eσ
t,1 [

f(θt+1)
]
− f(θt) ≤ ηSQC1(1 + ζC1)

∥∥∇f t(θtVt)∥∥2
+ ηρ′Q(ζ − 1)

∥∥∇f t(θtVt)∥∥2
+

1

2
‖gt − g̃t‖2

= − ηQ (ρ′(1− ζ)− SC1(1 + ζC1))︸ ︷︷ ︸
C′2

∥∥∇f t(θtVt)∥∥2
+

1

2
‖gt − g̃t‖2.

Note that, while in Theorem 1 the graph considered in Lemma 2 was that of each cluster, we now consider
the whole communication graph. The rest of the proof matches the proof of Theorem 1, the only difference
being the fact that p is replaced by p′, which is such that P(k ∈ Vt) ≥ P(kt,0γ = k) ≥ p′. Thus, for

η ∈
(

0, ρ′

(L+1)SQ(ρ′+Se(1+e))

)
, we get the inequality that we set out to prove:

E

[
1

T

T−1∑
t=0

∥∥∇f (θt)∥∥2

]
≤ C ′4∆

T
+
C ′4σ

2

2B
,

where C ′4 := 1
p′C′3

> 0, with C ′3 := ηQ
(
ρ′ − (ρ′ + Se(1 + e))ζ

)
.
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