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Abstract—Many applications encounter signals that are a lin-
ear combination of multiple components, where each component
represents a low-resolution observation of a point source model
captured through a low-pass point spread function. This paper
proposes a convex optimization algorithm to simultaneously
separate and identify the point source models of each component
from a noisy observation corrupted by possibly adversarial noise,
by leveraging the recently proposed atomic norm framework.
The proposed algorithm can be solved efficiently via semidefinite
programming, where locations of the point sources can be iden-
tified via the constructed dual polynomials without estimating
the model orders a priori. Stability of the proposed algorithm is
established under certain conditions of the point source models
and the point spread functions in the presence of bounded noise.
Furthermore, numerical examples are provided to corroborate
the theoretical analysis, with comparisons against the Cramèr-
Rao bound for parameter estimation.

I. INTRODUCTION

Many applications encounter signals that are a noisy linear
combination of multiple components, where each component
represents a low-resolution observation of a point source
model captured through a low-pass point spread function.
Specifically, consider the following mixture model, where the
acquired signal, y(t), is given as

y(t) =

I∑
i=1

xi(t) ∗ gi(t) + w(t)

=

I∑
i=1

(
Ki∑
k=1

aikgi(t− τik)

)
+ w(t), (1)

where ∗ denotes convolution, w(t) is the additive noise, and
I is the total number of components. Moreover,

xi(t) =

Ki∑
k=1

aikδ(t− τik)

is the point source model of the ith component, with τik ∈
[0, 1) and aik ∈ C denoting the location and the amplitude
of the kth point source, 1 ≤ k ≤ Ki, and gi(t) is the
corresponding point spread function, respectively. The point
source model can be used to model a variety of physical
phenomena, such as the activation pattern of fluorescence in

single-molecule imaging [1], sparse channel impulse response
in multi-path fading environments, the locations of pollution
plants in urban areas, firing times of neurons, and many more.

A. Motivations

The mixture model shows up in the modeling and analysis
of many practical problems, such as spike sorting in neural
recording [2], [3], three-dimensional super-resolution single-
molecule imaging [4], multi-user multi-path channel identifica-
tion [5], [6], and blind calibration of time-interleaved analog-
to-digital converters (ADCs) [7]. The goal therein is to stably
invert for the parameters of the point source models of each
component from the acquired signal in the presence of noise.
Moreover, typically we are interested in resolving the locations
of the point sources at a resolution much higher than that of
the acquired signal y(t), determined by the Rayleigh limit, or
in other words, the bandwidth of the point spread functions.
We provide two example applications below, highlighting the
difference in the generating mechanisms of the gi(t)’s.
• Spike sorting: It is known that the action potentials, i.e.

spikes, fired by different neurons, have its own stereo-
typed shapes [8]. Neural recordings can be modeled as a
superposition of returns from multiple neurons, as in (1),
where the return of each neuron corresponds to the sum
of its characteristic spike shape delayed by the sequence
of its firing times. It is of great interest to separate and
estimate the firing times of each neuron from the neural
recording, in order to understand the mechanisms of the
brain. In this application, the point spread functions are
the spike shapes of each neuron, which are determined
by the physics and estimated from the neural recording.

• Multi-user channel estimation: In multi-user multiple
access model, each active user transmits a signature
waveform modulated via a signature sequence, which can
be designed to optimize performance, and then the base
station receives a superposition of returns from active
users, where the received component for each active user
corresponds to a sparse linear combination of delayed and
attenuated copies of its signature waveform, determined
by the unknown sparse multi-path channel from the user
to the base station. The goal is to identify the channel978-1-4673-7353-1/15/$31.00 c©2015 IEEE



state information of each active user from the received
signal at the base station.

B. Existing Approaches and Our Contribution

Conventional approaches for parameter estimation such as
matched filtering and subspace methods [9] yield suboptimal
outcomes or cannot be applied directly to the mixture model
due to the mutual interference between different components
in the signal observation. Sparse recovery algorithms have
been proposed to estimate the mixture model in [5], [6]
with a discretized set of delays, but the performance is at
stake when actual delays do not belong to the discrete grid
[10]. More recently, [2], [3] have proposed heuristic sparse
recovery algorithms to estimate the continuous-valued delays
in the mixture model for neural spike sorting, however no
performance guarantees are available. Finally, an algebraic
root-finding approach has been proposed in [7], but it is rather
sensitive to noise and does not extend well to a large number
of components due to the prohibitive sample complexity.

In this paper, we start by recognizing that in the frequency
domain, the mixture model can be regarded as a linear
combination of spectrally-sparse signals. The atomic norm
[11] of spectrally-sparse signals is developed in [12], [13]
as an efficient convex surrogate, which can be computed
efficiently via semidefinite programming. Inspired by [12],
[13], we apply atomic norm minimization to parameter es-
timation of mixture models, by seeking to simultaneously
recover the set of spectrally-sparse signals via minimizing
their respective atomic norms, in addition to satisfying the
observation constraints. The locations of each of the point
sources can be identified via the constructed dual polynomials
without estimating the model orders a priori. We establish the
stability of the proposed algorithm under certain conditions
of the point source models and the point spread functions,
as well as robustness in the presence of bounded noise from
a small number of measurements. Furthermore, numerical
examples are provided to corroborate the theoretical analysis,
with comparisons against the Cramér-Rao bound for parameter
estimation.

II. PROBLEM FORMULATION AND BACKGROUND

A. Problem Formulation

Due to hardware and physical limits, the resolution of
the sensor suite is limited by the diffraction limit, so it is
reasonable to assume gi (t)’s are band-limited with cut-off
frequency 2M . Correspondingly, in the Fourier domain, we
have

gin =
〈
gi (t) , ej2πnt

〉
= 0

when n /∈ ΩM = {−2M, . . . , 2M}, where 2M is inverse
proportional to the diffraction limit. In this paper, we consider
randomly generated point spread functions in frequency, with
gin’s uniformly at random drawn from a complex unit circle.

Taking the discrete Fourier transform of (1) and specializing
to the case with I = 2, the measurements can be represented

as, in the Fourier domain,

yn =

2∑
i=1

gin ·

(
Ki∑
k=1

aike
−j2πnτik

)
+ wn, n ∈ ΩM , (2)

where the noise wn can be written as

wn =

∫ ∞
−∞

w(t)ej2πntdt.

Equivalently, the measurements yn’s in (2) can be re-
garded as a combination of two spectrally-sparse signals,
each composed of a few distinct complex harmonics. With
slight abuse of notation, the measurement vector y =
[y−2M , . . . , y0, . . . , y2M ]

T can be written as

y = x?1 + g � x?2 + w ∈ C4M+1, (3)

where � is the Hadamard element-wise product operation, and
each entry in g is gn = g2n/g1n. The ground truth signals x?1
and x?2 are spectrally-sparse and can be formulated as

x?1 =

K1∑
k=1

a1kc (τ1k) , (4)

x?2 =

K2∑
k=1

a2kc (τ2k) , (5)

where each atom c (τ) is defined as

c(τ) =
[
e−j2π(−2M)τ , . . . , 1, . . . , e−j2π(2M)τ

]T
.

In this paper, we consider the case when w is bounded, given
by ‖w‖22 ≤ σ2

w.

B. Atomic Norm

The atomic norm is proposed as a unifying framework
for developing convex relaxations to find parsimonious rep-
resentations under different geometric signal models [11]. In
particular, one can define the atomic norm of a signal x with
respect to the atomic set A = {c(τ), τ ∈ [0, 1)} as [13]

‖x‖A = inf
ak∈C,τk∈[0,1)

{∑
k

|ak| | x =
∑
k

akc (τk)

}
,

which has been shown to be an efficient convex relaxation
to promote spectral sparsity in the signal representation, i.e.
finding a superposition of complex harmonics with the fre-
quencies from a continuous-valued space. Interestingly, the
atomic norm ‖x‖A can be equivalently rewritten using the
following semidefinite program characterization,

‖x‖A = inf
u,t

1

2

(
1

(4M + 1)
Tr (toep (u)) + t

)
s.t.

[
toep (u) x

xH t

]
� 0,

making its efficient computation possible. Here, toep (u) rep-
resents a Hermitian Toeplitz matrix with u as its first column
and (·)H represents Hermitian transpose. Furthermore, define
the real-valued inner product as 〈p,x〉R = Re

(
xHp

)
, the dual



norm of ‖·‖A can be represented as

‖p‖?A = sup
‖x‖A≤1

〈p,x〉R = sup
τ∈[0,1)

∣∣∣∣∣
2M∑

n=−2M
pne

j2πnτ

∣∣∣∣∣ .
III. SUPER-RESOLUTION OF MIXTURE MODELS VIA

ATOMIC NORM MINIMIZATION

A. Noise-free Case

We start by considering the noise-free case with w = 0,
then the signal model can be simplified as y = x?1 + g � x?2.
Leveraging the atomic norm framework, we propose a convex
demixing algorithm as

{x̂1, x̂2} = argmin
x1,x2

‖x1‖A + ‖x2‖A,

s.t. y = x1 + g � x2.
(6)

By standard Lagrangian calculation the dual problem of (6)
can be written as

max
p
〈p,y〉R,

s.t. ‖p‖?A ≤ 1, ‖ḡ � p‖?A ≤ 1,
(7)

where (̄·) denotes element-wise conjugate. Let p̂ be the dual
solution of (7), then the dual polynomials P̂ (τ) and Q̂ (τ)
constructed from p̂ can be defined as

P̂ (τ) =

2M∑
n=−2M

p̂ne
j2πnτ , Q̂ (τ) =

2M∑
n=−2M

p̂nḡne
j2πnτ .

With these dual polynomials, the corresponding point sources
in each signal can be identified as

Υ̂1 =
{
τ ∈ [0, 1) :

∣∣∣P̂ (τ)
∣∣∣ = 1

}
and

Υ̂2 =
{
τ ∈ [0, 1) :

∣∣∣Q̂ (τ)
∣∣∣ = 1

}
without a priori knowledge of model orders.

The performance guarantee for the noise-free case has been
presented in details in the companion paper [14], and we
provide here for completeness. Define the separation condition
of point sources in each signal as

∆i = min
k 6=j
|τik − τij | ,

which is the wrapped-around distance on [0, 1), and the
minimum separation of all signals as ∆ = mini ∆i. We
have the following theorem whose proof can be found in the
companion paper [14].

Theorem 1. Let M ≥ 4. Assume that gn = ej2πφn ’s are
i.i.d. randomly generated from a uniform distribution on the
complex unit circle with φn ∼ U [0, 1], and that the signs of
the coefficients aik’s are i.i.d. generated from a symmetric
distribution on the complex unit circle. Provided that ∆ ≥

1/M , there exists a numerical constant C such that

M ≥ C max

{
log2

(
M (K1 +K2)

η

)
,

max {K1,K2} log

(
K1 +K2

η

)
log

(
M (K1 +K2)

η

)}
is sufficient to guarantee that x?1 and x?2 are the unique
solutions of (6) with probability at least 1− η.

Theorem 1 indicates that as soon as the number of mea-
surements is on the order M = O(max {K1,K2} log(K1 +
K2) logM), the proposed convex demixing algorithm recovers
the locations of the point sources exactly with high probability.
This suggests that the performance of the convex demixing
algorithm is near optimal in terms of the sample complexity.

B. Noisy Case

We proceed to consider the case where the measurements
are corrupted by noise as in (3). We modify the convex de-
noising algorithm as a regularized atomic norm minimization
algorithm as

{x̂1, x̂2} = argmin
x1,x2

1

2
‖y − x1 − g � x2‖22

+ λw (‖x1‖A + ‖x2‖A) , (8)

where λw is the regularization parameter to balance the data
fitting term and the structural promoting term. The dual
problem of (8) can be obtained as

max
q

1

2

(
‖y‖22 − ‖y − λwq‖

2
2

)
,

s.t. ‖q‖?A ≤ 1, ‖ḡ � q‖?A ≤ 1.
(9)

Proposition 1 provides the optimality condition of (8).

Proposition 1. {x̂1, x̂2} is the minimizer of (8) if and only if

‖y − (x̂1 + g � x̂2)‖?A ≤ λw,
‖ḡ � (y − (x̂1 + g � x̂2))‖?A ≤ λw,

〈y − (x̂1 + g � x̂2) , x̂1 + g � x̂2〉R = λw(‖x̂1‖A + ‖x̂2‖A).

Let {x̂1, x̂2} be the solution of primal problem (8), and q̂ be
the solution of dual problem (9) respectively. Then there is no
dual gap between (8) and (9) as y = x̂1+g�x̂2+λwq̂, which
provides an easy way to obtain q̂ from the primal solution.
With the dual solution q̂, we construct the dual polynomials
as

P̂ (τ) =

2M∑
n=−2M

q̂ne
j2πnτ , Q̂ (τ) =

2M∑
n=−2M

q̂nḡne
j2πnτ .

Then the corresponding point sources in each signal can be
determined similarly as

Υ̂1 =
{
τ ∈ [0, 1) :

∣∣∣P̂ (τ)
∣∣∣ = 1

}
and

Υ̂2 =
{
τ ∈ [0, 1) :

∣∣∣Q̂ (τ)
∣∣∣ = 1

}
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(a) P̂ (τ) when SNR = 16dB (b) Q̂ (τ) when SNR = 16dB
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(c) P̂ (τ) when SNR = 5dB (d) Q̂ (τ) when SNR = 5dB

Fig. 1: Point source localization from dual polynomials when the SNR =16dB in (a) and (b), and the SNR = 5dB in (c) and
(d), for M = 16, K1 = 4 and K2 = 3.

respectively.

The following theorem characterizes the algorithm perfor-
mance when the noise is bounded as ‖w‖22 ≤ σ2

w.

Theorem 2. Let M ≥ 4 and λw = σw
√

4M + 1. Assume that
gn = ej2πφn ’s are i.i.d. randomly generated from a uniform
distribution on the complex unit circle with φn ∼ U [0, 1].
Provided that the separation ∆ ≥ 1/M , then as long as the
number of measurements satisfies

M ≥ C max

{
log2

(
M

η

)
,max {K1,K2} log

(
M

η

)
,

max {K2
1 ,K

2
2} log

(
K1 +K2

η

)}
for some constant C, the solution to (8) satisfies

max{‖x̂1 − x?1‖
2
2 , ‖x̂2 − x?2‖

2
2} ≤ C

′σ2
w,

with high probability at least 1 − η, where C ′ is a constant
that depends on M,K1 and K2.

Compared with Theorem 1, we no longer require the signs
of the spikes to be random, at a price of more measurements
(note the quadratic dependence with max{K1,K2} in the last
term). When σ2

w = 0, Theorem 2 degenerate to the noise-free
case, providing a performance guarantee of convex demixing
algorithm when the support has deterministic signs. Theorem 2
guarantees the stability for inversion in presence of bounded
noise, even when the noise is adversarially generated.

IV. NUMERICAL EXPERIMENTS

We perform a series of numerical experiments to validate
the performance of the proposed algorithms in the noisy case.

A. Point Source Localization by Dual Polynomials

Fix M = 16, K1 = 4 and K2 = 3. We first randomly
generate a pair of point sources that satisfy a separation
condition ∆ ≥ 1/ (2M), which is in fact a little smaller
than the theoretical constraint, with the coefficients of the
point sources i.i.d. drawn from the complex standard Gaussian
distribution. The noise is generated with i.i.d. complex Gaus-
sian entries CN (0, σ2). We solve the proposed algorithm by
CVX [15], which also returns the dual solution simultaneously.
The amplitudes of constructed dual polynomials P̂ (τ) and
Q̂ (τ) are shown in Fig. 1 for SNR = 16 dB and SNR =
5dB, respectively, where the Signal-to-Noise Ratio (SNR) is
defined as SNR = 10 log10

(
‖x?

1+g�x?
2‖

2
2
/(4M+1)

σ2

)
. It is clear

that the source locations can be estimated stably from the dual
solutions, and the performance degenerates gracefully with the
increase of the noise level.

B. Comparison with CRB for Parameter Estimation

We further examine the performance of (8) on estimating
the locations of the point sources from noisy measurements by
comparing it against the Cramér-Rao bound (CRB). Specifi-
cally, consider the special case with a single point source for
each component, by letting K1 = K2 = 1. Denote the point
source location in x?1 and x?2 as τ1 and τ2 respectively. We
assume the corresponding amplitude of each point source is
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Fig. 2: The comparison between the average MSE of point source localization and the corresponding CRB with respect to
SNR, when (a) M = 10, (b) M = 16.

known and unity when computing the CRB for estimating τ1
and τ2, which can be found by inverting the diagonal entries
of the following Fisher information matrix as

J (τ1, τ2) =
8π2

σ2

 ∑2M
n=−2M n2 Re

(∑2M
n=−2M Cn

)
Re
(∑2M

n=−2M Cn

) ∑2M
n=−2M n2

 ,
where Cn = n2ḡne

−j2πn(τ1−τ2). We randomly generate 200
noise realizations and compute the average Mean Square Error
(MSE) of point source localization using the dual solution of
(8), defined as (τ̂k − τk)

2, as a function of SNR. Fig. 2 shows
the average MSE in comparison with the CRB against the SNR
when M = 10 in (a) and M = 16 in (b). The performance
of parameter estimation shows a similar “thresholding effect”
as for conventional spectrum estimation algorithms, where the
average MSE approaches the CRB as soon as SNR is large
enough. Moreover, as we increase M , the threshold SNR
becomes smaller.

V. CONCLUSION

We propose a convex optimization algorithm based on
atomic norm minimization to simultaneously estimate the
parameters from mixture models, where the point sources can
be localized via the dual polynomials without priori model
order knowledge. We demonstrate the stability of the proposed
algorithm for inversion in the presence of bounded noise,
under certain conditions on the point source separation and the
generation of the point spread functions. In the future work,
we plan to implement the proposed algorithms to practical
applications outlined in the introduction.
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