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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

e unknown environments
e maximize total rewards

trial-and-error

sequential and online

“Recalculating ... recalculating ...”



Recent successes in RL

Atlast —a computer
can beat a champion G

ALL SYSTEMSGO

RL holds great promise in the next era of artificial intelligence.



Challenges of RL

e explore or exploit: unknown or changing environments
e credit assignment problem: delayed rewards or feedback

e enormous state and action space

e nonconcavity in value maximization




Sample efficiency

Collecting data samples might be expensive or time-consuming
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Sample efficiency

Collecting data samples might be expensive or time-consuming
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Calls for design of sample-efficient RL algorithms!



Computational efficiency

Running RL algorithms might take a long time and space

many CPUs / GPUs / TPUs + computing hours



Computational efficiency

Running RL algorithms might take a long time and space

many CPUs / GPUs / TPUs + computing hours

Calls for computationally efficient RL algorithms!



From asymptotic to non-asymptotic analyses

]

PTIRTINY An Analysis of Temporal-Difference Learning
PROGRAMMING with Function Approximation

finite-time &
finite-sample analysis

asymptotic

analysis
Reinforcement Learning:
Theory and Algorithms
Alekh Agarwal ~ NanJiang ~ Sham M. Kakade ~ Wen Sun
December 9, 2020

Non-asymptotic analyses are key to understand sample and
computational efficiency in modern RL.




Two approaches to RL

o™ model )
e
wmodel-based

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on empirical p



Two approaches to RL

model Y
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,55”'7?’ (ie. P € RISIAIxIS)) ~~fﬁ‘5fﬁ9
wodel-based h
samples value function
(experience) policy
. 4
Te_model-free .-

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on empirical p

Model-free approach

1. learning w/o constructing model explicitly

2. widely popular and successful in practice



This talk: model-free approach

S Log Policy Difference
sample < 104 <
complexity

(log scale)

—————— Natural Policy Gradient
Policy Gradient

L (log scale)
1-7 0 1000 2000 3000 4000 5000
#iterations
Value-based approach: Policy-based approach:
Finite-sample complexity of Finite-time convergence of

Q-learning policy optimization



Backgrounds: Markov decision processes



Markov decision process (MDP)

action

environment (¢ — -

next state
St41 ™~ P('|8t,at)

e S: state space e A: action space
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action

environment (¢ — -
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e S: state space e A: action space
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Markov decision process (MDP)

action

environment (¢ — -

next state
St41 ™~ P('|3t,at)

e A: action space

S: state space

r(s,a) € [0,1]: immediate reward

m(+|s): policy (or action selection rule)

P(-|s,a): transition probabilities

[T Teé

11



Value function

action
state s
a; ~ 7(-|st)
_______ 5| agent —-I To ™1 T2 3 T4
reward I :> S0 ‘I S1 ‘I S2 ‘I S3 ‘I S4 ‘I
r T A O A G G A .
i | environment — ag a1 az a3 da
<

sth1 ~ P(-|st,at)

Value function of policy 7:
Vse S VT(s) :=E Z'ytrt‘sozs
t=0
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Value function

action

state s a ~ s
------- ) noonon

T3 T4

reward I :> S0 ‘I S1 ‘I S2 ‘I S3 ‘I S4 ‘I
re =1(S¢, ar v T T L T
4--- environment |¢= — ag ay az az ay
<

St ~ P(“st;at)

Value function of policy 7:
Vse S VT(s) :=E Zytrt‘sozs
t=0

e v €[0,1) is the discount factor; ﬁ is effective horizon

e Expectation is w.r.t. the sampled trajectory under w

12



Q-function

To 71 T2 T3 T4 Ts
V‘"(SO) ’_L‘SI_L'-QZ—L‘33—I—>S4—L>S5—I—> I
W@ @ a i W
7o T1 T2 T3 T4 5
Q 307‘10 ._L' —I—' —I—>83—|—> —I—'35—|—> vos
oW & w % W%
Q-function of policy :
V(s,a) eSxA: Q7 (s,a): E V(s ar) | so =

* (ge7 s1,a1,82,az2,---): generated under policy ™

S,a0 =a
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Searching for the optimal policy

Reinforcement |
Learning

______ —_— Dynamic 'Prugramming
r and Optimal Control

4
£
z
2
2
H
H
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1
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A
1
1
. 1
b

Goal: find the optimal policy 7* that maximize V™ (s)

o optimal value / Q function: V* := V7™, Q* := Q™

e optimal policy 7*(s) = argmax,c 4 Q*(s, a)

14



Bellman’s optimality principle

Bellman operator

T(@Q)(s,a) = r(s,a)  +7

——

immediate reward

e one-step look-ahead

E
s'~P(:|s,a)

/ /
a.
max Q(s', ')

next state's value

15



Bellman’s optimality principle

Bellman operator

T(Q)(s,a):== r(s,a) +v E |maxQ(s,d)
S—— s'~P(:|s,a) a’eA
immediate reward
next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to

TQR)=Q"
~-contraction of Bellman operator:
17T(Q1) — T(Q2)|loo <7]|Q1 — Q2]lco Richard
Bellman

15



Is Q-learning minimax-optimal?



RL with a generative model / simulator

— Kearns and Singh, 1999

generative model

For each state-action pair (s, a), collect N samples

{(s, @, 503 h<isn
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RL with a generative model / simulator

— Kearns and Singh, 1999

generative model

For each state-action pair (s, a), collect N samples

{(s, @, 503 h<isn

Question: How many samples are necessary and sufficient to solve
the RL problem without worrying about exploration?

17



Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all € € |0, ﬁ) there exists some MDP such that the total
number of samples need to be at least

*(a-ope)

to achieve ||Q — Q*||so < €, where Q is the output of any RL
algorithm.

18



Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all € € |0, ﬁ) there exists some MDP such that the total
number of samples need to be at least

*(a-ope)

to achieve ||Q — Q*||so < €, where Q is the output of any RL
algorithm.

e holds for both finding the optimal Q-function and the optimal
policy over the entire range of €

e much smaller than the model dimension |S|?|.A|

18



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

where

T(Q)(s,a):= r(s,a) +v E [maxQ(s',a’)]

N——" s'~P(:|s,a) a’€ A
immediate reward —

next state's value

19



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = 7(Q)

Qir1(s,a) = (1 —n)Q4(s,a) +n:Ti(Q¢)(s,a), t>0

draw the transition (s,a,s’) for all (s,a)

20



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = 7(Q)

Qir1(s,a) = (1 —n)Q4(s,a) +n:Ti(Q¢)(s,a), t>0

draw the transition (s,a,s’) for all (s,a)

Te(Q)(s,a) = (s, a) + ymaxQ(s', a)
T(Q)(s,a) =r(s,a) + v E [maxQ(s,a’)]

s'~P(:|s,a)  a’

20



Prior art: achievability

Question: How many samples are needed for [|Q — Q*[|cc < €?

21



Prior art: achievability

Question: How many samples are needed for [|Q — Q*[|cc < €?

paper

sample complexity

Even-Dar & Mansour'03

1
= _silAl
2 (1-v)%e?

Beck & Srikant '12

|S12]A412
(1—7)Be2

Wainwright '19

[SIA]
(1—~)%€2

Chen et al.’20

[SIA]
(1—7)5e2

sample
complexity
(log scale)
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All prior results require sample size of at least %@?.
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Prior art: achievability

Question: How many samples are needed for [|Q — Q*[|cc < €?

paper

sample complexity

Even-Dar & Mansour'03

1
= _silAl
2 (1-v)%e?

sample
complexity
(log scale)

&
Beck & Srikant '12 |S|2‘A‘2
ec| rikan m
Wainwright '19 %
1
Chen et 1. 20 % T (log scale)
: : g [S|IA]
All prior results require sample size of at least W! J

Is Q-learning sub-optimal, or is it an analysis artifact?

21



A sharpened sample complexity of Q-learning

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < e < 1, Q-learning yields

IQ - Q"o < e

with sample complexity at most

o(a-ya)
1

e Improves dependency on effective horizon —

22



A sharpened sample complexity of Q-learning

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < e < 1, Q-learning yields

IQ - Q"o < e

with sample complexity at most

o(a-ya)
1

e Improves dependency on effective horizon —

e Allows both constant and rescaled linear learning rate:

1
— 7 <M S 7
a(-—T — " = c2(1=y)t
L+ log? T L+ log? T

22



A curious numerical example

. . S
Numerical evidence: % samples seem necessary ...

— observed in Wainwright '19

=)
>

=)
g
N
D

S
>
D

sample size per state-action: N

10%
4’7 _ 1 ——— Q-learning
_ 3 ———~ Theory: N = ﬁ
v 102 - 15 0 25 30 35 40
r(0,1)=0, r(1,1)=r(1,2) =1 e

23



Q-learning is not minimax optimal

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exists an MDP such that to achieve
|IQ — Q*||co < €, Q-learning needs at least a sample complexity of

(k)

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

1
2

a
a

24



Where we stand now

sample
s &
> (log scale)
Q-learning requires a sample size of %. J

25



Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun and Schwartz, 1993; Hasselt, 2010):

e max,c 4 EX(a) tends to be
over-estimated (high positive
bias) when EX (a) is replaced
by its empirical estimates using
a small sample size;

e often gets worse with a large
number of actions (Hasselt,
Guez, Silver, 2015).

error

o

15 _— e, O(s.a) - Vi(s)
0 mm Q'(s,argmax,Q(s,a)) — V.(s)
0.0 H

3‘ J‘ \/

37:}’{?

number of actions
Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi (s) + €, and the errors {¢, }7"; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.

26



Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun and Schwartz, 1993; Hasselt, 2010):

e max,c 4 EX(a) tends to be ' - Q00 VO
- . . 5 10 = Q'(s, argmax,Q(s,a s
over-estimated (high positive £,
bias) when EX (a) is replaced 00 H
by its empirical estimates using Crresay
1ze: number of actions
a small Sample size Figure 1: The orange bars show the bias in a single Q-
. learning update when the action values are Q(s,a) =
e often gets worse with a large Vi(8) + €, and the errors {€,}™; are independent standard
H normal random variables. The second set of action values
number of actions (Hasselt, @', used for the blue bars, was generated identically and in-
Guez, Silver, 2015). dependently. All bars are the average of 100 repetitions.

A provable fix: Q-learning with variance reduction (Wainwright 2019)
is provably minimax optimal.

26



TD-learning: when the action space is a singleton

g

Richard Sutton

Stochastic approximation for solving Bellman equation V = T (V)

Virr(s) = (1= n)Vils) + i Ti(Ve) (5)
= Vils) + me[r(s) + Vils) = Vils)], 120

temporal difference

Te(V)(s) = r(s) + 7V (s")
TWV)(s)=r(s)+y  E V()

s'~P(|s)

27



A sharpened sample complexity of TD-learning
Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < € < 1, TD-learning yields
IV = Voo < €

with sample complexity at most

()

e Near minimax-optimal without the need of averaging or
variance reduction.

28



A sharpened sample complexity of TD-learning
Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
For any 0 < € < 1, TD-learning yields
IV =Vl <€

with sample complexity at most

()

e Near minimax-optimal without the need of averaging or
variance reduction.

e Allows both constant and rescaled linear learning rate.

28



Beyond the generative model

Sampling under a behavior policy: asynchronous Q-Learning

To T1 T2 T3 T4 5
S0 — S1 l
[ [ A [ [ \

o a1 az az ay as

Theorem (Li, Cai, Chen, Gu, Wei, Chi, 2021)
Forany 0 < e < ﬁ sample complexity of async Q-learning to
yield ||Q — Q*||c < € is at most (up to some log factor)
1 Emix
fmin (1 — 7)4€? - fimin(1 =)’

where Limin s the smallest entry in the stationary distribution, and
tmix IS the mixing time of the Markov chain.

29



Understanding finite-time convergence of policy
optimization, and how to accelerate it



Policy optimization

maximizey value(policy(#))

e directly optimize the policy, which is the quantity of interest;
e allow flexible differentiable parameterizations of the policy;
e work with both continuous and discrete problems.

x Y,
=@ v w,
. \
AR w:_l J e -
——’.?*\-—\ o<’ /7 %0 €’H//
\\\%}z’ €\>\/7‘7¢7 ”e‘w// 47
A 57
@B XIBEAO
A IS T VAR AN
_ TAPE T DN~
e pAWY Y
— ——
input layer output layer

31



Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, €.g. (Fazel et al., 2018; Bhandari and Russo,
2019; Agarwal et al., 2019; Mei et al. 2020), and many many more.

Our goal:
e understand finite-time convergence rates of popular heuristics;

e design fast-convergent algorithms that scale for finding
policies with desirable properties.

32



Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

33



Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

@ softmax parameterization:
mo(als) ox exp(8(s, a)) J
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

@ softmax parameterization:
mo(als) ox exp(8(s, a)) J

maximizeg V7 (p) 1= Eqsu, [V7(5)]
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

@ softmax parameterization:
mo(als) ox exp(8(s, a)) J

maximizeg V7 (p) 1= Eqsu, [V7(5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,-
9(t+1) — 9(15) + nvevﬂ.ét) (p)

where ) is the learning rate.

33



Global convergence of the PG method?

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

34



Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in

O(%) iterations.
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],[A[, 2=, -+ ) O(2) iterations.

1—v?
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],[A[, 2=, -+ ) O(2) iterations.

1—v?

Is the rate of PG good, bad or ugly? )

34



A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

1 o(1) | )
~|8|> 7 iterations
n

to achieve |V — V*||,, < 0.15.
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A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

1 o(1) | )
~|8|> 7 iterations
n

to achieve |V — V*||,, < 0.15.

e Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

e Even when starting from a uniform initial state distribution!

e Also hold for average sub-opt gap ﬁ Y oses [V(t)(s) - V*(s)].

35



MDP construction for our lower bound

8 Sz Su
00000 00000 00000 00000 00000 00000 00000
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ao aii a() ajr a 1 11 1 Vi
A 4 i ! v i 'i
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MDP construction for our lower bound

ai
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~
it < o) €---
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N
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11//1 1 ~
zaz \
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>
||a - ™~ —
-3
!Onln\uA ISERY
S| N
~
:W..V
i
3
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Key ingredients: for 3 < s < H <
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MDP construction for our lower bound

§1 §2 SH
00000 00000 00000 00000 00000 00000 00000
ai ar ai s ’ s /.
S e e A e rofemmmTy y/
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i Si Sy 3 4 5 6 cee H
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\ » e -
o @ n o May S G L :
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1 o 00
1
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00000 00000 00000 00000 00000 00000 00000
5 S 5.
Key ingredients: for 3 < s < H < %

o 7 (aopt | 5) keeps decreasing until 7 (agpe | s —2) ~ 1
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What is happening in our constructed MDP?

m9(ar | 1)

v
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What is happening in our constructed MDP?

v
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What is happening in our constructed MDP?

~ g
=~ -
~<, -
~ P
~ -
~——e -

Convergence time for state s grows geometrically as s increases
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What is happening in our constructed MDP?

-
-
~ -
~ -
~., -
-
~ -
Ssa. -

Convergence time for state s grows geometrically as s increases

convergence-time(s) 2 (convergence-time(s — 2))1'5
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‘Seriouslj}, lady, at this hour you'd make a
lot better time taking the subway.”



Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---

0D = 90 4 (F0) VeV (p)
where 1 is the learning rate and ]-'g is the Fisher information matrix:

]-'g =E [(Vg log mo(als)) (Ve log7rg(a|s))T] .

39



Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---

00 = 0 4 () VeV (o)

where 1 is the learning rate and ]—'g is the Fisher information matrix:

]-'g =E [(Vg log mo(als)) (Vg log 7T9((1|8))T] .

In fact, popular heuristic TRPO (Schulman et al., 2015) = NPG + line search.

39



Booster #2: entropy regularization

state s o aﬁtl?rn 150) To 1 T2 r3 T4
- l | 1 | |
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sip1 ~ P([se,ar)

To encourage exploration, promote the stochasticity of the policy
using the “soft” value function (Williams and Peng, 1991):

VseS: ny Tt—l-TH (\st)|so—s

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

40



Booster #2: entropy regularization
T3 T4

state s a; aﬁt'?rn [st) e o -
s 010 F 0
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sie1 ~ P(lsg,a0)

To encourage exploration, promote the stochasticity of the policy

using the “soft” value function (Williams and Peng, 1991)

ny Tt—l-TH (\st)|so—s

VseS:
where H is the Shannon entropy, and 7 > 0 is the reg. parameter
V() =Eonp V() |

maximizey




Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient Natural Policy Gradient

D) =8

UOT)RZIIR[NSSI 9SBIIOUT

=2
log (ar) log m(ar)



Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

UOT)RZIIR[NSSI 9SBIIOUT

Policy Gradient

Natural Policy Gradient

2-3 m

-
-1

Y

.
:

N
0

) -3 -2

Policy Gradient

—

Ny
E"%/
g‘ls — //

pat -3 -2 -1
log m(ay)

log 7(a1)

Can we justify the efficacy of entropy-regularized NPG?

41



Entropy-regularized NPG in the tabular setting

*
7T7.

<
Q@

Entropy-regularized NPG (Tabular setting)
Fort=0,1,---, the policy is updated via
nT

a0 ([s) oo 7O () 1T exp(QW (s, ) /7) T
——— S———

current policy soft greedy

where Q(Tt) = Q’;m is the soft Q-function of 7, and 0 < n < 1_77

e invariant with the choice of p

e Reduces to soft policy iteration (SPI) when 5 = =2

T

42



Linear convergence with exact gradient

Exact oracle: perfect evaluation of Qﬁm given 7(1);

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate 0 < n < (1 — ~y)/7, the entropy-regularized
NPG updates satisfy

¢ Linear convergence of soft Q-functions:
15 — Q¥ Vloe < Cry (1 = n7)*

for all t > 0, where Q% is the optimal soft Q-function, and

=110 = Qo+ 27 (1= 17 ) 1o — log .

v
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Implications

To reach ||Q% —

(1) HOO < ¢, the iteration complexity is at most

i 1—7y.
 General learning rates (0 <n < —7):

1 <Cl’7>
— log
nT €

e Soft policy iteration (n = 1_77)

L (n@:—@(f)um)
0g
1—7 €

44



Implications

To reach ||Q% — (1) HOO < ¢, the iteration complexity is at most

o General learning rates (0 < 7 < +=2):
1 <C’17>
nt €

* Soft policy iteration (1 = —7)

* _ 00)
! bg(n@T QF Hm)
1—7 €

Global linear convergence of entropy-regularized NPG
at a rate independent of |S], |A|!

44



Comparisons with entropy-regularized PG

Natural Policy Gradient Log Policy Difference

Natural Policy Gradient

Policy Gradient

log 7(a1)

0 1000

2000 3000 4000 5000
#iterations

(Mei et al., 2020) showed entropy-regularized PG achieves

V() = Vi) < (Vo) = Vi ()

1=

4 >
¢ 7

cexp | —

(8/7 + 4+ 8log|A|)|S|

P 0<k<t—1 s,a
oo

2
min p(s) ( inf minw(k)(a|s))
S

can be exponential

in |S| and ll—,y

Much faster convergence of entropy-regularized NPG

at a dimension-free rate!
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Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

Q- QY

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)
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Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

Q- QY

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)

Entropy regularization enables fast convergence! J
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Entropy-regularized NPG with inexact gradients

Inexact oracle: inexact evaluation of Qﬁw given 7, which
returns Qg) that
A (t t
I -]l <,

e.g., using sample-based estimators (Williams, 1992).
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Entropy-regularized NPG with inexact gradients

Inexact oracle: inexact evaluation of Qﬁw given 7, which
returns Qg) that
A (t t
I -]l <,

e.g., using sample-based estimators (Williams, 1992).

Inexact entropy-regularized NPG:

(t+1)( B ( (t)( | ))171’1—1Y (U@Sf’)(s,a)>
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Entropy-regularized NPG with inexact gradients

Inexact oracle: inexact evaluation of Qﬁw given 7, which
returns Qg) that
A (t t
I -]l <,

e.g., using sample-based estimators (Williams, 1992).

Inexact entropy-regularized NPG:

(t+1)( B ( (t)( | ))171’1—1Y (U@Sf’)(s,a)>
T a|s) o« (m a|s exXp 71_7

Question: Robustness of entropy-regularized NPG?
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Linear convergence with inexact gradients

Theorem (Cen, Cheng, Chen, Wei, Chi '20; improved)

For any learning rate 0 < n < (1 — ~y)/7, the entropy-regularized
NPG updates achieve the same iteration complexity as the exact

case, as long as
Kl—v.mm{ﬁ, /ET}
0% 4 2
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Linear convergence with inexact gradients

Theorem (Cen, Cheng, Chen, Wei, Chi '20; improved)

For any learning rate 0 < n < (1 — ~y)/7, the entropy-regularized
NPG updates achieve the same iteration complexity as the exact

case, as long as
0 < t] -min{e,ug}
¥ 4 2

e Sample complexity for the original MDP: set 7 = (lég_ﬁ/é)lf;
using fresh samples for policy evaluation at every iteration

requires
O <(1|f’|7“;l7|62> samples.
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A key lemma: monotonic performance improvement

V(1)

1 T

VI () = V(o) =E, e l (5155 k(e e [ 0)

1—7v

KL divergence

1
discounted state + EKL (W(t)(|8) H W(t+1)('|5))]

visitation distribution

KL divergence
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A key lemma: monotonic performance improvement

V(1)

1 T

VI () = V(o) =E, e l (5155 k(e e [ 0)

KL divergence

1—7v

1
discounted state + EKL (W(t)(|8) H W(t+1)('|5))]

visitation distribution

KL divergence

Implication: monotonic improvement of V. (s) and Q-(s,a). )
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A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

——
immediate reward
+v E max [ Q(s',a") leogW(a'|5’)} ,
§'~P([s,a) | T(Is") a/~m(|s") b S~ —

next state's value entropy
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A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

immediate reward

+v E [ max [ Q(s',a") —r7log 7r(a'|s’)}] ,
—— ————

s'~P(-|s,a) | m(:|8") @/~ (-|s")

next state's value entropy

Soft Bellman equation: ()7 is unique solution to

TH(Q7) = Q7

~-contraction of soft Bellman operator: \jﬁ
| 7-(Q1) — T (Q2)]| oo < ¥||Q1 — Q2|00 Richard
Bellman
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Analysis of soft policy iteration (7

Policy iteration

Bellman operator
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Analysis of soft policy iteration (n = 1=2)

T

Policy iteration Soft policy iteration

7 70

Bellman operator Soft Bellman operator
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A key linear system: general learning rates

s - @,

Let x; :=
Q5 = 7log W[

|

QY — rlog @] _
0

where £ o () is an auxiliary sequence, then

|
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A key linear system: general learning rates

NN D)
Qs — Q| and y = QY — 710g £
@ = Tlog €M 0

where £ o () is an auxiliary sequence, then

Let x; := [

777_ t+1
$t+1<A$t+7<1— ) Y,

where

is a rank-1 matrix with a non-zero eigenvalue 1 —n7
——

contraction rate!

|
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Beyond entropy regularization

Leverage regularization to promote structural properties of the
learned policy.

cost-sensitive RL sparse exploration constrained and safe RL

weighted 1-norm Tsallis entropy log-barrier
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Regularized RL in general form

action 70 1 T2 3 T4

state s a; ~ m(-|s;)
------- et = — 900909
0 T 2~ I 4T
reward I :> \\__,' \\_/’ \\_/' \\_/' \\_/’
re = 1(S¢, at ap ay az as 2
¢ environment - ¢ 2 2 2
+— w(lso)  wClst)  wClsa)  wClss)  wClsa)

sén ~ P(se,ar)

The regularized value function is defined as

VseS: Vi(s):=E

Z’yt(rt — Thst(ﬂ(-\st))) ‘ so=s|,
t=0

where hg is convex (and possibly nonsmooth) w.r.t. 7(+|s).
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Regularized RL in general form

action 70 1 T2 3 T4
state s a; ~ W("St) S

"""" - ] S0 l S I S l S I s l
0 T 2~ I 4T

reward I :> \\__,l \\_/l \\_’,l \\_’,l \\_’,I

re = 1(S¢, at ap ay az az ay

¢ environment - ¢ 2 2 2
+— w(lso)  wClst)  wClsa)  wClss)  wClsa)

sén ~ P(se,ar)

The regularized value function is defined as

VseS: Vi(s):=E

D 2 (re = The(n(lse)) | s0 = s |
t=0

where hg is convex (and possibly nonsmooth) w.r.t. 7(+|s).

maximizer V[ (p) := Egup [V (5)] J




Detour: a mirror descent view of entropy-regularized NPG

Entropy-reg. NPG = mirror descent with KL divergence:
(Lan, 2021; Shani et al., 2020)

. 1
7 (|s) = argmin { — QW (s, ), p) — TH(p) + =KL(p||[7(|s))
PpEA(A) n

for all s € S, where the KL divergence is the Bregman divergence
w.r.t. the negative Shannon entropy.
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Generalized Policy Mirror Descent (GPMD)

Generalized policy mirror descent (GPMD) method
Fort=0,1,---, update

7T(t+1)('|5) = argmin <_QT(87 )7p> + Ths(p)
PEA(A)

+}7 D, (p, 7O (-|5); Oy (x D (]5))) ,

Generalized Bregman divergence w.r.t. hs

where a surrogate of Oh,(7)(-|s)) is updated recursively.
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Generalized Policy Mirror Descent (GPMD)

Generalized policy mirror descent (GPMD) method
Fort=0,1,---, update

7T(t+1)('|5) = argmin <_QT(‘97 )7p> + Ths(p)
PEA(A)

+}7 Di. (p, 70 (-|5); Dha(7 D (-]5)))

Generalized Bregman divergence w.r.t. hs

where a surrogate of Oh,(7)(-|s)) is updated recursively.

e Compare with PMD (Lan, 2021):
. 1
rl+(|s) = argmin (=Q- (s, ), p) + Ths(p) + —KL(p[|7"(]s)),
peA(A) n

GPMD achieves linear convergence for general convex and
nonsmooth hg! In contrast, PMD requires hs + H is convex.
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Numerical examples

hs = Tsallis Entropy

10°7

0 500 1000 1500 2000 2500 3000
#iterations

hs = Log Barrier

2 f SEEED Sk Sininiate.

X =001 I
Fop=00 el
° = e
PMD e
---- GPMD

0 500 1000 1500 2000 2500 3000
#iterations
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Numerical examples

10-°

10°7

hs = Tsallis Entropy

.

L s e
X p=001

=01,
o =1 \‘\‘\

PMD e
---- GPMD T
0 500 1000 1500 2000 2500 3000

#iterations

107

107

hs = Log Barrier

ety GEEED ieiiekfntuater. ot
x n:o.ofP B R
+ =01 Ty
° = e
PMD e
----- GPMD
0 500 1000 1500 2000 2500 3000
#iterations

GPMD achieves faster convergence than PMD! J
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Beyond single-agent MDP

Entropy-regularized zero-sum two-player Markov game

max min V#*Y
peA(A)ISI veAB)Isl T (o)

107!

Qll

X T, = 100
Ty, = 200

e T, =400

PU

---- OMWU

Q%

0.0 0.2 0.4 0.6 0.8 1.0
Regularization Parameter

(Cen et. al., NeurlPS 2021): OMWU with value iteration =
dimension-free rate, last-iterate convergence, symmetric updates
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Concluding remarks

state
action
m———— agent
Reinforcement. w\ Dynamic Programming 1
Learning X and ﬂnllmal c-:mrm H
i ] !
y 1.
1: reward
[ .
¢ environment
2 inext state

FIRST-ORDER METHODS
IN OPTIMIZATION

Amir Beck

Understanding non-asymptotic performances of model-free RL

algorithms is a fruitful playground!

J

Future directions:

e function approximation

e offline RL
e multi-agent RL

® many more...
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Thank you!

https://users.ece.cmu.edu/~yuejiec/
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