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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

e unknown environments
e maximize total rewards

trial-and-error

sequential and online

“Recalculating ... recalculating ...”



Recent successes in RL

Atlast —a computet
can beat a champion

ALL SYSTEMsga

RL holds great promise in the next era of artificial intelligence.



Multi-agent reinforcement learning (MARL)

To collaborate or to compete, that is the question.



Sample efficiency

Collecting data samples might be expensive or time-consuming

nuclear plant autonomous driving online ads



Sample efficiency

Collecting data samples might be expensive or time-consuming

nuclear plant autonomous driving online ads

Calls for design of sample-efficient RL algorithms!



Computational efficiency

Running RL algorithms might take a long time and space

many CPUs / GPUs / TPUs + computing hours



Computational efficiency

Running RL algorithms might take a long time and space
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many CPUs / GPUs / TPUs + computing hours

Calls for computationally efficient RL algorithms!



From asymptotic to non-asymptotic analyses

]

PTIRTINY An Analysis of Temporal-Difference Learning
PROGRAMMING with Function Approximation

finite-time &
finite-sample analysis

asymptotic

analysis
Reinforcement Learning:
Theory and Algorithms
Alekh Agarwal ~ NanJiang ~ Sham M. Kakade ~ Wen Sun
December 9, 2020

Non-asymptotic analyses are key to understand sample and
computational efficiency in modern RL.




Recent advances in single-agent RL
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The playground: Markov decision processes




Recent advances in single-agent RL: model-based
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Plug-in estimators are minimax-optimal J

(Sidford et al., 2018; Agarwal et al., 2019; Wang 2019; Li et al., 2020)



Recent advances in single-agent RL: value-based
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Q-learning is not minimax-optimal J

(Even-Dar and Mansour, 2013; Wainwright, 2019; Chen et al., 2020; Li et al., 2021)
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Recent advances in single-agent RL: policy-based
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Global convergence of policy gradient methods

(Agarwal et al., 2019; Mei et al., 2020; Cen et al., 2020; Lan, 2021; Xiao, 2022)
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Challenges in MARL: nonstationarity
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Challenges in MARL: nonstationarity
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From a single-agent perspective:
the environment is time-varying and nonstationary!
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Challenges in MARL: curse of multiple agents
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Challenges in MARL: curse of multiple agents
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Challenges in MARL: curse of multiple agents

17
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This talk: two-player zero-sum Markov games

horizon

V-learning
HS ........... ..

model-based
our algorithm

H*

A+B AB  #actions

Statistical perspective:
Minimax optimality
under the generative model

Optimization perspective:
Last-iterate convergence of
policy optimization
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Backgrounds: two-player zero-sum Markov games



Competitive games
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Adversarial Training
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Generative Adversarial Networks
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Competitive games

Black v.s. White

Noise v.s. Neural Net

Generator v.s. Discriminator

16



Zero-sum two-player matrix game

0 -1 1
ds’p

Zero-sum two-player matrix game
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max min p' Av
LEA(A) vEA(B)

A, B: action space of the two players;

w € A(A), v € A(B): policies of the two players;
A(A), A(B): set of probability distribution over A, B;
o A RMIXIBl: payoff matrix.
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Two-player zero-sum Markov games (finite-horizon)

state sp, ction ap
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e S: shared state space

e H: horizon

e A: action space of max-player

e [3: action space of min-player
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Two-player zero-sum Markov games (finite-horizon)

state sp

ction an
___________ max-player — _I
state Sh_ e action by,
___________ ?! min-player f— — —'—|
reward -7,

“===7 environment -
4

e S: shared state space e A: action space of max-player

e H: horizon e 3: action space of min-player

e immediate reward: max-player r(s,a,b) € [0, 1]
min-player —ry (s, a,b)
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Two-player zero-sum Markov games (finite-horizon)

ﬂ; action ap,
—— TR

| reward 7

1
1 state sp

action by, I

L-—-¢-- environment —

shy1 ~ Pu(- | snyan, bn)

e S: shared state space e A: action space of max-player

H: horizon e 3: action space of min-player

immediate reward: max-player (s, a,b) € [0, 1]
min-player —ry (s, a,b)

Py(-|s,a,b): unknown transition probabilities



Value function of policy pair

w: policy of max-player;  v: policy of min-player
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Value function of policy pair

w: policy of max-player;  v: policy of min-player

— no
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Value function of policy pair (u,v):
H
VEY(s) :=FE Z'rt(st,at,bt) ’ s1 =35
t=1

e {(at, by, s¢+1)}: generated when max-player and min-player
execute policies p and v independently (i.e. no coordination)
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Target policy

9
'

which action b which action a L
——»

“--1 to take? k_w to take?
& state s °oe
gl TS

e Each agent seeks optimal policy maximizing her own interest

e But two agents have conflicting goals . ..

20



Target policy

_ !\\'\
@;«-l

which action b
to take?
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state s

which action a
to take?
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e Each agent seeks optimal policy maximizing her own interest

e But two agents have conflicting goals . ..

Zero-sum two-player Markov game

max

min

HEA(A)IS| veA(B)IS]

VHY(s)
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Nash equilibrium (NE)

John von Neumann
An NE policy pair (u*, v*) obeys

* * gk . *
max V*Y =VHF Y =minVH* ¥
m v

John Nash
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John von Neumann John Nash
An NE policy pair (u*, v*) obeys
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m v

e no unilateral deviation is beneficial
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Nash equilibrium (NE)
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e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)
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Nash equilibrium (NE)

John von Neumann John Nash
An eNE policy pair (i, 7) obeys

max VHY —e < VAV <minV*Y +¢
o v

e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)

21



Nash equilibrium (NE)

John von Neumann John Nash
An eNE policy pair (i, 7) obeys

max VHY —e < VAV <minV*Y +¢
o v

e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)

Goal: efficiently learn the NE statistically and computationally J

21



A statistical perspective:
Minimax-optimal sample complexity under the
generative model

Gen Li Yuxin Chen Yuting Wei
UPenn UPenn UPenn

“Minimax-optimal multi-agent RL in Markov games with a generative model,”
G. Li, Y. Chi, Y. Wei, Y. Chen, NeurlPS 2022



Model-based approach w/ non-adaptive sampling

(Zhang et al., 2020)

for each (a,b)

planning

oracle
empirical | ()
model P

-’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s, a,b, h), call generative models N times
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2. build empirical model P
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Model-based approach w/ non-adaptive sampling

(Zhang et al., 2020)

for each (a,b)

planning

oracle
empirical | ()
model P

_’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s,a,b, h), call generative models N times

2. build empirical model ]3 and run classical planning algorithms

. 4
sample complexity: % J

23



Breaking the curse of multi-agents?

(Song, Mei, Bai, 2021; Jin et al., 2021; Basar et al., 2021)
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for every (s,h)
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V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H
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V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H

1. adaptive sampling: sampling A based on 1i(+|s)
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Breaking the curse of multi-agents?

(Song, Mei, Bai, 2021; Jin et al., 2021; Basar et al., 2021)
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V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H

1. adaptive sampling: sampling A based on 1i(+|s)
2. estimate V-function only with Hoeffding bonus (of size .S)
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Breaking the curse of multi-agents?

(Song, Mei, Bai, 2021; Jin et al., 2021; Basar et al., 2021)
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V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H
1. adaptive sampling: sampling A based on 1i(+|s)
2. estimate V-function only with Hoeffding bonus (of size .S)
3. update policy via adversarial learning subroutine, e.g. FTRL



Breaking the curse of multi-agents?

|
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(Song, Mei, Bai, 2021; Jin et al., 2021; Basar et al., 2021)

for every (s,h)
B0 -

(o
e s O —— e

V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H

1. adaptive sampling: sampling A based on p(+|s)

2. estimate V-function only with Hoeffding bonus (of size .S)

3. update policy via adversarial learning subroutine, e.g. FTRL

sample complexity: ﬂlﬂ J

€
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Summary of prior arts

horizon
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: model-based

4

5 O SO '
0 ' : >

A+ B AB  4factions
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Summary of prior arts

horizon
' N
V-learning
H6 .......... .‘
7 model-based
| g
H | ® e o
£
0 : : e
A+B AB  #actions

Can we simultaneously overcome

curse of multi-agents & barrier of long horizon?

25



Our algorithm (with a generative model)

(Li et al., NeurlPS 2022)
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for every (s,h)
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Nash-Q-FTRL (ours): for the max-player, for h = H,...,1
e collect k=1,..., K samples:

26
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Our algorithm (with a generative model)

(Li et al., NeurlPS 2022)
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Nash-Q-FTRL (ours): for the max-player, for h = H,...,1
e collect k=1,..., K samples:

1. adaptive sampling: sample A based on ¥ (-|s)
2. estimate single-agent Q-function Q (s, ) via Q-learning

26



Our algorithm (with a generative model)

(Li et al., NeurlPS 2022)

for every (s,h)
oy . 5

<4 &~

~

b
| B

A

Nash-Q-FTRL (ours): for the max-player, for h = H,...,1
e collect k=1,..., K samples:

1. adaptive sampling: sample A based on ¥ (-|s)
2. estimate single-agent Q-function Q (s, ) via Q-learning
3. update policy uf "1 (|s) via FTRL

26



Our algorithm (with a generative model)

(Li et al., NeurlPS 2022)

for every (s,h)
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Nash-Q-FTRL (ours): for the max-player, for h = H,...,1
e collect k=1,..., K samples:

1. adaptive sampling: sample A based on ¥ (-|s)
2. estimate single-agent Q-function Q (s, ) via Q-learning
3. update policy uf "1 (|s) via FTRL

e output a Markov policy up and Vj with Bernstein bonuses

26



Main result: two-player zero-sum Markov games

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < e < H, the policy pair (i, V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

) 2

~<H4S(A + B)

)

27
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Theorem (Li, Chi, Wei, Chen '22)

For any 0 < e < H, the policy pair (i,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

6<H4S(A+ B))_

€2

¢ minimax lower bound: Q(W)

e breaks curse of multi-agents & long-horizon barrier at once!
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Main result: two-player zero-sum Markov games

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < e < H, the policy pair (i,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

6<H4S(A+ B))_

€2

minimax lower bound: Q(W)

breaks curse of multi-agents & long-horizon barrier at once!

full e-range (no burn-in cost)

other features: Markov policy, decentralized, ...

27



horizon
A
V-learning
JCl '

model-based
our algorithm

H4

0 : E g
A+B AB  4tactions

Our algorithm breaks curses of multi-agents and long-horizon
barrier simultaneously!




Extension: multi-player general-sum Markov games

Theorem (Li, Chi, Wei, Chen ’22)

For any 0 < € < H, the joint policy T returned by the proposed
algorithm is e-CCE, with sample complexity at most

5([#52“41-)

€2

29



Extension: multi-player general-sum Markov games

Theorem (Li, Chi, Wei, Chen ’22)

For any 0 < € < H, the joint policy T returned by the proposed
algorithm is e-CCE, with sample complexity at most

5<H4SZZA¢>

€2

- - ~ 4 ) .
¢ minimax lower bound: Q(%)

e near-optimal when the number of players m is fixed

29



An optimization lens: last-iterate convergence of
policy optimization with entropy regularization

-
Shicong Cen Yuting Wei Lin Xiao Simon Du
CcMU UPenn Meta Al uw

“Fast policy extragradient methods for competitive games with entropy
regularization,” S. Cen, Y. Wei, Y. Chi, NeurlPS 2021.
“Faster last-iterate convergence of policy optimization in zero-sum Markov games,”
S. Cen, Y. Chi, S. Du, L. Xiao, 2022.



Policy optimization: saddle-point optimization

Given an initial state distribution s ~ p, find policy ™ such that

a in VAY(p):i=E,, [V
uerAn(.j;lSI ,,egl(%a (p) P[ (3)]

31



Entropy regularization in MARL

action
state sp ap ~ pip(- | sn)
______ max-player: —
r reward 7, ) Th Th+1 The2 T
1 ot action
| state Sp, by~ vl | s _L’
o~ vn(- | h)_ T §h+1—|—>sh+ SHrl
e——— 'f,“| "’1“1!’"/‘ i/
1 '~
I reward -1y, \ap N N/ !
L 2 by bhg1 bhy2 by
D environment _— pn(anlsn)?
* next state Vh(balsn)

Sha1 ~ P | sn,an, br)

Promote the stochasticity of the policy pair using the “soft” value
function (Williams and Peng, 1991; Cen et al., 2020):

H

Vi (s):=E Z (Tt + TH (e (+|5¢) — TH(Vt('|St)) ‘ S0 =5|,
h=1

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.
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Entropy regularization in MARL

action
state 5n an ~ (- | sn)
______ max-player: —
r reward 7, ) Th Tht1 Th+2 TH
1 tat action
I state s, b ~ (- | s1)
e e el e
- [ANS B L N B A n__s1
} roward - s M ) i/
& I L
L by bhg1 bhy2 by
e S environment _— pn(an|sn)?
" next state vh (b |sk)

Sha1 ~ P | sn,an, br)

Promote the stochasticity of the policy pair using the “soft” value
function (Williams and Peng, 1991; Cen et al., 2020):

H

VEY(s):=E Z (re + TH (e (|5¢) — TH(ve (-] s0)) ‘ so=s|,

h=1

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

1 VH}V
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Quantal response equilibrium (QRE)

Quantal response equilibrium (McKelvey and
Palfrey, 1995)

08
The quantal response equilibrium (QRE) is the policy e

ek . . .
pair (uk,vr) that is the unique solution to QUANTAL
EQUILIBRIUM
max min _ VH"(p).
PEA(A)ISI veAB)Isl T

e Unlike NE, QRE assumes bounded rationality: action
probability follows the logit function.
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Quantal response equilibrium (QRE)

Quantal response equilibrium (McKelvey and
Palfrey, 1995)

The quantal response equilibrium (QRE) is the policy
pair (px, vx) that is the unique solution to

max min VY (p).
HEA(A)IS| veA(B)IS]

e Unlike NE, QRE assumes bounded rationality: action

probability follows the logit function.

Translating to an e-NE: setting 7 =< O (¢/H).

QUANTAL
RESPONSE
EQUILIBRIUM



Soft value iteration

Soft value iteration: for h=H,... 1
Qn(s,a,b) <ry(s,a,b)+

: maxmin u(s') " Q1 (s)v(s') + TH(u(s") — TH((s) |,
s'~Pp(+]s,a,b) = v

Entropy-regularized matrix game

where Qn(s) = [Qn(s, )] € RAXE,

34
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Soft value iteration

Soft value iteration: for h=H,... 1
Qn(s,a,b) <ry(s,a,b)+

: maxmin u(s') " Q1 (s)v(s') + TH(u(s") — TH((s) |,
s'~Pp(+]s,a,b) = v

Entropy-regularized matrix game

where Qn(s) = [Qn(s, )] € RAXE,

Entropy-regularized matrix game

. T
A H —T7H
(e o Av+ T (p) — TH(Y)
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A prelude: entropy-regularized matrix game

Optimistic multiplicative weights update (OMWU) method
(Related to OMD, Rakhlin and Sridharan, 2013): for t =0,1,---,

predict : A oc [T exp ([A’j(t)]/T)m
p(t+1) [V(t)}l—m exp (—[ATﬂ(t)]/T)m
(t+1) (&) 11—nT Ap(t+1) nr
Update : M(t+1) > [:U’(t) ]1 - P ([ V‘r(i{f;) nt
v x W] exp (—[A i ]/7')

35



A prelude: entropy-regularized matrix game

Optimistic multiplicative weights update (OMWU) method
(Related to OMD, Rakhlin and Sridharan, 2013): for t =0,1,---,

predict : ) o [uO]E exp ([ AV“) /T)m
D) o [pO]1=n Texp (—[A /T)nT
(t+1) t)1— At/

B (e P
D) o [pOP=1T excp (—[AT a+D] /7)™

Theorem (Cen, Wei, Chi, 2021)

Suppose that n < min{2 +2hA”w, 4“2“ } then for all t > 0, the

last-iterate converges to e-QRE within 9) ( log = ) iterations.

Linear, last-iterate convergence to the QRE!

35



Soft value iteration via nested-loop OMWU
Soft value iteration: for h=H,... 1

Qn(s,a,b) <rp(s,a,b)+

B i ()T Qi () M)~ THOA) |

Entropy-regularized matrix game

where Qp,(s) = [Qn(s, -, -)] € RA*B.

36



Soft value iteration via nested-loop OMWU
Soft value iteration: for h=H,... 1

Qn(s,a,b) <rp(s,a,b)+

. E lmaxminu(S')TQhH(5’)1/(8/)+TH(M(S'))TH(V(S’)),
s'~Pp(+|s,a,b) © v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B,

® _®

Nested-loop approach: (k1,5 vp, ) ¢ OMWU(Qp)
-
Periodic value update Policy update via
\ - OMWU

Qn + SVI(Qn+1)

36



Soft value iteration via nested-loop OMWU
Soft value iteration: for h=H,... 1

Qn(s,a,b) <rp(s,a,b)+

. E lmaxminu(S')TQhH(5’)1/(8/)+TH(M(S'))TH(V(S’)),
s'~Pp(+|s,a,b) © v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B,

® _®

Nested-loop approach: (k1,5 vp, ) ¢ OMWU(Qp)
-
Periodic value update Policy update via
\ - OMWU

Qn + SVI(Qn+1)

However, not easy to use in online settings...
36



A two-timescale single-loop approach?

Soft value iteration: for h = H,...,1
Qn(s,a,b) <rp(s,a,b)+

B masmin )T Quan (4 + 7 H(() = THO) |
s'~Py(-|s,a,b H v

Entropy-regularized matrix game

where Qp,(s) = [Qn(s, -, -)] € RA*B.

37



A two-timescale single-loop approach?

Soft value iteration: for h = H,...,1

Qn(s,a,b) <rp(s,a,b)+

- E [maxminM(S')TQhH(S')V(S') +7H(u(s') — TH(V(S'))]’
s'~Pp(+]s,a,b) " v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B.

Single-loop, two-timescale approach:

> Smooth value update Policy update via <
_______ q oMWU ;

QWD (1 - a)Q® + a - lookahead (u@D, D)  oMwu(Q®)
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Main result: episodic setting

Theorem (Cen, Chi, Du, Xiao, 2022)

The last-iterate of the two-timescale single-loop algorithm finds an
e-QRE in ,
~(H 1
0] < log )
T €

iterations, corresponding to 0] (H?B) iterations for finding an e-NE.

v

o First last-iterate convergence result for the episodic setting.

¢ Almost dimension-free: independent of the size of the
state-action space.



Main result: discounted setting

Theorem (Cen, Chi, Du, Xiao, 2022)

For the infinite-horizon ~-discounted setting, the last-iterate of the
single-loop algorithm finds an e-QRE in

G

iterations, and in O (ﬁ) iterations for finding an e-NE.

e . . ~ 5 1/2
e This significantly improves upon the prior art O (%)

of (Wei et al., 2021) and O (M> of (Zeng et al.,

(I—7)Hcte3
2022) in all parameter dependencies.
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Concluding remarks

horizon

V-learning
6 [ °

model-based
4 our algorithm
H o R ®
0 - .
A+ B AB  #actions

Understanding MARL: confluence of optimization, learning,
statistics, control and game theory!

Future directions:

e function approximation e offline RL

e constrained MARL ® many more...
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Thank you!

https://users.ece.cmu.edu/~yuejiec/
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