
Get More with LESS: Synthesizing Recurrence with KV Cache
Compression for Efficient LLM Inference

Harry Dong∗

CMU
Xinyu Yang∗

CMU
Zhenyu Zhang†

UT Austin
Zhangyang (Atlas) Wang†

UT Austin

Yuejie Chi∗
CMU

Beidi Chen∗‡

CMU & Meta

February 7, 2024

Abstract

Many computational factors limit broader deployment of large language models. In this paper, we
focus on a memory bottleneck imposed by the key-value (KV) cache, a computational shortcut that
requires storing previous KV pairs during decoding. While existing KV cache methods approach this
problem by pruning or evicting large swaths of relatively less important KV pairs to dramatically reduce
the memory footprint of the cache, they can have limited success in tasks that require recollecting a
majority of previous tokens. To alleviate this issue, we propose LESS, a simple integration of a (nearly
free) constant sized cache with eviction-based cache methods, such that all tokens can be queried at
later decoding steps. Its ability to retain information throughout time shows merit on a variety of tasks
where we demonstrate LESS can help reduce the performance gap from caching everything, sometimes
even matching it, all while being efficient.

1 Introduction
Throughout its lifetime, the transformer architecture [VSP+17] has made strides in natural language process-
ing [LWLQ22], computer vision [KNH+22], healthcare [NBZ+23], and many other domains. Large language
models (LLMs) [ZRG+22,SFA+22,FZS22,ADF+23,Ope23,TMS+23,TAB+23,JSR+24] take transformers to
the extreme by scaling the model, data, and context lengths to extraordinary levels. This has been remark-
ably useful for complex tasks such as chatbots, long document tasks, and biological sequences. However,
during deployment, these tasks require generating long sequences or inputting large batch sizes, which places
an immense computational burden on the key-value (KV) cache [PDC+23], the storage of all previous keys
and values at each layer to bypass recomputing them at future decoding steps. While this significantly saves
computation, the tradeoff is an explosion of memory consumption. In such scenarios, the KV cache size often
eclipses the model size. For instance, the Llama 2 7B model [TMS+23] occupies about 26 GB of memory,
but the KV cache for an input of batch size 64 and sequence length 1024 occupies 64 GB of memory, nearly
2.5 times the model size. Hence, addressing this accessibility issue is imperative as LLMs continue to scale
and break tight deployment constraints.

Thankfully, there have been initiatives to reduce the KV cache size. A line of work, in which we refer to as
sparse policies or algorithms, explores the selection of the best subset of KV pairs to cache [ZSZ+23,LDL+23,
HWX+23,XTC+23]. Although very promising, these methods are inevitably and irrecoverably discarding
KV pairs deemed, in one way or another, less important than others, leading to gaps in attention maps

∗Department of Electrical and Computer Engineering, Carnegie Mellon University, USA; Emails:
{harryd,xinyuya2,yuejiec,beidic}@andrew.cmu.edu.

†Department of Electrical and Computer Engineering, University of Texas at Austin, USA; Emails:
{zhenyu.zhang,atlaswang}@utexas.edu.

‡Meta AI (FAIR), USA.

1

Figure 1: Toy (top row) and Llama 2 7B (bottom row) example decoder attention maps with H2O as
the underlying sparse policy. In the top row, red/pink and grey squares are positive and zero attention
probabilities, respectively. In the bottom row, darker colors indicate larger attention probabilities. Sparse
attention policies zero out many positive attention probabilities. Our method, LESS, ensures all previous
tokens will have some contribution to the attention layer output to better retain information.

Figure 2: Incorrect summary by Falcon 7B with
sparse policy H2O.

as shown in Figure 1. Consequently, they are boldly
assuming tokens that are unimportant now will not
hold significance at future decoding steps, a faulty con-
jecture for tasks that deviate from this pattern. For
instance, using sparse policy H2O [ZSZ+23] on Fal-
con 7B [AAA+23] to summarize an article [BBC15,
NCL18] produces a factually incorrect summary in
Figure 2. For the full article, see Figure 13 in Ap-
pendix B.

One way to combat information loss is to cache
more tokens, but this is far from memory efficient.
An ideal KV cache policy should 1) minimize perfor-
mance degradation from a full cache, 2) scale at a
much slower rate than the full KV cache, and 3) be cheap to integrate into existing pretrained LLMs.

Fortunately, with some investigation into the residual between full and sparse attention outputs, a better
strategy emerges. First, define the residual as ∆A = A−Asparse, where A and Asparse are the full and sparse
attention outputs, respectively. Using top-k selection as our sparse policy, we observe the residuals ∆A are
in fact low-rank — more so than A — based on Figure 3, a similar observation to Chen et al. [CDW+21].
Even a very low-rank approximation can nearly negate the performance degradation from sparse caching.
In turn, this finding motivates the use of low-rank methods to approximate the residuals for efficient caches.

We propose LESS (Low-rank Embedding Sidekick with Sparse policy) to learn the residual between
the original attention output and the attention output approximated by a sparse policy. LESS does this
by accumulating information that would have been discarded by sparse policies into a constant-sized low-
rank cache or state, allowing for queries to still access information to recover previously omitted regions in
attention maps (see Figure 1).

We show that LESS makes significant progress towards an ideal cache:

1. Performance Improvement: LESS synthesizes sparse KV policies with low-rank states to bridge the
performance gap on a variety of tasks where these sparse algorithms show cracks of weakness. In fact,
LESS improves the performance much more than simply dedicating that memory to storing more KV

2

Figure 3: Attention residuals exploration in Llama 2 7B on WikiText [MXBS16]. Mean and 1000 sample
relative singular value plots of true attention outputs and residuals from top-512 sparse policy, showing the
residual is much lower rank (left). End-to-end performance (lower is better) using top-k caching with and
without low-rank approximations (right). A rank-4 approximation virtually recovers the original perfor-
mance.

pairs.

2. Constant Low-rank Cache Size: Low-rank caches in LESS occupy constant memory with respect
to the sequence length, and in our experiments, the extra storage to accommodate LESS is nearly free,
taking up the equivalent space of only 4 extra KV pairs in our experiments. Inspired by recurrent
networks, the low-rank state stores new information by recursive updates rather than concatenation.
As each sample has its own cache, LESS provides the same proportional cache reduction for small and
large batch sizes.

3. Cheap Integration: Changes to the LLMs’ architectures are small and do not perturb the original
weights. The only modifications to LLMs will be the addition of tiny multilayer perceptions (MLPs)
at each attention layer. For example, using LESS with Llama 2 13B adds fewer than 2% of the total
number of parameters. In addition, we can train LESS at each attention layer independently from
all others, bypassing expensive end-to-end training. Trained once, LESS can transfer to more relaxed
settings while maintaining comparable performance, further extending its applicability.

Our comprehensive experiments on Llama 2 [TMS+23] and Falcon [AAA+23] with different sparse policies
[ZSZ+23,HWX+23,XTC+23] on a variety of tasks demonstrates LESS as a highly performative method that
reduces KV cache memory. For instance, LESS recovers more than 40% of the Rouge-1 degradation caused
by a sparse policy on the CNN/DailyMail dataset [HKG+15,SLM17] with Falcon 7B. Finally, we provide an
implementation of LESS that reduces the latency by up to 1.3× and increases the throughput by 1.7× from
the full cache.

Notation. We use unbolded letters (e.g. a,A), bold lowercase letters (e.g. a), bold uppercase letters (e.g.
A) for scalars, row vectors, and matrices, respectively. Let [A]i,· and [A]·,i refer to the i-th row and column
of A, respectively. Additionally, define 0n×m as a matrix of zeros and 1n×m as a matrix of ones, both having
shape n×m.

2 Background & Intuition
We start by building the intuition behind LESS. Sparse and low-rank caches individually have noteworthy
advantages but also severe drawbacks. Understanding the mechanisms of both (Section 2.1 and 2.2) allows
us to effectively synthesize sparse and low-rank structures to create LESS. In Section 2.3, we show that this
type of synthesis is a principled approach which has also found success in other areas.

3

2.1 KV Cache Policies
Many current methods to reduce the KV cache footprint involve keeping a tiny subset of the keys and
values either with some pruning policy [LDL+23,ZSZ+23,HWX+23,XTC+23,GZL+23] or a local attention
mechanism [CGRS19,PVU+18]. The former method can be applied directly to trained models whereas the
latter typically cannot, so with limited compute, deploying a KV cache pruning policy is more practical.
Such methods take advantage of the observation that many tokens are irrelevant for attention in some
tasks and thus omitting them leads to negligible performance loss. For instance, one of our baselines,
H2O [ZSZ+23], continuously accumulates attention probabilities at each generation step to identify a set
of heavy-hitting tokens to be cached together with the most recent tokens. Not explicitly designed for KV
cache compression, algorithms for infinite inference [HWX+23,XTC+23] maintain a full cache, but as the
input sequence exceeds the maximum context length of a model, KV pairs in the middle of the sequence are
dropped. Staying within the maximum context length, this results in a cache that maintains the most recent
and first few tokens. Regardless of the sparse method, maintaining a tight KV cache budget can seriously
impair model performance, as we will see in Section 4.

There also exist promising non-eviction based methods. CacheGen’s KV cache compression at the bit-
level takes a query-agnostic approach [LLD+23]. In vision tasks, token merging is an effective way to cut
down the number of tokens to process [BFD+22,RPH+22].

2.2 Low-rank Attention
Low-rank structures in attention have been explored extensively [TDBM22], namely from the lens of re-
current neural networks (RNNs). Unlike transformers, RNNs integrate information from all previous to-
kens into hidden states, analogous low-rank structures to KV caches that organically occupy constant
memory. In fact, this feature of RNNs over transformers has motivated research in alternative archi-
tectures [DFS+22, PMN+23, PAA+23, SDH+23, GD23], but for now, their adoption in LLMs is very lim-
ited compared to transformers. Though not as performative as these alternative architectures, linear
transformers that break apart the attention operation into kernels also maintain a constant sized KV
cache [TBY+19,KVPF20,CLD+20,PPY+21] by reformulating the cache into an RNN hidden state. These
types of caching mechanisms are low-rank since information is condensed along the sequence axis, rather
than explicitly maintaining individual tokens. This is possible when we replace the softmax with a separable
similarity metric ϕ(qt)ψ(Kt)

⊤ for some row-wise functions ϕ and ψ, letting qt ∈ R1×D and Kt ∈ Rt×D be
the query and keys at step t, respectively. To elaborate, if ϕ and ψ are such that

at = softmax
(
qtK

⊤
t√
D

)
Vt ≈

ϕ(qt)ψ(Kt)
⊤Vt

ϕ(qt)ψ(Kt)⊤1S×1
,

we just need to cache hidden states Ht = ψ(Kt)
⊤Vt ∈ RR×D and zt =

∑t
s=1 ψ([Kt]s) ∈ R1×R for inference

which can be expressed recursively as

Ht+1 = Ht + ψ(kt)
⊤vt,

zt+1 = zt + ψ(kt)

for each new KV pair (kt,vt). At initialization, H0 = 0R×D and z0 = 01×R. This is a clear improvement
from having to store ever increasing sizes of Kt and Vt, as the memory consumption is independent from t.
Note that our presentation differs slightly since we do not constrain ϕ = ψ [CTTS23]. With this formulation,
transformers act like RNNs which occupy constant memory during generation by not appending but updating
hidden states during each generation step. Since LLMs are not typically trained in this fashion, a major
challenge is to induce this property without significant computation or adjustment to the original weights
[KPZ+21]. While its dilution of information restricts its performance when specific tokens need to be recalled
with strong signals [KHQJ18], this is exactly what a sparse KV cache algorithm can do, so we can fully take
advantage of its infinite compression capability to obtain some high level representation of the less important
tokens, meaning kernelized attention is a good candidate method for LESS to learn the residual.

4

Figure 4: LESS algorithm during inference. At each decoding step, attention is calculated as in (3). To
prepare for the next decoding step, the cache is updated by placing the most recent KV pair into the sparse
policy cache, and if it has exceeded capacity, a KV pair will be evicted and integrated into the low-rank
cache Ht before being deleted.

2.3 Sparse and Low-rank Decomposition
LESS follows a rich history of decomposing structures into sparse and low-rank components. Particularly,
the study of robust principal component analysis [CLMW11,CSPW11] has shown this type of decomposition
greatly enhances approximation accuracy and expressibility beyond just sparse or low-rank matrices alone. Its
success has spread to deep learning areas such as efficient attention [CDW+21], model compression [LYZ+23],
and fine-tuning [NTA24]. Likewise, we take inspiration from these works in our design.

3 Method
When we convert the intuition in Section 2 into an algorithm, a couple technical challenges arise. One
challenge is finding an effective way to mix attention probabilities produced by sparse policies and low-rank
kernels. Second, we need to design a framework general enough to work with a broad class of sparse policies.
In some cases, different sparse policies may be preferable, so our method should be compatible with many
sparse policies. Third, our method should be cheap compute to develop. We show that LESS overcomes all
these challenges in a two step process: attention computation followed by cache updates.

3.1 KV Caching with LESS

We propose LESS, a general method to synthesize low-rank caches with any eviction-based sparse KV cache
policy, C, to close the performance gap from full KV caching while being efficient. Notably, our method
only adds a constant sized cache which does not scale with the sequence length. For the sparse policy, C, we
require that it can output the cached keys KC,t ∈ RBt×D, the cached values VC,t ∈ RBt×D, and the set of
discarded KV pairs Dt at iteration t where Bt ∈ N is the number of cached pairs.

Letting · denote both ϕ and ψ, we define our kernels as

ϕ(q) = |σϕ(σϕ(qWϕ,1)Wϕ,2)| (1)
ψ(k) = |σψ(σψ(kWψ,1)Wψ,2)Wψ,3| (2)

5

Algorithm 1 Generation Step with LESS

Input: C, qt,kt,vt
Load KC,t,VC,t,Ht, zt from memory.
K ′

C,t ← concatenate(KC,t,kt)
V ′
C,t ← concatenate(VC,t,vt)

Obtain ât via (3).
Obtain KC,t+1,VC,t+1,Dt+1 from sparse KV cache algorithm C.
Update Ht+1 via (4).
Update zt+1 via (5).
Save KC,t+1,VC,t+1,Ht+1, zt+1.
Delete Dt+1.
Return: ât

for activation functions σ·, W·,1 ∈ RD×R′
, W·,2 ∈ RR′×R, and Wψ,3 ∈ RR×R. The element-wise absolute

values ensure the inner product ϕ(q)ψ(k)⊤ > 0 to preserve the nonnegativity of attention probabilities.
In the ideal case, if ϕ(q)ψ(k)⊤ = eqk

⊤/
√
D for all q,k, then the result would be the original attention

probabilities.

Attention Calculation. Now, we describe the attention calculation procedure summarized in Algo-
rithm 1. At step t, we find the query-key-value triplet (qt,kt,vt) from the input token as usual. Recalling
that we have cached KC,t, VC,t, Ht, and zt from the previous generation step, append kt to KC,t and
vt to VC,t to obtain K ′

C,t ∈ R(Bt+1)×D and V ′
C,t ∈ R(Bt+1)×D, respectively. Then, we can find ât, our

approximation of the original attention at, by computing

ât =
ϕ(qt)Ht + exp(qt(K

′
C,t)

⊤/
√
D)V ′

C,t

ϕ(qt)z⊤
t + exp(qt(K ′

C,t)
⊤/
√
D)1B×1

. (3)

During the prompting phase (i.e. t = 0), it is just regular attention since H0 = 0R×D and z0 = 01×R.

Cache Updates. With the attention computed, we need to prepare the necessary ingredients for iteration
t+1 by finding KC,t+1, VC,t+1, Ht+1, and zt+1. The first two are simple since the sparse policy will return
KC,t+1, VC,t+1, and Dt+1. Before freeing Dt+1 from memory, we embed its information into Ht+1 and zt+1:

Ht+1 = Ht +
∑

(k,v)∈Dt+1

ψ(k)⊤v, (4)

zt+1 = zt +
∑

(k,v)∈Dt+1

ψ(k). (5)

After this, Dt+1 can be deleted, and we are prepared for the following generation step. Intuitively, Ht+1

and zt+1 are updated recursively by keys and values that have been newly pruned at each decoding step. As
such, they are constant size repositories of information from all deleted KV pairs which becomes clear when
we expand the recursion:

Ht+1 =
∑

(k,v)∈
⋃t+1

i=1 Di

ψ(k)⊤v, (6)

and similarly for zt+1.

3.2 Implementation Details
Inexpensive Training. With our inference-time protocol outlined, we now describe how we can cheaply
train our kernel functions ϕ and ψ. Because training end-to-end is time consuming and resource intensive,
we choose to train ϕ and ψ at each layer independent of all other layers which already surprisingly gives

6

strong results. The training objective is to minimize the ℓ2 distance to the output projection of the original
attention layer using that layer’s inputs. All weights except for those in ϕ and ψ are frozen. As a result, the
only computational requirements are the abilities to backpropagate through a single attention layer and run
inference on the full model to collect a dataset of attention layer inputs and outputs, which for all models we
experiment with, can be done on a single GPU. With more devices, training each layer can be parallelized.
While inference follows recursive updates of Ht and zt, this does not impede parallelism along the sequence
axis because we can just construct the full attention matrix where entries not computed by sparsely cached
KV pairs, as determined by whichever sparse policy we train on, will be found by the kernel functions.

All training runs used identical hyperparameters for simplicity. LESS was trained using Adam [KB14]
for 40 epochs with an initial learning rate of 0.001 which halved every 10 epochs. We fixed the hidden layer
dimension R′ = 512, used a dropout rate of 0.3 within the kernels, and let all nonlinear functions σϕ and σψ
to be GELUs. None of the original model’s weights are updated. First, we sampled 512 sequences for Llama
2 models [TMS+23] and 1024 sequences for Falcon [AAA+23] from the C4 training set [RSR+19]. Since
Falcon’s context length is half of Llama 2’s, the training sets have the same number of tokens. Next, queries,
keys, and values at each layer would be collected as each sample propagated through the models. These
collected features (fed in batches of 2) would be used to train the kernels at each layer independently using
some sparse policy at some sparsity level. For multi-query attention [Sha19], we extend H2O to aggregate
attention scores across all query attention heads to determine KV pairs to evict.

We find that the kernel initialization is critical. As we will show in our experiments (Section 4), the
sparse policies already have decent performance which we want to use as a starting point. As such, we add
learnable scalars between layers in ψ which are initially set to 10−4, so the influence of LESS during the first
few gradient steps is small. In this way, the sparse policy acts as a warm start, and we can immediately
reduce the sparse policy’s residual.

Efficient Generation. We also develop an implementation that enhances throughput and reduces the
latency of LLM generation of LESS. For the sparse cache, we adapt the implementation from Zhang et
al. [ZSZ+23] to support any KV cache eviction algorithm efficiently. To avoid data movement in memory,
we directly replace the evicted KV pair with the newly-added one. As our kernels are small MLPs with
GELUs, we implement a fused linear kernel that absorbs the activation into the layer before to avoid writing
the intermediate results to DRAM for the low-rank cache.

4 Experiments
Here, we demonstrate the impressive performance of LESS across multiple datasets, models (Llama 2 and
Falcon), sparse policies [ZSZ+23,HWX+23,XTC+23], and sparsity levels, despite allocating only approxi-
mately 4 tokens of storage to the low-rank state. In Section 4.1, LESS achieves the closest performance to
the full cache in language modeling and classification tasks. For example, evaluated with 2%H2O in Llama
2 7B, LESS reduces the word perplexities on WikiText and PG-19 by over 20% from H2O alone, relative to
the full cache performance. Section 4.2 shows similar gains in summarization. For example, LESS reduces
Rouge-1 degredation by 10%H2O in Falcon 7B on CNN/DailyMail by 41.4%. In Section 4.3, we note the
lower latency (1.1− 1.3× reduction) and higher throughput of LESS (1.7× higher) compared to full caching.
Finally, in Section 4.4, we discuss different characteristics of LESS, namely the recovery of true attention
probabilities, kernel size scaling, and capabilities for long sequences.

We explore two sparse policies, H2O [ZSZ+23] and Λ-masking from the infinite generation literature
[HWX+23, XTC+23]. When using H2O, the sparse KV cache is equally split between the heavy hitter
tokens and the recent tokens (e.g. 5% H2O cache consists of 2.5% heavy hitters and 2.5% recent tokens). For
Λ-masking, the cache consists of the first 4 and most recent tokens. The percentages represent how much
of the model’s max context length is cached, so regardless of input length, the cache size remains the same
for fairness. Since the sparsity level can translate to different numbers of tokens among models based on
the max input lengths, we include Table 1 as a quick reference for the models we evaluate on, Llama 2 and
Falcon. The token count is rounded down to the nearest even number to make sure H2O can have an even
split.

For our experiments, we set the kernel size R = 8, unless otherwise stated. Thus, while minuscule, the
size of H is nonzero, equivalent to caching 4 extra tokens. We ignore the influence of z since it only has R

7

Table 1: Token counts at different sparsity levels.

Model Max Length # Tokens at 2%/5%/10%

Llama 2 4096 80 / 204 / 408
Falcon 2048 40 / 102 / 204

Figure 5: Experimental setup. First, a sparse policy is chosen as the underlying policy behind all methods.
Then, we compare performance among the full cache model, Baseline, Baseline+, and LESS. Baseline+
and LESS use the same amount of storage which is slightly larger than the requirements of Baseline.

entries. As such, when evaluating on a task at α% sparsity, we compare LESS with the sparse policy C at α%
sparsity and at α% sparsity plus additional tokens to match the extra space taken by H (e.g. 4 tokens in
experiments where R = 8), which we denote as Baseline and Baseline+, respectively. Both are inherently
sparse-only policies. A visual representation of the different baselines can be found in Figure 5. Note that
the sparsity level and policy C will vary throughout our experiments depending on the context. The purpose
of evaluating Baseline is to compare the performance gain from extra tokens and the low-rank state H.
Additionally, we evaluate the full KV cache to observe how far we are from the unconstrained potential of
the original model. For our method, we denote it as LESS (β%) where β is the percent cache sparsity LESS
was trained on with some sparse policy depending on the context.

4.1 Language Modeling & Classification
We start with validating our method trained at different sparsity levels on some language modeling and
classification tasks at different sparsity levels using Language Modeling Evaluation Harness [GTA+23]. For
these tasks, we use the same setup as in training by masking out query-key interactions depending on the
sparse policy and having LESS capture the masked probabilities. In addition, we purposefully mismatch
training and testing sparsity levels to uncover insight on the transferability between test sparsity levels. To
illustrate why a learned kernel is necessary, we also evaluate H2O with Performer kernels [CLD+20] based
on random Fourier features [RR07], which we denote as H2O+Performer.

Table 2 shows Llama 2 7B performance on WikiText [MXBS16] and PG-19 [RPJ+19, GBB+20] using
H2O. Looking at the scenarios where training sparsity is equal to the test sparsity, our method is able to
achieve much lower word perplexities than the baselines. Notably, LESS beats Baseline by a wider margin
than Baseline+ and H2O+Performer, indicating that LESS uses the space of 4 extra tokens most effectively.

8

Table 2: Llama 2 7B WikiText and PG-19 word perplexities with H2O as the primary underlying sparse
policy. Numeric column names indicate the sparsity levels during test time. Lower is better.

H2O Method 2% H2O 5% H2O 10% H2O

WikiText
Full Cache 8.791 8.791 8.791
Baseline 13.333 9.863 9.295
Baseline+ 12.718 9.842 9.288
H2O+Performer 13.332 9.863 9.296
LESS (2%) 10.745 9.658 9.261
LESS (5%) 11.321 9.657 9.239
LESS (10%) 14.577 9.693 9.230

PG-19
Full Cache 23.787 23.787 23.787
Baseline 37.013 27.939 25.451
Baseline+ 35.832 27.829 25.429
H2O+Performer 36.996 27.938 25.451
LESS (2%) 32.157 27.887 26.322
LESS (5%) 33.195 27.089 25.979
LESS (10%) 41.204 27.201 25.134

Table 3: Llama 2 7B performance on WikiText (word perplexity), MuTual (16-shot R@1), and BoolQ
(10-shot accuracy) with 5% Λ-masking as the primary underlying sparse policy.

Λ Method WikiText (↓) MuTual BoolQ

Full Cache 8.79 55.08 80.40
Baseline 10.66 53.50 77.28
Baseline+ 10.64 53.27 77.46
LESS (5%) 10.12 54.51 78.65

The lackluster performance of H2O+Performer suggests that learned kernels are needed to make a noticeable
improvement. Moreover, LESS trained at one sparsity level can often generalize reasonably to higher sparsity
levels especially on WikiText, even sometimes matching the performance of ones trained at the test sparsity
level. The reverse is less effective but can still be better than the baselines. However, all methods are still
quite far from the full cache performance.

Evaluation results [CLC+19, CWL+20] with Λ-masking in Table 3 show LESS’s benefit to a different
sparse policy (though less performative than H2O). Similar to the case with H2O, LESS closes the gap from
full caching but cannot match the performance completely. While LESS is efficacious for language modeling
and classification, we also want to assess its utility for generation where the KV cache storage becomes a
critical bottleneck.

4.2 Summarization
Now, we move on to generation, specifically summarization, to test the ability to generate longer and coherent
sequences by synthesizing numerous tokens. Unlike in our language modeling evaluations, the model will
have access to all tokens during the prompting phase with the sparse policy and LESS only kicking in during
the subsequent generation steps. Consequently, generation sparse policies are fundamentally different from
the language modeling masks LESS is trained on, yet despite this, we show that our method maintains its
superior performance.

In Tables 4 and 5, we see LESS achieves better ROUGE [Lin04] scores than purely H2O on the CNN/DailyMail

9

Table 4: Llama 2 13B and Falcon 7B generation quality comparison on CNN/DailyMail and XSum with 408
sparse tokens (10% and 20% of the context lengths of Llama 2 and Falcon, respectively) with H2O as the
primary underlying sparse policy. Llama 2 13B is given 5 shots while Falcon 7B is given 3 shots due to its
shorter context length. Values are in the format [Rouge-1/2/L].

H2O Method CNN/DailyMail XSum

Llama 2 13B
Full Cache 27.55/9.96/25.80 33.14/13.05/27.33
Baseline 23.57/7.35/22.04 33.09/13.09/27.44
Baseline+ 23.40/7.31/21.88 33.09/13.06/27.41
LESS (2%) 25.27/7.76/23.64 33.40/12.98/27.41
LESS (5%) 24.45/7.70/22.87 33.15/13.02/27.39

Falcon 7B
Full Cache 25.92/8.52/24.15 27.17/8.83/22.67
Baseline 21.26/5.95/19.73 24.50/7.65/20.50
Baseline+ 21.31/6.16/19.75 24.55/7.66/20.56
LESS (5%) 23.00/6.28/21.28 24.94/8.17/20.94
LESS (10%) 23.22/6.37/21.53 25.21/8.28/21.17

[HKG+15, SLM17], MultiNews [FLS+19], and XSum [NCL18] datasets. Even at exceptionally low sparsity
levels, H2O can capture a significant amount of the full cache’s performance. This is even more surprising
for Falcon models which already cache many times fewer tokens than Llama 2 due to the multi-query atten-
tion mechanism. Despite this, we observe LESS surpasses the already strong performance of H2O across the
board where H2O underperforms compared to the full cache. Like in language modeling, we again see that
the improvement from Baseline to Baseline+ pales in comparison to the improvement induced by LESS,
sometimes even matching the full cache performance as in XSum. Again, we also see the transferability of
LESS to other sparsity levels. See Appendix B for example generation outputs.

4.3 Latency and Throughput
Following Sheng et al. [SZY+23], we benchmark the generation throughput and latency of LESS on an
NVIDIA A100 80G GPU using FP16 precision. We focus on the Llama 2 7B and 13B models, with all
speedup results tested end-to-end with both prompting and generation phases. To measure its performance
when generating long sequences or inputting large batch sizes, we use synthetic datasets where all prompts
are padded to the same length and batched together. The same number of tokens are generated for each
prompt. We test different combinations of prompt and generation lengths.

Table 6 shows results with sequence lengths from 4K to 10K. With the same batch size, LESS reduces
the latency by 1.1 − 1.3× compared to the full cache, though slightly slower than H2O. Moreover, LESS
saves memory to allow larger batch sizes with a 1.7× improvement on generation throughput for Llama 2
7B, closely matching the performance of H2O.

4.4 Empirical Analysis and Ablations
Now that we have shown that LESS is simple and effective, we share some interesting characteristics of our
method.

Reconstructing Attention Probabilities. Sparse KV cache policies can delete tokens that may be
needed later on. A way to see this is to construct the sparse attention matrix and compare with the full one.
In Figure 1, H2O zeroes out many relatively high attention probabilities with a bias towards keeping early
tokens. More examples are in Appendix A. Visually, LESS provides a sketch of the deleted tokens which
appears to reasonably reconstruct trends.

10

Table 5: Llama 2 7B performance on MultiNews (1-shot), CNN/DailyNews (5 shot), and XSum (5-shot)
with 5% and 10% H2O as the primary underlying test sparse policies. Values are in the format [Rouge-
1]/[Rouge-2]/[Rouge-L].

H2O Method 5% H2O 10% H2O

MultiNews
Full Cache 23.79/6.87/21.35 23.79/6.87/21.35
Baseline 13.38/3.25/12.25 19.44/4.97/17.73
Baseline+ 13.58/3.32/12.41 19.44/4.96/17.72
LESS (2%) 15.31/3.73/14.03 20.32/5.24/18.51
LESS (5%) 15.42/3.80/14.14 20.55/5.29/18.70

CNN/DailyMail
Full Cache 26.25/9.34/24.40 26.25/9.34/24.40
Baseline 18.18/4.92/16.89 20.04/6.09/18.66
Baseline+ 18.24/4.91/16.85 20.15/6.21/18.73
LESS (2%) 18.71/5.40/17.34 20.76/6.40/19.32
LESS (5%) 19.21/5.44/17.80 22.29/6.85/20.69

XSum
Full Cache 30.65/11.11/25.40 30.65/11.11/25.40
Baseline 29.03/10.77/24.28 30.68/11.54/25.58
Baseline+ 28.94/10.78/24.15 30.64/11.49/25.59
LESS (2%) 30.72/11.53/25.57 30.34/10.98/25.31
LESS (5%) 30.03/11.19/25.03 30.82/11.17/25.56

Table 6: Llama 2 7B and 13B’s generation throughput (tokens/s) and latency (s) on an A100 GPU. In the
sequence length column, we use "5000 + 5000" to denote a prompt length of 5000 and a generation length
of 5000. "OOM" stands for out-of-memory.

Seq. length Model size Batch size Metric Full Cache Baseline+ LESS (5%)

5000+5000 13B 4 latency 257.3 185.2 204.7
2048+2048 7B 24 latency 116.7 78.3 95.1

2048+2048 7B 24 throughput 421.2 627.7 516.9
2048+2048 7B 64 throughput OOM 819.2 699.2

Numerically, we measure the similarity of each row in the attention matrix with corresponding rows
produced by H2O and LESS with the Hellinger distance, which for two discrete probability vectors, p and q,
is defined as

H(p, q) := ∥√p−√q∥2/
√
2 (7)

where the square root is elementwise. The value of H(p, q) ranges from 0 to 1, where a lower value indicates
greater similarity. In Figure 6, we see that our method more accurately replicates the original attention
probability distributions as measured by the Hellinger distance. We choose to aggregate each layer separately
since the attention distribution patterns tend to vary dramatically throughout the model.

Larger Kernels. In our experiments, we fixed R = 8, and as we show in Figure 7, the performance
generally increases as R increases. However, at a certain point, the marginal benefit derived from increasing
R is less than shifting more of the KV cache to the sparse policy, suggesting that a small low-rank cache is
enough.

11

0 5 10 15 20 25 30
Layer

10−3

He
llin

ge
r D

ist
an

ce

2% Baseline+
LESS (2%)
5% Baseline+
LESS (5%)

Figure 6: Layer-wise Llama 2 7B mean Hellinger distance from original attention probabilities, aggregated
across WikiText evaluation samples. The underlying sparse policy is H2O. Here, LESS is evaluated based on
their training sparsity percentages.

3 4 5 6 7 8 9
log2 Kernel Size

9.5

10.0

10.5

11.0

11.5

12.0

12.5

PP
L

2% Baseline+
LESS (2%)
5% Baseline+
LESS (5%)

Figure 7: Llama 2 7B WikiText word perplexity (lower is better) as the kernel size quadruples, compared
against Baseline+ which occupies the same space. The sparse KV cache policy is H2O.

Providing Hope for Long Sequences. Model performance appears to be highly correlated with the
input sequence length regardless of the caching method. As shown in Figure 8, even the full cache model
performance drops dramatically and immediately as the prompt length increases. Baseline+ and LESS (1%
H2O) appear to perform similarly for shorter sequences but diverge for longer sequences where we see LESS
is more performative. This follows our intuition since for sparse cache policies, a smaller fraction of KV pairs
is saved as the sequence length increases, so more information is omitted. This is where a low-rank state can
help to recover some of this information.

5 Conclusion and Future Work
To tackle the KV cache bottleneck, we introduce LESS which has demonstrated itself to be an effective way to
boost eviction-based KV cache algorithms. Motivated by the necessity to maintain information that would
have been discarded, the constant-sized LESS recovers a significant portion of the performance lost due to
maintaining a small cache across a variety of scenarios and intensities, despite being cheap to train and
deploy. There are many exciting avenues of work that can enhance LESS or build upon it, such as improving
kernel design and investigating the residual of LESS. Such directions will further push the performance of a
condensed KV cache to that of a complete cache, allowing LLMs to accomplish the same tasks with less.

12

Figure 8: Relationship between Rouge-1 score and prompt length for Llama 2 7B with different cache
methods on CNN/DailyMail (left) and XSum (right). The test sparse KV cache policy is 5% H2O for all
models. As these results can be fairly noisy, the lines are k-nearest regression lines where k is 10% of the
dataset size.

Acknowledgements
The work of H. Dong is supported in part by the Liang Ji-Dian Graduate Fellowship, the Michel and Kathy
Doreau Graduate Fellowship in Electrical and Computer Engineering, and the Wei Shen and Xuehong Zhang
Presidential Fellowship at Carnegie Mellon University. The work of Y. Chi is supported in part by the grants
NSF DMS-2134080 and ONR N00014-19-1-2404.

References
[AAA+23] E. Almazrouei, H. Alobeidli, A. Alshamsi, A. Cappelli, R. Cojocaru, M. Debbah, E. Goffinet,

D. Heslow, J. Launay, Q. Malartic, B. Noune, B. Pannier, and G. Penedo. Falcon-40B: an open
large language model with state-of-the-art performance. 2023.

[ADF+23] R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa,
P. Bailey, Z. Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

[BBC15] BBC. Fracking still opposed in wales, ministers tell councils. The British Broadcasting Corpo-
ration, 2015.

[BFD+22] D. Bolya, C.-Y. Fu, X. Dai, P. Zhang, C. Feichtenhofer, and J. Hoffman. Token merging: Your
vit but faster. arXiv preprint arXiv:2210.09461, 2022.

[Bru15] B. Brumfield. Death toll rises quickly as conflict rages in yemen. The Cable News Network, 2015.

[CDW+21] B. Chen, T. Dao, E. Winsor, Z. Song, A. Rudra, and C. Ré. Scatterbrain: Unifying sparse and
low-rank attention. Advances in Neural Information Processing Systems, 34:17413–17426, 2021.

[CGRS19] R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long sequences with sparse trans-
formers. arXiv preprint arXiv:1904.10509, 2019.

[CLC+19] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. Boolq: Ex-
ploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044,
2019.

[CLD+20] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Davis, A. Mohiuddin, L. Kaiser, et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020.

13

[CLMW11] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of
the ACM (JACM), 58(3):1–37, 2011.

[CSPW11] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity incoherence for
matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.

[CTTS23] Y. Chen, Q. Tao, F. Tonin, and J. A. Suykens. Primal-attention: Self-attention through asym-
metric kernel svd in primal representation. arXiv preprint arXiv:2305.19798, 2023.

[CWL+20] L. Cui, Y. Wu, S. Liu, Y. Zhang, and M. Zhou. Mutual: A dataset for multi-turn dialogue
reasoning. arXiv preprint arXiv:2004.04494, 2020.

[DFS+22] T. Dao, D. Y. Fu, K. K. Saab, A. W. Thomas, A. Rudra, and C. Ré. Hungry hungry hippos:
Towards language modeling with state space models. arXiv preprint arXiv:2212.14052, 2022.

[FLS+19] A. R. Fabbri, I. Li, T. She, S. Li, and D. R. Radev. Multi-news: a large-scale multi-document
summarization dataset and abstractive hierarchical model, 2019.

[FZS22] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):5232–5270,
2022.

[GBB+20] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, et al. The pile: An 800gb dataset of diverse text for language modeling. arXiv
preprint arXiv:2101.00027, 2020.

[GD23] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

[GTA+23] L. Gao, J. Tow, B. Abbasi, S. Biderman, S. Black, A. DiPofi, C. Foster, L. Golding, J. Hsu,
A. Le Noac’h, H. Li, K. McDonell, N. Muennighoff, C. Ociepa, J. Phang, L. Reynolds,
H. Schoelkopf, A. Skowron, L. Sutawika, E. Tang, A. Thite, B. Wang, K. Wang, and A. Zou. A
framework for few-shot language model evaluation, 12 2023.

[GZL+23] S. Ge, Y. Zhang, L. Liu, M. Zhang, J. Han, and J. Gao. Model tells you what to discard:
Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

[HKG+15] K. M. Hermann, T. KociskÃœ, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blun-
som. Teaching machines to read and comprehend. In NIPS, pages 1693–1701, 2015.

[HWX+23] C. Han, Q. Wang, W. Xiong, Y. Chen, H. Ji, and S. Wang. Lm-infinite: Simple on-the-fly length
generalization for large language models. arXiv preprint arXiv:2308.16137, 2023.

[JSR+24] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S. Chaplot, D. de las
Casas, E. B. Hanna, F. Bressand, G. Lengyel, G. Bour, G. Lample, L. R. Lavaud, L. Saulnier,
M.-A. Lachaux, P. Stock, S. Subramanian, S. Yang, S. Antoniak, T. L. Scao, T. Gervet, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mixtral of experts, 2024.

[KB14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[KHQJ18] U. Khandelwal, H. He, P. Qi, and D. Jurafsky. Sharp nearby, fuzzy far away: How neural
language models use context. arXiv preprint arXiv:1805.04623, 2018.

[KNH+22] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah. Transformers in vision:
A survey. ACM computing surveys (CSUR), 54(10s):1–41, 2022.

[KPZ+21] J. Kasai, H. Peng, Y. Zhang, D. Yogatama, G. Ilharco, N. Pappas, Y. Mao, W. Chen, and N. A.
Smith. Finetuning pretrained transformers into rnns. arXiv preprint arXiv:2103.13076, 2021.

14

[KVPF20] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregres-
sive transformers with linear attention. In International conference on machine learning, pages
5156–5165. PMLR, 2020.

[LDL+23] Z. Liu, A. Desai, F. Liao, W. Wang, V. Xie, Z. Xu, A. Kyrillidis, and A. Shrivastava. Scis-
sorhands: Exploiting the persistence of importance hypothesis for llm kv cache compression at
test time. arXiv preprint arXiv:2305.17118, 2023.

[Lin04] C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics.

[LLD+23] Y. Liu, H. Li, K. Du, J. Yao, Y. Cheng, Y. Huang, S. Lu, M. Maire, H. Hoffmann, A. Holtz-
man, et al. Cachegen: Fast context loading for language model applications. arXiv preprint
arXiv:2310.07240, 2023.

[LWLQ22] T. Lin, Y. Wang, X. Liu, and X. Qiu. A survey of transformers. AI Open, 2022.

[LYZ+23] Y. Li, Y. Yu, Q. Zhang, C. Liang, P. He, W. Chen, and T. Zhao. Losparse: Structured com-
pression of large language models based on low-rank and sparse approximation. arXiv preprint
arXiv:2306.11222, 2023.

[MXBS16] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models, 2016.

[NBZ+23] S. Nerella, S. Bandyopadhyay, J. Zhang, M. Contreras, S. Siegel, A. Bumin, B. Silva,
J. Sena, B. Shickel, A. Bihorac, et al. Transformers in healthcare: A survey. arXiv preprint
arXiv:2307.00067, 2023.

[NCL18] S. Narayan, S. B. Cohen, and M. Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

[NTA24] M. Nikdan, S. Tabesh, and D. Alistarh. Rosa: Accurate parameter-efficient fine-tuning via robust
adaptation. arXiv preprint arXiv:2401.04679, 2024.

[Ope23] OpenAI. Gpt-4 technical report, 2023.

[PAA+23] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcadinho, H. Cao, X. Cheng, M. Chung,
M. Grella, K. K. GV, et al. Rwkv: Reinventing rnns for the transformer era. arXiv preprint
arXiv:2305.13048, 2023.

[PDC+23] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek, K. Xiao, S. Agrawal, and
J. Dean. Efficiently scaling transformer inference. Proceedings of Machine Learning and Systems,
5, 2023.

[PMN+23] M. Poli, S. Massaroli, E. Nguyen, D. Y. Fu, T. Dao, S. Baccus, Y. Bengio, S. Ermon, and
C. Ré. Hyena hierarchy: Towards larger convolutional language models. arXiv preprint
arXiv:2302.10866, 2023.

[PPY+21] H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. A. Smith, and L. Kong. Random feature
attention. arXiv preprint arXiv:2103.02143, 2021.

[PVU+18] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and D. Tran. Image trans-
former. In International conference on machine learning, pages 4055–4064. PMLR, 2018.

[RPH+22] C. Renggli, A. S. Pinto, N. Houlsby, B. Mustafa, J. Puigcerver, and C. Riquelme. Learning to
merge tokens in vision transformers. arXiv preprint arXiv:2202.12015, 2022.

[RPJ+19] J. W. Rae, A. Potapenko, S. M. Jayakumar, C. Hillier, and T. P. Lillicrap. Compressive trans-
formers for long-range sequence modelling. arXiv preprint, 2019.

15

[RR07] A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

[RSR+19] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv e-prints,
2019.

[SDH+23] Y. Sun, L. Dong, S. Huang, S. Ma, Y. Xia, J. Xue, J. Wang, and F. Wei. Retentive network: A
successor to transformer for large language models. arXiv preprint arXiv:2307.08621, 2023.

[SFA+22] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow, R. Castagné, A. S. Luccioni,
F. Yvon, M. Gallé, et al. Bloom: A 176b-parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100, 2022.

[Sha19] N. Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

[SLM17] A. See, P. J. Liu, and C. D. Manning. Get to the point: Summarization with pointer-generator
networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1073–1083, Vancouver, Canada, July 2017. Association
for Computational Linguistics.

[SZY+23] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, D. Y. Fu, Z. Xie, B. Chen, C. W. Barrett,
J. Gonzalez, P. Liang, C. Ré, I. Stoica, and C. Zhang. High-throughput generative inference
of large language models with a single gpu. In International Conference on Machine Learning,
2023.

[TAB+23] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M.
Dai, A. Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

[TBY+19] Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov. Transformer dissec-
tion: a unified understanding of transformer’s attention via the lens of kernel. arXiv preprint
arXiv:1908.11775, 2019.

[TDBM22] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient transformers: A survey, 2022.

[TMS+23] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[XTC+23] G. Xiao, Y. Tian, B. Chen, S. Han, and M. Lewis. Efficient streaming language models with
attention sinks. arXiv preprint arXiv:2309.17453, 2023.

[ZRG+22] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V.
Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang,
and L. Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

[ZSZ+23] Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian, C. Ré, C. Barrett,
et al. H _2 o: Heavy-hitter oracle for efficient generative inference of large language models.
arXiv preprint arXiv:2306.14048, 2023.

16

A Attention Matrix Visualizations
This section provides some qualitative results on attention matrix approximations by sparse policies and
LESS. While low-rank caches LESS cannot perfectly recover all the missing information, it visually is able to
reconstruct a patterns that are completely ignored by sparse policies. We can also see the idiosyncrasies of
the sparse policies and LESS, such as H2O’s bias towards keeping early tokens, as shown in Figures 9 and
10, and Λ-masking’s tendency to miss influential tokens which are captured by LESS, as show in Figure 11.

Figure 9: Example attention probability matrices from passing a single input into Falcon 7B. From top to
bottom, the rows consist of attention maps from the original model, 10% H2O (204 tokens), and LESS (10%
H2O). Darker pixels indicate larger probability weights. Only the first 1024 tokens are displayed.

Figure 10: Example attention probability matrices from passing a single input into Llama 2 7B. From top
to bottom, the rows consist of attention maps from the original model, 5% H2O (204 tokens), and LESS (5%
H2O). Darker pixels indicate larger probability weights. Only the first 1024 tokens are displayed.

17

Figure 11: Example attention probability matrices from passing a single input into Llama 2 7B. From top to
bottom, the rows consist of attention maps from the original model, 5% Λ-masking (204 tokens), and LESS
(5% Λ). Darker pixels indicate larger probability weights. Only the first 1024 tokens are displayed.

B Generation Outputs
We include a couple examples of generation outputs in Figure 12 and Figure 13. In both cases, the full
cache, LESS, and Baseline+ models attempt to summarize news articles. We see in Figure 12 that LESS is
able to produce the same concise summary as the full cache while Baseline+ produces rambling text. In
Figure 13, we observe that LESS completely changes the meaning of the summary from H2O alone–Baseline+
is factually incorrect based on the article.

18

Figure 12: Example 5-shot (not shown) CNN/DailyMail summary generation results produced by variations
of Llama 2 7B with an underlying sparse policy of 2% H2O. For brevity, only the start and end of the article
are shown with the middle omitted with an ellipsis. LESS produces the same concise summary as the full
cache while Baseline+ produces rambling text, exceeding the 3 sentence requirement by the prompt. The
original article is from [Bru15].

Figure 13: Example 3-shot (not shown) XSum summary generation results produced by variations of Falcon
7B. Models were evaluated with 20% H2O. The summary by Baseline+ is factually incorrect based on the
article, while LESS preserves the meaning better. The original article is from [BBC15].

19

	Introduction
	Background & Intuition
	KV Cache Policies
	Low-rank Attention
	Sparse and Low-rank Decomposition

	Method
	KV Caching with LESS
	Implementation Details

	Experiments
	Language Modeling & Classification
	Summarization
	Latency and Throughput
	Empirical Analysis and Ablations

	Conclusion and Future Work
	Attention Matrix Visualizations
	Generation Outputs

