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Recent successes in reinforcement learning (RL)

Google DeepMind's

AlphaFold 2

At last — a computer program that
can beat a champion Go player PAce4s4

ALL SYSTEMS GO ol

RL holds great promise in the next era of artificial intelligence.
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Recap: Supervised learning

Given i.i.d training data, the goal is to make prediction on unseen data:

— pic from internet
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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

e no training data

trial-and-error

e maximize total rewards

delayed reward

‘Recalculating ... recalculating ...”

6 /82



Sample efficiency
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e prohibitively large state & action space
e collecting data samples can be expensive or time-consuming
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Sample efficiency

DISCOVERY & CLINICAL TRIAL

PRE-CLINICAL

‘ 7]
N
o

{2
A3
(z

FDA
APPROVAL

PHASE | PHASE 2 PHASE 3

S 9

A
/
5

4 +
]

Source: chinsights.com B2 CBINSIGHTS

e prohibitively large state & action space
e collecting data samples can be expensive or time-consuming

Challenge: design sample-efficient RL algorithms J
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Computational efficiency

Running RL algorithms might take a long time ...

e enormous state-action space

e nonconvexity
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Computational efficiency

Running RL algorithms might take a long time ...

e enormous state-action space

e nonconvexity

Challenge: design computationally efficient RL algorithms J

8/82



Theoretical foundation of RL

asymptotic
analys/



Sttt i
19V 1, o 2, 278-254

The Contributions of Herbert Robbins to

Mathematical Statistics

Tze Leung Lai and David Siegmund

2. STOCHASTIC APPROXIMATION AND
ADAPTIVE DESIGN

In 1951, Robbins and his student, Sutton Monro,
founded the subject of stochastic approximation with
the publication of their celek d paper [26]. Con-
sider the problem of finding the root 6 (assumed
unique) of an equation g(x) = 0. In the classical

4. SEQUENTIAL EXPERIMENTATION AND
OPTIMAL STOPPING

The well known “multiarmed bandit problem” in
the statistics and engineering literature, which is pro-
totypical of a wide variety of adaptive control and
design probl was first lated and studied by
Robbins [28]. Let A, B denote two statistical popula-
tions with finite means p4, up. How should we draw a

Herbert Robbins David Blackwell

David Blackwell, 1919-2010: An explorer in
mathematics and statistics

Peter J. Bickel*'

Blackwell channel. He also began to work in dynamic
programming, which is now called reinforcement
learning.|In a series of papers, Blackwell gave a rig-
orous foundation to the theory of dynamic program-
ming, introducing what have become known as
Blackwell optimal policies.
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Theoretical foundation of RL

o~ (B inite-
;\3.‘526 finite sample
analysis «

asymptotic ,\
analysy

Understanding sample efficiency of RL requires a modern suite of
non-asymptotic analysis tools
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION High-Dimensional
Probability

Amir Beck

B

(large-scale) optimization (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION

Amir Beck

(large-scale) optimization (high-dimensional) statistics
Demystify sample- and computational efficiency of RL algorithms

Part 1. basics, model-based and model-free RL
Part 2. online/offline RL, reward-free RL, hybrid RL
Part 3. federated RL, robust RL, policy optimization

11/82



Outline (Part 1)

Basics: Markov decision processes
Basic dynamic programming algorithms
Model-based RL (“plug-in" approach)

Value-based RL (a model-free approach)
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Basics: Markov decision processes



Markov decision process (MDP)

state s; action a;
agent ——1

environment [« — -

VY

y W N

e S: state space

e A: action space

14 /82



Markov decision process (MDP)

state s; action a;
agent ——1

reward |
i 7y =1(5¢, I

A A 4

environment [« — —J

y W N

e S: state space
e A: action space

e r(s,a) € [0,1]: immediate reward

14 /82



Infinite-horizon Markov decision process

tat action
state s a; ~ 7(-|sy)

J agent — =

reward I

i 7y = T(St, ay |

environment ¢ — —J

y W N

S: state space
A: action space
r(s,a) € [0,1]: immediate reward

m(-|s): policy (or action selection rule)
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Infinite-horizon Markov decision process

tat action
state s a; ~ 7(-|sy)

J agent — =

reward I

i 7y = T(St, ay |

environment ¢ — —J

y W N

next state
sty1 ~ P(|se, ar)

S: state space

A: action space

r(s,a) € [0,1]: immediate reward
m(-|s): policy (or action selection rule)

P(+|s,a): unknown transition probabilities

15/82



Help the mouse!
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Help the mouse!

e state space S: positions in the maze
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Help the mouse!

e state space S: positions in the maze

e action space A: up, down, left, right
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Help the mouse!

e state space S: positions in the maze
e action space A: up, down, left, right

e immediate reward r: cheese, electricity shocks, cats
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Help the mouse!

state space S: positions in the maze
action space A: up, down, left, right
immediate reward 7: cheese, electricity shocks, cats

policy m(-|s): the way to find cheese

16

82



Value function

T4

stf1 ~ P([st, ar)

Value of policy 7: cumulative discounted reward

VseS: VT(s):=E Z’ytr(st,at) |so=s
=0

S|
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Value function

state s actiore | )
ar ~ m(-|s¢
_______ 5| agent —_ -I To ™1 T2 3 T4
reward S I S I S: I S; I S l
= | 4 1 27 3 14—
re =1(st, at T ' 0 ¥ : ] : ]
4 N '~ —— e’ g e’ N’
~ """\ environment — ag ai as as as
Al

stf1 ~ P([st, ar)

Value of policy 7: cumulative discounted reward

VseS: VT(s):=E Z’ytr(st,at) |so=s
=0

e v €10,1): discount factor

> take v — 1 to approximate long-horizon MDPs

» effective horizon: ﬁ

17 /82



Q-function (action-value function)

T T T2 T3 T4 Ts

QW(So,ao) ’—‘I—vsl—‘l—>52—‘|—>33—‘|—>34—‘|—>s5—‘|—> oo
\__/ L/ L/ A L A/

-~ S S — <!

ag a1 ay a3 ay ds

Q-function of policy 7:

V(s,a) e SxA: Q7 (s,a) :=E nyt'r’t|so =s,a0=a
=0

e (ae7 S1,a1,S2,az,---): induced by policy ™
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Q-function (action-value function)

To 1 T2 T3 T4 Ts
VW(SO) . » 31_\|_'32 0 '53_‘L’54_‘L’35—‘|—0 oo
wooa @& a w
To T T2 T3 T4 s
QW(So,ao) ’—‘I—vsl—‘l—vsz—,(l—>33—‘|—>34—‘|—>s5—‘|—> oo
[ A '\\_/‘ L [ A
ao ay ay as ay as
Q-function of policy 7:
o
V(s,a) e SxA: Q7 (s,a) :=E E Vre|so = s,a0 = a
t=0

e (ae7 S1,a1,S2,az,---): induced by policy ™

18/82



Finite-horizon MDPs

action

reward
rn = 1(Sh, an) I

| environment [« — -

<
next state
Sha1 ~ Pu(-|sn, an)

H': horizon length

S: state space with size S e A: action space with size A
rh(Sh,ap) € 0,1]: immediate reward in step h

™= {wh}thlz policy (or action selection rule)

Py(-]s,a): transition probabilities in step h

19/82



Finite-horizon MDPs

action

reward
rh =7(Sh, an I

| environment |« — -

<
next state
Sha1 ~ Pu(-|sn, an)

M=

value function: V" (s) :=E l ru(sn,an) | sn = S‘|

t

h

Q-function: Q}(s,a) =E

I
I

Il
>

rh(sh,an) [ sn = s, a5 = 0/]
t

19/82



Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™
Proposition (Puterman’94)

For infinite horizon discounted MDP, there always exists a deterministic
policy ©*, such that

V™ (s) > V™(s), Vs, and .

20/82



Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™

e optimal value / Q function: V* := V7™, Q* := Q™

20/82



Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™
e optimal value / Q function: V* := V7™, Q* := Q™

e How to find this 7#*7?

20/82



Basic dynamic programming algorithms
when MDP specification is known



Policy evaluation: Given MDP M = (S, A, r, P,v) and policy
m:S+— A, how good is 77 (i.e., how to compute V7™ (s), Vs7)



Policy evaluation: Given MDP M = (S, A, r, P,v) and policy
m:S+— A, how good is 77 (i.e., how to compute V7™ (s), Vs7)

Possible scheme:
e execute policy evaluation for each

e find the optimal one



Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

23 /82



Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(s) = Eqmr(s) [Q’r(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

Richard Bellman
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Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(s) = Eqmr(s) [Q’r(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

e one-step look-ahead

Richard Bellman
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Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(s) = Eqmr(s) [Q’r(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

e one-step look-ahead

e let P™ be the state-action transition matrix
induced by m:

QT =r+yP"Q" — Q"=IT-~+P")r
Richard Bellman

23 /82



Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a):= r(s,a) +~v E |maxQ(s,a)
s'~P(:|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead

24 /82



Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a):= r(s,a) +~v E |maxQ(s,a)
s'~P(:|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to
TQ)=Q"
~v-contraction of Bellman operator:

[7(Q1) — T(Q2)lloo < V/IQ1 — Q200 Richard Bellman

24 /82



Two dynamic programming algorithms

Q(O)
Value iteration (VI) T
(1)
Fort=0,1,..., ¢
-
Q(t-‘rl) _ T(Q(t)) Qw .
Qd

Policy iteration (PI)
Fort=0,1,...,

policy evaluation: Q) = Q™"

policy improvement: 711 (s) = argmax QY (s,a)
ac

V.

25 /82



Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I

26 /82



Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1R - @[l <+ - |,

Implications: to achieve |Q() — Q*| . < ¢, it takes no more than

©) _ o*
. log <”QQH°O> iterations
1—7x €
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I

Implications: to achieve |Q() — Q*| . < ¢, it takes no more than

1 ©) _ o*
—log <”QQH°O> iterations
1—7x €

Linear convergence at a dimension-free rate! |

26 /82



When the model is unknown .

L eene

Reinforcement |\ — Dynamic Programming
Learning and Optimal Control

DIMITRI P. BERTSEKAS

An Introduction §
second edition /

Richard . Suton and Ancrew G, Barto / /77 |
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When the model is unknown

L o

Reinforcement |\
Learning

A Introduction §ng
second edition /

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

Richard S, Sutton and Andrew G, Barto |

Need to learn optimal policy from samples w/o model specification

27/82



Three approaches

o model | P,
950 | e, P e RIS ] Zag,
& \f”\?
/ wodel-based \
samples value function
(experience) policy
S b4
~~~~~~~ wmodel-free .-~

Model-based approach (“plug-in”)
1. build an empirical estimate Pfor P

2. planning based on the empirical P

28 /82



Three approaches

‘("vo"' ____ > model P,

,;Wf' (ie. P RISIMIXISH 7o %“9
wodel-based B
samples value function
(experience) policy
<. X
“e__wmodel-free .-

Model-based approach (“plug-in”)
1. build an empirical estimate Pfor P

2. planning based on the empirical P

Value-based approach
— learning w/o estimating the model explicitly

Policy-based approach
— optimization in the space of policies
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Three approaches

Wy model P4,

X . ishf ===~ .
&,M;{t (ie. P € RISIIMIxIS) %“a
/ wodel-based \
samples value function
(experience) policy
S b4
~~~~~~~ wodel-free .-~

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

Value-based approach
— learning w/o estimating the model explicitly

Policy-based approach
— optimization in the space of policies

28 /82



Model-based RL (a “plug-in” approach)



A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s,a, S,(i))}lﬁiSN

30/82



A generative model / simulator

— Kearns and Singh, 1999

gewerative model

e sampling: for each (s,a), collect N samples {(s,a, S,(i))}lﬁiSN

e construct 7 based on samples (in total |S||A| x N)

30/82



(+-sample complexity: how many samples are required to

learn an e-optimal policy 7

-~

Vs: V(s)>V*(s)—¢



An incomplete list of works

Kearns and Singh, 1999
Kakade, 2003

Kearns et al., 2002

Azar et al., 2012

Azar et al., 2013

Sidford et al., 2018a, 2018b
Wang, 2019

Agarwal et al., 2019
Wainwright, 2019a, 2019b
Pananjady and Wainwright, 2019
Yang and Wang, 2019
Khamaru et al., 2020

Mou et al., 2020

Cui and Yang, 2021

32/82



An even shorter list

of prior art

algorithm sample size range | sample complexity e-range
g
Empirical QVI [‘3\2\,4\ o0) |S||A] (, 1 ]
Azar et al., 2013 (1-y)2’ (1—v)3e? V(A=7)[S|
Sublinear randomized VI |S||A] |S||A] 1
Sidford et al., 2018b (=) (1-—7)te? (0 =]
Variance-reduced QVI |S||A] |S|A]|
Sidford et al., 2018a (=) (1-7)%2 (0.1]
Randomized primal-dual |S||A] |S|Al 1
Wang 2019 [ ) (-t (0. 1=
Empirical MDP + planning |S||A] |S||A| 0 1L
Agarwal et al., 2019 [(17",)2’00) (1—v)3e? ©, 1*”,]

important parameters

—

o # states |S|, # actions |A|

e the discounted complexity %ﬁ

e approximation error ¢ € (0, 1]

33/82



Model estimation

Sampling: for each (s, a), collect
N ind. samples {(s,a, S/(i))}lgiSN

generative model

34 /82



Model estimation

Sampling: for each (s, a) collect
N ind. samples {(s, a, s )}1<Z<N

Empirical estimates

/
generative wmodel (s'ls, a) E : 1 {5

empirical frequency

34 /82



Empirical MDP + planning

— Azar et al., 2013, Agarwal et al., 2019

[ empirical MDP \

H EB
| [ |
| - H =
planning =%
= .. = oracle
| | _ .
| | | B e.g. dynamic programming
H_ B R
| |
r

empirical p

Find policy based on the empirical MDP (empirical maximizer)
N—_———— ——_— —

using, e.g., policy iteration (ﬁ’r)

35/82



Challenges in the sample-starved regime

| H B
[
| =
|
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|A|!
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Challenges in the sample-starved regime

| H B
[
| =
[
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|A|!

e Can we trust our policy estimate when reliable model estimation is
infeasible?

36/82



(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1
V31—’

Forany 0 < e < the optimal policy T of empirical MDP achieves
IV =V <e

with high prob., with sample complexity at most

o (w==)

37/82



(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1
V31—’

Forany 0 < e < the optimal policy ™™ of empirical MDP achieves
IV = VYoo <&

with high prob., with sample complexity at most

5 (_ISILAl
o) Ll
((1 —7)%€?
o . O ISIA] 1
e matches minimax lower bound: Q((lf,y)gg) when ¢ < i

(equivalently, when sample size exceeds ('f_”;‘;L) Azar et al., 2013

37/82



(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1

Forany 0 < e < T

the optimal policy ™™ of empirical MDP achieves
V™ = VYo <€

with high prob., with sample complexity at most

5 (_ISIIA]
o =2
<(1 —7)%?
- S _ISIIA ,
e matches minimax lower bound: Q((lu)g%;?Awhen e < \/llfv

(equivalently, when sample size exceeds (1_7)2) Azar et al., 2013

e established upon leave-one-out analysis framework



sample
complexity

ISII-A]
(T=7)3

1s)14] |

(L—=9)?

‘K:%'
«be’ ) .
© — Sidford et al."18a

Agarwal et al.'19

S, BN ‘\/ g2
7
z\ >
N
> S

38/82



sample
complexity

S b

|SIA|
1-v [ 1 1 >
@\\ , é‘\\ @\\\/ 5-2
z\ N
S %
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sample
complexity

‘7}' /
@
*b—Sidford et al."18a

-
----- d
Z Agarwal et al. 19 o
arwal et a ot
¢ o
f , o
\(‘\«\
I 1 1 > —
@\\ é‘\\ @\\\/ 5-2
% ’
ke
5 O
>
. . . . S||A
Agarwal et al., 2019 still requires a burn-in sample size > &Jw‘g
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sample

complexity
]
-~
‘K:%'
5114 i
(1—7)3 = © — Sidford et al. "18a
N

o &
\)(\
% A/gamal y o
? +
\(‘\«\’b

isial |- @
1-7 L 1 1 >
@\\ é‘\\ @\\\/ 5-2
% ’
5 S
>
Agarwal et al., 2019 still requires a burn-in sample size > (@‘,“3‘2

Question: is it possible to break this sample size barrier?

)

38/82



Perturbed model-based approach (Li et al. ’20)

[ empirical MDP

|
 INEEEEEE

empirical p

perturb
rewards

—

|

—Li et al.,, 2020

planning ?r\;
oracle

\Qj_e:ynamic programming

)
3

empirical

Find policy based on the empirical MDP with slightly perturbed rewards

39/82



Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

Forany 0 <e < ﬁ the optimal policy 7, of perturbed empirical MDP
achieves

IV = V¥ <€

with high prob., with sample complexity at most

i)

40 /82



Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Chen '20)

Forany 0 < e < ﬁ the optimal policy 7, of perturbed empirical MDP
achieves

IV = V¥ <€

with high prob., with sample complexity at most

~ S
5 (_ISIIA
(1 — )3
¢ matches minimax lower bound: ﬁ((l“_gg;é;) Azar et al., 2013
e full e-range: € € (0, ﬁ] — no burn-in cost

e established upon more refined leave-one-out analysis and a
perturbation argument

40 /82
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complexity
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Y%
N\ s
2 7
|SIIA] S b
(1—7)3 g@* — Sidford et al."18a
= R
SIAL | , o
3 garwal et al. o
(I=2) Q o
:’L ‘ 6(5"
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A sketch of the main proof ingredients

®©
(S



Notation and Bellman equation

Bellman equation: V™ =r, +~yP, V"™

e V7™ value function under policy 7
» Bellman equation: V™ = (I —yP;) 1r,

e V™ empirical version value function under policy 7

~

> Bellman equation: V7™ = (I —~P:) try

43 /82



Notation and Bellman equation

Bellman equation: V™ =r, +~yP, V"™

V™. value function under policy 7
» Bellman equation: V™ = (I —vP;) " r,

V™. empirical version value function under policy 7

~

> Bellman equation: V7™ = (I —~P:) try

m*: optimal policy for V™

7*: optimal policy for VT

43 /82



Main steps

Elementary decomposition:

| VA (V* _ ‘771'*) + (‘777* _ ‘7%*) + ("}%* _ Vﬁ*)
<S(VT VT 404+ (VE -V

44 /82



Main steps

Elementary decomposition:

VA VT = (V- VT 4 (VT V) 4 (VT VT
<V V™) 40+ (VF —VT)

e Step 1: control V™ — V™ for a fixed (called “policy evaluation™)
(Bernstein inequality + a peeling argument)
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Main steps

Elementary decomposition:

VA VT = (V- VT 4 (VT V) 4 (VT VT
<S(VT VT 404+ (VE -V

e Step 1: control V™ — V™ for a fixed (called “policy evaluation™)
(Bernstein inequality + a peeling argument)

e Step 2: extend it to control VA v (7* depends on samples)
(decouple statistical dependency)

44 /82



Key idea 1: a peeling argument (for fixed policy)

First-order expansion

VYT = (I - fyPW)*1 (ﬁw - PW)‘A/7r [Agarwal et al., 2019]
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Key idea 1: a peeling argument (for fixed policy)

First-order expansion

VYT = (I - fyP,r)f1 (ﬁr - PW)‘A/7r [Agarwal et al., 2019]

Ours: higher-order expansion + Bernstein — tighter control

VT — VT =y (I —yPs) " (P — Pr)V™+
+y(I=vPs) " (Pr = P) (VT = V7)

L. . 35 VT V7Tl
Bernstein's inequality: |(Pr — Pr) V™| < 4/ Va;{, . N”

45 /82



Key idea 1: a peeling argument (for fixed policy)

First-order expansion

VT — V™ =y(I —4P;) ' (Pr — P)V™  [Agarwal et al., 2019]

Ours: higher-order expansion 4+ Bernstein — tighter control
VT V™ =(I —yPy) Py — Pr) V™ +
+92 (1= Pe) ™ (Pr - 1D7r)>2v7r
+ 92 (1= Pr) " (Pr - Pﬂ))sw
+..

ey . . s T Var[V™ V7 loo
Bernstein's inequality: ’(Pw — PW)V | < W_,_ Il NII

45 /82



Byproduct: policy evaluation

Theorem (Li, Wei, Chi, Gu, Chen’20)

Fix any policy . For every 0 < & < 1%7 plug-in estimator yr obeys
V™ = V7leo < €

with sample complexity at most

().

46
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Byproduct: policy evaluation

Theorem (Li, Wei, Chi, Gu, Chen’20)

Fix any policy . For every 0 < & < 1%7 plug-in estimator yr obeys
V™ = V7leo < €

with sample complexity at most

().

e minimax lower bound [Azar et al., 2013, Pananjady and Wainwright, 2019]
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Byproduct: policy evaluation

Theorem (Li, Wei, Chi, Gu, Chen'20)

Fix any policy w. For every 0 <& < 1, plug-/n estimator V™ obeys
V™ = V7leo < €
with sample complexity at most
5( S| )
(1—v)3/"

e minimax lower bound [Azar et al., 2013, Pananjady and Wainwright, 2019]

. . . . ) S
e tackle sample size barrier: prior work requires sample size > ﬁ
[Agarwal et al., 2013, Pananjady and Wainwright, 2019, Khamaru et al,, 2020]

46 /82



Step 2: controlling Ve v

A natural idea: apply our policy evaluation theory 4+ union bound
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A natural idea: apply our policy evaluation theory 4+ union bound

e highly suboptimal!
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Step 2: controlling Ve v

A natural idea: apply our policy evaluation theory 4+ union bound

e highly suboptimal!

key idea 2: a leave-one-out argument to decouple stat. dependency btw
7 and samples

— inspired by [Agarwal et al., 2019] but quite different ...
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Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

r ------- ——— L ~

— ! 0 N n | §

decouple - i “= ------ ..“ B ='

dependency [ ] ]

HE B HE B

H BB H EH R

H B [ | H B [ |

| | |

H BB H B R

EE B EE B

empirical P r leave-one-out P(5:@) (=)

o define 7* empirical maximizer) (ﬁ(sva) ’I’(s’a))
(s,a) ’
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Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

It
— ! 0 N u |
q -ElEEE | | | i
ecouple H B [ H B

dependency - . - -

HE B HE B

H B R H BB

[ [ | H B [ |
H B H B

H B R H BB

Em B Em BN
empirical P r leave-one-out P(5:@) p(s)

. ~ empirical maximizer =
e define ﬂ(*s o) s (Pls:a) p(s:0)

» decouple dependency by dropping randomness in 13( | s,a)

» scalar (%) ensures Q* and V* unchanged
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Key idea 2: decouple dependency for vy

— inspired by [Agarwal et al., 2019] but quite different . ..

(
— ! 0 N u |
q -ElElE- | - |
ecouple H B [ H B
dependency [ ] | ]
HE B HE B
H EHR H EHBR
H B | Hn |
H B |
H EHR H EHR
EE B EE B
empirical P r leave-one-out P(5:@) p(s)
o define 7* empirical maX|m|zer> (ﬁ(&a) T(S’a))
(s,a) )

o %(*S Q) = 7* can be determined under separation condition

VseS, Q(s,7*(s)) — H;@\i(( )@*(s,a) >0

48 /82



Key idea 3: tie-breaking via perturbation

e How to ensure the optimal policy stand out from other policies?

VseS, Q(s,7(s)) — max )@*(s,a) > w
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Key idea 3: tie-breaking via perturbation

e How to ensure the optimal policy stand out from other policies?

VseS, Q(s,7(s)) — max )@*(s,a) > w

*

e Solution: slightly perturb rewards r — %p

> ensures the uniqueness of 7}

~ p y <
> Vw; s V%* : |
\v \:1 )
VR g7
1 1 l
o~ j o
A~ | 7
2 3
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Summary of model-based RL

sample
complexity

Y
(1=7)3-
|S|IA] |2
(1-7)?
S]|A]
1 1 ] > 1
é‘\\ @\\ ‘0\\/ 62
4
NS N

Model-based RL is minimax optimal & does not suffer from a
sample size barrier!
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Model-free / value-based RL

1. Basics of Q-learning
2. Synchronous Q-learning and variance reduction (simulator)

3. Asynchronous Q-learning (Markovian data)



Model-based vs. model-free RL

o model A
w"@ﬁ “““ "lie. PeRISIxIsH T S,
& // \\“3
/ model-based :
samples value function
(experience) policy
N

Model-based approach (“plug-in")
1. build empirical estimate P for P

2. planning based on empirical P

Model-free / value-based approach
— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...

5282



finite-time &
\ finite-sample analysis

asymptotic
analysis

1989 1992 1994 2018

Focus of this part: classical Q-learning algorithm and its variants



A starting point: Bellman optimality principle

Bellman operator

T(Q)(s,a) = 7r(s,a) +v E max Q(s',a’)
s'~P(|s,a) La’€A
immediate reward
next state's value

e one-step look-ahead
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A starting point: Bellman optimality principle

Bellman operator

T(@Q)(s,a) == 7r(s,a) +v E  |maxQ(s',d)
s'~P(-|s,a) La’€A
immediate reward
next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to

T(Q*) — Q*
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A starting point: Bellman optimality principle

Bellman operator

T@Q)(s,a) == r(s,a) +v E  |maxQ(s,a)
s'~P(:|s,a) a’€A
immediate reward
next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to

| N

e takeaway message: it suffices to solve the \\jﬁ

Bellman equation

¢ challenge: how to solve it using stochastic Richard Bellman

samples?
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Three approaches

o model | P,
950 | e, P e RIS ] g,
& e
/ wodel-based \
samples value function
(experience) policy
R g
“ee_model-free .-

Model-based approach (“plug-in”)
e build an empirical estimate P for P

e planning based on the empirical P

Value-based approach
— learning w/o estimating the model explicitly

Policy-based approach
— optimization in the space of policies

55 /82



Value-based RL (a model-free approach)



Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins &MOnro, 1951
TQ) -Q=0
where

TQs.a)= r(sa) +7 E [maxQ(s,a)].
—— s'~P(|s,a) a’'eA
immediate reward —

next state's value
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Q-learning: a stochastic approximation algorithm

, 7

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qur1(s,a) = Qu(s,a) + "775(7;(@25)(87 a) — Q(s, a))v t=>0

/

Vv
sample transition (s,a,s’)

58 /82



Q-learning: a stochastic approximation algorithm

/

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qur1(s,a) = Qu(s,a) + "775(7;(@25)(87 a) — Q(s, a))v t=>0

/

Vv
sample transition (s,a,s’)

Ti(Q)(s,a) = r(s,a) + ymax Q(s', a’)

TQa) =rsaty B [mexQe,d)]

58 /82



A generative model / simulator

— Kearns, Singh '99

generative model

Each iteration, draw an independent sample (s, a, s’) for given (s, a)
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Synchronous Q-learning

Y

Chris Watkins Peter Dayan

fort=0,1,...,7T
for each (s,a) € S x A

draw a sample (s, a,s’), run

Qi+1(s,a) = (1 —n)Qu(s,a) + nt{r(s, a) + fyn}l;}x Qt(s’,a/)}

synchronous: all state-action pairs are updated simultaneously J

e total sample size: T|S||A]
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21)

For any 0 < e <1, synchronous Q-learning yields H@ — Qoo < € with
high prob. and E[||Q — Q*||«] < €, with sample size at most

O(addl;) iflA > 2

9] % if|Al =1 (TD learning)
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21)

Forany 0 <e <1, synchronous Q-learning yields HQ Q" |0 < € with
lloo] < &, with sample size at most

high prob. and E[

O(addl;) iflA > 2

0 % if|Al =1 (TD learning)

e Covers both constant and rescaled linear learning rates:

1 1
NT or 7y =

c1(1—
1+ log? T log? T

Nt =

1+ ca(1—7)t
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21)

Forany 0 <e <1, synchronous Q-learning yields HQ Q" |0 < € with
high prob. and E[ lloo] < &, with sample size at most

O(qlkly) iflal>2 (7
9 (1,5)'352 if|Al =1 (minimax optimal)

sample complexity

other papers

Even-Dar & Mansour'03 2ﬁ (l‘f"y‘)ﬂLZ
Beck & Srikant'12 %
Wainwright '19 (Jfl))éLZ
Chen, Maguluri, Shakkottai, Shanmugam '20 (llfL‘)'gL2
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All this requires sample size at least ( ‘A‘ s (1A >2) ...

Ng2S
\?~ 5O
4 %
sample r {

complexity

(log scale) S

(log scale)




All this requires sample size at least ;=515 SUAL HA‘ s (1A >2) ...

®e
3 SR
sample (s

Q

complexity

(log scale)

(log scale)

Question: /s Q-learning sub-optimal, or is it an analysis artifact?



. S
A numerical example: (1‘—2% samples seem necessary ...

— observed in Wainwright '19

eIl
O

=
>

=)
cl

—
1—

=)
>

sample size per state-action: N

10°
4’)/ - 1 ——— Q-learning
p — 73/-}/ , ———— Theory: N =< “717)4
10
10 15 20 25 30 35 40
i . L
7’(0, 1) =0, 'r(]_7 ]_) = 7'(17 2) =1 discount complexity: 1=

63 /82



Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with | A| > 2 such that to
achieve ||Q — Q*|loc < €, synchronous Q-learning needs at least

(A

m) samp/es
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with | A| > 2 such that to
achieve ||Q — Q*|loc < €, synchronous Q-learning needs at least

Q (%) samples

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi, 2021)

For any 0 < & < 1, there exists an MDP with | A| > 2 such that to
achieve ||Q — Q*|loc < €, synchronous Q-learning needs at least

Q ((1‘&—’44'52> samples

N
sample T \5\/ A
. N
complexity
-
(log scale) &
6\0
& \5\\{:\\.\5’

i

e e

1
> (log scale)
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Improving sample complexity via variance reduction

— a powerful idea from finite-sum stochastic optimization



Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qi(s,0) = (1 =n)Qe-1(s5,) +1(Te(Qi-1) =T(@) + T(@) )(s.0)
—_—

use Q to help reduce variability

66 /82



Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qi(s,0) = (1 =n)Qe-1(s5,) +1(Te(Qi-1) =T(@) + T(@) )(s.0)
—_—

use Q to help reduce variability

e (Q: some reference Q-estimate

o T empirical Bellman operator (using a batch of samples)

T(Q)(5,0) = 7(s,a) +ymax Q(s', ')
TQ)(s,a0) =r(s,a)+y  E  [maxQ(s',a)]

s'~P(:|s,a) @
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An epoch-based stochastic algorithm

— inspired by Johnson & Zhang '13

update variance-reduced

Q@-learning
)‘)-)-)‘
epoch 1 epoch 2 epoch 3

for each epoch
1. update @ and T (Q) (which stay fixed in the rest of the epoch)

2. run variance-reduced Q-learning updates iteratively
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Sample complexity of variance-reduced Q-learning

Theorem (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||Q — Q*||c < € is at most

)

e allows for more aggressive learning rates
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Sample complexity of variance-reduced Q-learning

Theorem (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||Q — Q*||c < € is at most

)

e allows for more aggressive learning rates

e minimax-optimal for 0 < e <1

» remains suboptimal if 1 < e < ﬁ

68 /82



Markovian samples and behavior policy

observed: (S0 ——>81——82 83 ———(S4——>85
4D N D Dy 4 5
‘\_a' ‘\_,’ ‘\_,’ ‘\_a' ‘\_a' ‘\_a

ao ay az asz ay as

X
’
’

m([s0) mo(-s1) T(-[s2) mo(|s3) mb(-|sa) mH(-[s5)

Observed: {s;,a;,r:}+>0 induced by behavior policy 7,
—_———

Markovian trajectory
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Markovian samples and behavior policy

observed: (8o ——>$1——82 83 ——>(S4——S5
7 I 7
/ /

h T
/s A/ \

o ar as as Gy G5

) t T T
m([s0) mo(-s1) T(-[s2) mo(|s3) mb(-|sa) mH(-[s5)

learn:  so——>s1—— 82—~ 53—~ 54— 55 —
A A L (A

ap ay az ag ay as

T t T T T

(o) 7 ([s1) 7 ([s2) 7 (|ss) 7 (|sa) 7*(Is5)

Observed: {s;,a;,r:}+>0 induced by behavior policy 7,
|
Markovian trajectory

Goal: learn optimal value V* and Q* based on sample trajectory
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Markovian samples and behavior policy

observed: SO~y
v/ s v [ [ (-

N
az as ay as

m([s0) mo(-s1) T(-[s2) mo(|s3) mb(-|sa) mH(-[s5)

Y

learn:  (s9g——51 So—~—(83—~—80—— 65—
4. / db A
‘\_r' ‘\_a ‘s_a’ ‘\_a’ ‘\_a’ ‘\_a'

ag ay az as % as

T T t T T T

(o) 7 ([s1) 7 ([s2) 7 (|ss) 7 (|sa) 7*(Is5)

S

Key quantities of sample trajectory
e minimum state-action occupancy probability

Hmin = min  pr (s, a)
———

N mixing time: tos stationary distribution
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Model-based vs. model-free RL

o model A
’aw’*’ff ””” ] (ie. P RISIAXISH 77 N
& ,/ \\
/ wodel-based \
samples value function
(experience) policy
~ -
\\\\\\\ wodel-free .-~

Model-free approach (e.g. Q-learning)
— learning w/o modeling & estimating environment explicitly
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation Q = 7(Q)

Robbins & Monro’51
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation @ = 7(Q)

Qt+1(8t, ar) = Qu(st, ar) + ne(Te(Qr) (81, ar) — Qe(st,ar)), >0

/

-~

only update (s¢,at)-th entry
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation @ = 7(Q)

Qiv1(5t, ar) = Qu(st, ar) + e (Te(Qr) (s, ar) — Qe(se,ae)), >0

/

-~

only update (s¢,at)-th entry

Te(Q)(st, ar) := (s, a¢) + 7y max Q(st+41,0a")
T(@Q)(s,a) =r(s,a) +~ E  [maxQ(s',a’)]

s'~P(|s,a) = @
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation @ = 7(Q)

Qi+1(5e,a¢) = Qu(se, ar) +me(Te(Qe) (8¢, a) — Qi(se,a¢)), >0

/

-~

only update (s¢,at)-th entry

— asynchronous: only a single entry is updated each iteration
(resembles Markov-chain coordinate descent)

observed: (So——*(S1——>82—~—>(83——> 84 ——>85 —;
" H v 7 1 1
4 4 4 4

/ H ! /
R Wt oo o - o’ 72/82



Q-learning on Markovian samples

Se|

observed: (so——>(51 Sy 83—~ 54 ——>85 —; <4 ’&
(\_," (~ - (x_/l t /’ L —’I (~ /’ S |\ '/—(82’112)

ag al asz as a4 as K
bo)

Q(s, a)

e asynchronous: only a single entry is updated each iteration
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Q-learning on Markovian samples

'/—;(ksmaz)

observed: so—<—(s1—~—S2——SB3—~—B1—~—85—~— S 4-}\
H ,I l’ ,I

‘\_f’l (\_f (\_f (\_ﬂll (\_ﬂ (\ f"
ao a1 az a3 ay as Yj

53, La)

~

Q(s, a)

e asynchronous: only a single entry is updated each iteration
» resembles Markov-chain coordinate descent

73/82



Q-learning on Markovian samples

'/_;(ksmaz)

observed: (so S1 S2 S3 S4 S5 <
9 ; ; ; v SN

Q(s, a)

e asynchronous: only a single entry is updated each iteration
» resembles Markov-chain coordinate descent

o off-policy: target policy 7* # behavior policy

73/82



What is sample complexity of (async) Q-learning?



A highly incomplete list of works

Watkins, Dayan '92

Tsitsiklis '94

Jaakkola, Jordan, Singh 94

Szepesvari '98

Borkar, Meyn '00

Even-Dar, Mansour '03

Beck, Srikant'12

Chi, Zhu, Bubeck, Jordan'18

Lee, He'18

Chen, Zhang, Doan, Maguluri, Clarke '19
Du, Lee, Mahajan, Wang '20

Chen, Maguluri, Shakkottai, Shanmugam '20
Qu, Wierman '20

Devraj, Meyn '20

Weng, Gupta, He, Ying, Srikant '20

Li, Wei, Chi, Gu, Chen'20

Li, Cai, Chen, Wei, Chi'21

Chen, Maguluri, Shakkottai, Shanmugam '21
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Prior art: async Q-learning

Question: how many samples are needed to ensure ||Q — Q*||

<e?

other papers

sample complexity

Even-Dar, Mansour'03

1
(tcover) 1=
(A-—y)1e?

Even-Dar, Mansour’'03

(

tl+3w

_1
@ co’\\//er4 2) + (tcover) 17“.;, wE (%71)

Beck & Srikant '12 M
(1-7)%e
Qu & Wierman '20 M%in(;m_ii/ —
i i i ' 1 m|><
Li, Wei, Chi, Gu, Chen '20 e e 7 + s

Chen, Maguluri, Shakkottai, Shanmugam '21

1

WA + other-term (¢mix)

. tmi
— cover time: tcover X —DX
Hmin

(S



Prior art: async Q-learning

Question: how many samples are needed to ensure [|Q — Q*[|oo < €7

sample
complexity

.
X
3

tmix

>|SIA|
= Hmin

if we take fimin < \S|1W' teover X
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Prior art: async Q-learning

Question: how many samples are needed to ensure [|Q — Q*||s < 7

sample
complexity

>|SIA|

. 1 ot
if we take fimin < TSITAT beover = 2

All prior results require sample size of at least tmix|S|?|.A|?!

)

76 /82




Main result: /. -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen’20)
Forany 0 <e < ;= 7 sample complexity of async Q-learning to yield
|Q — Q*||s < € is at most (up to some log factor)
1 Uitz
fmin(1 = 7)%€2  pimin(1 =)
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Main result: /. -based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen’20)
Forany 0 <e < ;= 7 sample complexity of async Q-learning to yield
|Q — Q*||s < € is at most (up to some log factor)
1 n Uitz
fmin(1 = 7)%€2  pimin(1 =)

tmix

— prior art: ——-mix
P ﬂa;n(177)5€2

e Improves upon prior art by at least |S||.A|!

(Qu & Wierman’20)
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Effect of mixing time on sample complexity

1 + trmix
'umin(1 - 7)552 :UJmin(1 - 7)

o reflects cost taken to reach steady state

e one-time expense (almost independent of ¢)

— it becomes amortized as algorithm runs

Markov Chains
and Mixing Times
Second Edition

David A Levin
Yuval Peres
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Effect of mixing time on sample complexity

Markov Chains
and Mixing Times

Second Edition

1 trmix o

n =
'umin(1 - 7)552 :UJmin(1 - 7)

o reflects cost taken to reach steady state

e one-time expense (almost independent of ¢)

— it becomes amortized as algorithm runs

— prior art: W [Qu & Wierman 20]

min
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Dependence on effective horizon

minimax lower bound
(Azar et al.'13)

1
Hmin (1 - 7)352

asyn Q-learning
(ignoring dependency on tmix)
1
fmin(1 — 7)€2
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Dependence on effective horizon

minimax lower bound asyn Q-learning
(Azar et al.'13) (ignoring dependency on tmix)
1 1
,umin(1 - '7)352 ,U/min(1 - 7)552
The dependency on ﬁ can be tightened by variance reduction. J

— inspired by [Johnson & Zhang, 2013], [Wainwright, 2019]

update variance-reduced

Q-learning
)-)-)-)-
epoch 1 epoch 2 epoch 3
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Sample complexity for variance-reduced Q-learning

Theorem (Li, Wei, Chi, Gu, Chen’20)

For any 0 < ¢ < 1, sample complexity for (async) variance-reduced
Q-learning to yield ||QQ — Q*||cc < € is at most on the order of

1 + tmix
,umin(]- - ’7)352 ,umin(1 - 7)

e more aggressive learning rates: 7, = min{

e minimax-optimal for 0 < e <1
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Summary of this part

e basics of MDP and DP algorithms
e break the sample size barrier using model-based approach

e obtain tight sample complexity for Q-learning

s > model | @@ )

&fﬁi/ (ie. P € RISIAIXIS]) \T%b
/ model-based \
samples value function
P
(experience) policy
"~ t 4
e __wmodel-free -

81,82



Key references for this part

Papers:

“Model-based reinforcement learning with a generative model is minimax optimal,”
A Agarwal, S Kakade, L Yang, Conference on Learning Theory (COLT) 20

“Breaking the sample size barrier in model-based reinforcement learning with a
generative model,” G Li, Y Wei, Y Chi, Y Chen, NeurlP5°20, Operators Research’23

“Is Q-learning minimax optimal? a tight sample complexity analysis,”
G Li, C Cai, Y Chen, Y Wei, Y Chi, Operations Research’23

“Finite-time analysis of asynchronous stochastic approximation and Q-learning.”
G Qu, A Wierman, Conference on Learning Theory (COLT)’20

“Variance-reduced Q-learning is minimax optimal,” M Wainwright'19.

“Sample complexity of asynchronous Q-learning: Sharper analysis and variance
reduction, ” G Li, Y Wei, Y Chi, Y Gu, Y Chen, IEEE Transactions on Information
Theory'21
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Statistical and Algorithmic Foundations
of Reinforcement Learning (Part 2)

Yuxin Chen
Wharton Statistics & Data Science, JSM 2023



>~ W

. Online RL
. Offline RL
. Reward-agnostic exploration

. Hybrid RL (policy finetuning)



Recap: Q-learning following a behavior policy

observed: (S0 ——>($1——S2——*>83——> 84 ——>85 —
{ H T H T H T 7 H i H 7
e’ Nt o Ly Ly \

ag HI a-z as ;14 as
mo(-|s0) mo(-|s1) mh([s2) mb(+[s3) mo(-lsa) mu(|ss)
To achieve ||Q7 — Q*||s < £, needs a sample size (Li et al. '23)

1 + tmix
,Umin(1 - 7)452 ,Umin(1 - 7)

® [imin ‘= min pq (s,a) : min state-action occupancy prob.

———
stationary distribution

® Tmix: Mixing time under behavior policy m

3/ 75



Limitations

1 + tmix
Nmin(1 - 7)452 Nmin(1 - 'Y)

[min Need to be positive == 1, covers entire state-action space
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Limitations

1 + tmix
Nmin(1 - 7)452 Nmin(1 - 'Y)

[min Need to be positive == 1, covers entire state-action space

e 7, must be randomized
e can we find such m, for all MDPs?

® [imin Might be exponentially small = need enormous
samples!
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Limitations

1 + tmix
Nmin(1 - 7)452 Nmin(1 - 'Y)

[min Need to be positive == 1, covers entire state-action space

e 7, must be randomized
e can we find such m, for all MDPs?

® [imin Might be exponentially small = need enormous
samples!

Can exploration help mitigate this issue?

4/ 75



Online RL: interacting with real environment

7o T1 T2 T3 T4 s
80— 1~ 8= s <
T 1 1 1 T ] T 1 T
\\._dl \_a' \\..al \\_a' ‘\_a’ \\_a'
ao ay a2 as a4 as

exploration via adaptive policies

e trial-and-error
e sequential and online

e adaptive learning from data

SRR

= |
=== N gpeast

“Recalculating ... recalculating ...”

5/ 75



Recap: finite-horizon Markov decision process

| environment ‘4- —

4
next state
Sha1 ~ Pu(-lsn,an)

e H: horizon length
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Recap: finite-horizon Markov decision process

| environment ‘4- —

<
next state
Shi1 ~ Pu(-|sh,an)

e H: horizon length

e §S: state space with size S e A: action space with size A
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Recap: finite-horizon Markov decision process

| environment |4- —

<
next state
Shi1 ~ Pu(-|sh,an)

e H: horizon length
e §S: state space with size S e A: action space with size A

o 7,(sp,ap) € [0,1]: immediate reward in step h
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Recap: finite-horizon Markov decision process

| environment |4- —

4
next state
Sha1 ~ Pu(-lsn,an)

e H: horizon length

S: state space with size S e A: action space with size A

rh(Sh,ap) € [0, 1]: immediate reward in step h

T = {ﬁh}lez policy (or action selection rule)

Py(-|s,a): transition probabilities in step h

6/ 75



Recap: value function and Q-function of policy 7

h=1,2--- H

) T r2 r3 rH
state oy o) | | I
= a6 - e
reward I:> L ;*-*" [ -
v = 1(Sh, an) I ay a2 as ap
i ]environmentl{- —_— 2 2 2
. mi(fs1) ma(ls2)  ms(|ss) mr(|su)

Sht1 ~ Pr(-|sn, an)

H
Vi'(s) =E erh(sh,ah) ‘ Sp = 5]

t=h

t=h

H
Qr(s,a) =E erh(sh,ah) | Sp = S,ap = a]

e execute policy 7 to generate sample trajectory

7/ 75



Recap: optimal policy and optimal values

4 ”
4 ’,’
state s ; : o
which action a
’ to take? F---""" »

~

e Optimal policy 7*: maximizing the value function

e Optimal values: V*:= V™, Q* := Q™

8/ 75



Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

- 1
1 execute m

. 11 IH
episode 1 |::> {8hs @i Th I n=1
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

1 execute 7!

. 11 IH
episode 1 |::> {8hs @i Th I n=1

execute 7{'2

episode 2 B ::> {sh> aj, i}
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

ol execute 7!

. 11 IH
episode 1 |::> {8hs @i Th I n=1

= = IE -LL execute 7{'2
-
L 2 2 21H
N = Sp.ap,T —
episode 2 —> {sh.ahrihl

[
e execute &

episode K |:> {sK a3,
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

T
e execute 7!

. 11 IH
episode 1 |:> {8hs @i Th I n=1

execute7r
2 2 2\H
ShyQh T T he
episode 2 {hr h» h}h71

LTL,‘ execute &

episode K |:> {sK a3,

exploration (exploring unknowns) vs. exploitation (exploiting learned info)J

9/ 75



Regret: gap between learned policy & optimal policy

adversary learner

|n|t|a| state execute
policy !

episode 1
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initial state execute initial state execute
1 = policy 7! = e = sk = policy ©

episode 1 episode K
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
1 = policy 7! = e = sk = policy ©

episode 1 episode K

Performance metric: given initial states {sf}X |, define

chosen by nature/adversary

K

Regret(T) = > (Vi(sf) = Vi (sh))
k=1

10/ 75



Regret lower bounds

Theorem 1 (Domingues et al. '21)

Consider any T > H?SA. For any algorithm, there exists an episodic
nonstationary MDP M such that

1
E[Regret(T)] > ——=V H?SAT
(Regret(T)] > =/

e Ignoring other factors, the regret is at least on the order of
VT

e The lower bound also reflects impacts of horizon H and size of
state-action space SA

11/ 75



Lower bound
(Domingues et al. '21)

Regret(T) =2 VH2SAT

Existing algorithms

UCB-VI: Azar et al.'17

UBEV: Dann et al.'17
UCB-Q-Hoeffding: Jin et al.'18
UCB-Q-Bernstein: Jin et al.'18
UCB2-Q-Bernstein: Bai et al.'19

e EULER: Zanette et al. '19
e UCB-Q-Advantage: Zhang et al. 20

MVP: Zhang et al.'20

UCB-M-Q: Menard et al.'21
Q-EarlySettled-Advantage: Li et al. 21
(modified) MVP: Zhang et al. 23



Lower bound
(Domingues et al. '21)

Regret(T) =2 VH2SAT

Existing algorithms

UCB-VI: Azar et al.'17

UBEV: Dann et al.'17
UCB-Q-Hoeffding: Jin et al.'18
UCB-Q-Bernstein: Jin et al.'18
UCB2-Q-Bernstein: Bai et al.'19

e EULER: Zanette et al. '19
e UCB-Q-Advantage: Zhang et al. 20

MVP: Zhang et al.'20

UCB-M-Q: Menard et al.'21
Q-EarlySettled-Advantage: Li et al. 21
(modified) MVP: Zhang et al. 23

Which online RL algorithms achieve near-minimal regret? |




Model-based online RL with UCB exploration



Model-based vs. model-free approaches

o model A
e "(ie. P e RISIAXIS)| ] f%“‘s

& .
wodel-based K
(experience) policy
\ s
. wodel-free -

Model-based approach (“plug-in”
1. build an empirical estimate P for P

2. planning based on the empirical P

Model-free approach
— learning w/o estimating the model explicitly

14/ 75



Online RL with the model-based approach

execute 7!
! i p=]
i

{sh, b T M

repeat:

( empirical MDP
H N
]

planning
oracle

(

3N

{.

—

execute 72

n==l=m

e use all previous data to estimate transition probabilities

e apply planning (e.g., value iteration) to the estimated model to
learn an updated policy for the next episode
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Online RL with the model-based approach

( empirical MDP

H ENR ,
execute ! . . execute
N E_ =N — S
I ] | : |
l— | Em_§ planring | g
. . . oracle
R || =
{sh, b T M
o N
| |

repeat:
e use all previous data to estimate transition probabilities
e apply planning (e.g., value iteration) to the estimated model to

learn an updated policy for the next episode

How to balance exploration and exploitation in this framework? J

15/ 75



Optimism in the face of uncertainty:

e explore based on the best possible values (i.e., optimistic
estimates) associated with the actions!

e a common framework based on upper confidence bounds (UCB)

accounts for estimates + uncertainty level

16/ 75



Example: UCB algorithm for multi-arm bandits

— Auer et al. '02

Idea: always try the best arm, where “best” includes exploration &
exploitation
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Example: UCB algorithm for multi-arm bandits

— Auer et al. '02

Idea: always try the best arm, where “best” includes exploration &
exploitation

In each round ¢:
e calculate UCB index for each arm i:

logt
Nit

)

UCBM =Tt +

o T;:: empirical average of reward for arm i
o N;+: number of times arm ¢ has been played up to round ¢
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Example: UCB algorithm for multi-arm bandits

— Auer et al. '02

Idea: always try the best arm, where “best” includes exploration &
exploitation

In each round ¢:
e calculate UCB index for each arm i:

logt
Nit

)

UCB;; =7 +
o T;:: empirical average of reward for arm i
o N;+: number of times arm ¢ has been played up to round ¢

e play the arm with highest UCB index

17/ 75



Understanding UCB

e e

7(1)

Mean Reward

Arm 1 Arm 2 Arm 3

logt
Niy

UCB;; =Tt +

e exploitation: 7;; is the average observed reward. High observed
rewards of an arm leads to high UCB index
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Understanding UCB

e e

7(1)

Mean Reward

Arm 1 Arm 2 Arm 3

logt

UCBZ'7t =Tt + Ni,t

e exploitation: 7;; is the average observed reward. High observed
rewards of an arm leads to high UCB index

e exploration: ljﬁgt decreases as we make more observations.

Fewer observations of an arm leads to higher UCB index

18/ 75



UCB-VI (Azar et al.’17)

Idea: incorporate the upper confidence bound (UCB) framework
into a model-based algorithm (i.e., value iteration (V1)) ...

19/ 75



UCB-VI (Azar et al.’17)

Original VI: for h=H, H —-1,...,1:

Qn(s,a) <  rh(s,a)  + PnsaVa+
—— ————
immediate reward next step's value

Vi(s) < max Qn(s;a)

where P, ¢ ,: empirical estimate of P},
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UCB-VI (Azar et al.’17)

Original VI: for h=H, H —-1,...,1:

Qn(s,a) <  rh(s,a)  + PnsaVa+
—— ————
immediate reward next step's value

Vi(s) « max Qu(s, a)
acA
where ]3h7s’a: empirical estimate of P}, , ,

e pure exploitation; no exploration

e to encourage exploration, why don't we replace Qp(s,a) w/ its

ucB?

20/ 75



UCB-VI (Azar et al.’17)

Uncertainty quantification in the next-step value ﬁh,s,avh—i-l: by
Hoeffding's inequality & union bound, with prob. at least 1 — 6,

H(ﬁh,s,a - Ph7s,a)vi:(+1Hoo < 6( ]VhIZ;a))

where Nj(s,a): number of visits to (s, a) at step h
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UCB-VI (Azar et al.’17)

Uncertainty quantification in the next-step value ﬁh,s,avh—i-l: by
Hoeffding's inequality & union bound, with prob. at least 1 — 6,

H(ﬁh,s,a - Ph7s,a)vi;+1Hoo < 6( ]VhIZ;a))

where Nj(s,a): number of visits to (s, a) at step h

Optimistic VI: run VI using rewards {r(s,a) + by(s,a)}

Qn(s,a) min{ rp(s,a) + ﬁh,s,thH + bp(s,a), H—h+ 1}
—— ——— ——

immediate reward  next step’s value bonus

Vi(s) = max Qn(s, a)

where by (s,a) = (:)( #:M)

21/ 75



UCB-VI: algorithm

For each episode k:

1. Backtrack h = H,H — 1,...,1: run optimistic value iteration

Qn(sh,ap) < min {?”h(Sh, an) + Ph.sy.an Vi1 + bn(sn,an), H—h+ 1}

Vi(sn) ¢ max Qn(sp, a)

2. Forward h =1,..., H: take actions according to greedy policy

Th(8) < argmax,c 4 Qn (s, a)

and collect samples {sp,, apn, s},

22/ 75



Optimism in the face of uncertainty

Lemma 2
With prob. at least 1 — §, one has

Qn(s,a) 2 Q(s,a),  Vils) = Vi (s)

for all (h,s,a) in all episodes

optimism in the face of uncertainty:
e act according to Qp(s,a)
————

an upper bound on Qj (s,a)

23/ 75



Regret bound for UCB-VI (Azar et al.’17)

Theorem 3 (Azar et al.’17)
With prob. at least 1 — §, UCB-VI with Hoeffding bonus achieves

Regret(T) < VH3SAT. + H3S% A3

where 1 = log(HSAT/J)
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e Regret bound scales as

VH3SAT as soon as T> H3534
——

burn-in cost

which is sub-optimal by a factor of v H
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Regret bound for UCB-VI (Azar et al.’17)

Theorem 3 (Azar et al.’17)
With prob. at least 1 — §, UCB-VI with Hoeffding bonus achieves

Regret(T) < VH3SAT. + H3S% A3

where 1 = log(HSAT/J)

e Regret bound scales as

VH3SAT as soon as T> H3534
——

burn-in cost

which is sub-optimal by a factor of v H

e Tighter bonus (e.g., Bernstein-style) leads to improved regret

24/ 75



Asymptotically optimal regret

Using tighter variance-aware concentration, Azar et al.'17 developed
the first method that is asymptotically regret-optimal

Regret(T")

4

h

VH2SAT

>

sample size : T'
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Asymptotically optimal regret

Using tighter variance-aware concentration, Azar et al.'17 developed
the first method that is asymptotically regret-optimal

Regret(T")
A
o VH2S AT
e UCB-VI
H"S A
0 >

S3AYHS  sample size: T
huge burn-in cost!

Issues: (1) large burn-in cost; (2) large memory complexity

model-based: S2AH 25/ 75



Other asymptotically regret-optimal algorithms

Algorithm Regret upper bound Raimge °f_ K that
attains optimal regret
UCBVI — —
(Azar et al. 17) VSAH?T + S°AH [SPAH?, o)
ORLC o —
(Dann et al.'19) SAH?T + S°AH [SPAH®, 00)
EULER VSAH?T + S AH? (VS +VH) | [SPAH(VS + VH), )
(Zanette et al.'19)
UCB-Adv AH? 12 A3/2 Fr33/4 7o1/4 6 44 727
(Zhang et al. 20) SAH?T + S*AYEHPK [S®ATH?, 00)
MVP 2 2 4172 3
(Zhang et al.’20) VSAH?T + S*AH [S3AH, 00)
UCBM-Q E— — —
(Menard et al. 21) SAHT + SAH [SAH?, )
Q-Earlysettled-Adv AT + SAHS SAH® o0)
(Lietal.’21) s
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Other asymptotically regret-optimal algorithms

Algorithm Regret upper bound Raimge °f_ K that
attains optimal regret
UCBVI — —
(Azar et al. 17) VSAH?T + S°AH [SPAH?, o)
ORLC o —
(Dann et al.'19) SAH?T + S°AH [SPAH®, 00)
EULER VSAH?T + S AH? (VS +VH) | [SPAH(VS + VH), )
(Zanette et al.'19)
UCB-Adv AH? 12 A3/2 Fr33/4 7o1/4 6 44 727
(Zhang et al. 20) SAH?T + S*AYEHPK [S®ATH?, 00)
MVP 2 2 4172 3
(Zhang et al.’20) VSAH?T + S*AH [S3AH, 00)
UCBM-Q E— — —
(Menard et al. 21) SAHT + SAH [SAH?, )
Q-Earlysettled-Adv AT + SAHS SAH® o0)
(Lietal.’21) s

Can we find a regre-optimal algorithm with no burn-in cost?

J
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Regret-optimal algorithm w/o burn-in cost

Theorem 4 (Zhang, Chen, Lee, Du’23)
With prob. at least 1 — 6, there is a model-based algorithm achieving

Regret(T) < O(VH2SAT)

e algorithm: Monotonic Value Propagation (MVP)

e the only algorithm so far that is regret-optimal w/o burn-ins

e key innovation: decoupling statistical dependency

27/ 75



Comparison with prior art

Range of K that

Algorithm Regret upper bound _ 3
attains optimal regret
UCBVI . 4 . .
V/ 2 G2 A Fy3 3 A3
(Azar et al. 17) SAH?T + S*AH [SPAH?, o)
UCB-Adv o 13/9 731 /4 . .
2 52 A3/2 [733/4 )¢ 1/4 6 A4 727
(Zhang et al.'20) SAH?T + S A%/ 2H>»/*K [SSATH?" c0)
MVP s . .
A2 2 A 172 3
(Zhang et al. '20) VSAH?T + S*AH [S3AH, 00)
UCB-M-Q . o 5
(Menard et al. '21) VSAH?T + SAH [SAH?, )
Q-Earlysettled-Adv SAHZT + SAHS [SAHQ 50)
(Li et al.’21) o ’
e VSAIPR (1, 50)

(Zhang et al.’23)




How about memory complexity?

Algorithm Regret upper bound Rf’"ge °f_ K that Memory complexity
attains optimal regret
eEt VSAH?T + S2AH® [SSAHS, 00) S2AH
(Azar et al. 17)
UCB-Adv VSAHT + S A3 33/ R/ [SCAYH?T o0) SAH
(Zhang et al.'20)
Mvp VSAHT + S2AH? SAH.. 52
(Zhang et al. '20) SAHT + 5°AH [SPAH, 00) S*AH
UCB-M-Q V4 2 o 4 5 22 /
(Menard et al.’21) SAH®T + SAH [SAH?,00) S°AH
Q-Earlysettled-Adv SATPT + SAHS (SAHO. o) e
(Li et al."21) )
P VSAH3K [1,00) S2AH

(Zhang et al.’23)

Can we find a regre-optimal algorithm with
(1) low burn-in cost and (2) low memory complexity?
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Model-free RL is often more memory-efficient

o model P,
‘Ww | (e. P e RISIIXISI) == “ﬁ(ﬂg

&

wodel-based -
samples value function
(experience) policy

store transition kernel estimates
— O(S?AH) memory
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&,
wodel-based X -
samples value function samples value function
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Model-free RL is often more memory-efficient

o model P,
‘w@ | (e, P € RISIAIXISI) == “ﬁ(ﬂg

&,
wodel-based X :
samples value function samples value function
wodel-free

store transition kernel estimates maintain Q-estimates

— O(S?AH) memory — O(SAH) memory
Definition 5 (Jin et al.’18)
An RL algorithm is model-free if its space complexity is 0o(S?AH) J
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Which model-free algorithms are sample-efficient for online RL?



Which model-free algorithms are sample-efficient for online RL?

early-settled
UcCB variance variance
exploration reduction reduction

— |UCBQ| = [UCB—Q—Advantage] s

Jin et al.'18 Zhang et al.'20 Li et al.’21




Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus
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— optimism in the face of uncertainty
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of vVH J

Issue: large variability in stochastic update rules
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Our algorithm: Q-EarlySettled-Advantage

Theorem 6 (Li, Shi, Chen, Gu, Chi’'21)
With high prob., Q-EarlySettled-Advantage achieves (up to log factor)

Regret(T) < VH2SAT + H°SA

with a memory complexity of O(SAH)
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Our algorithm: Q-EarlySettled-Advantage

Theorem 6 (Li, Shi, Chen, Gu, Chi’'21)
With high prob., Q-EarlySettled-Advantage achieves (up to log factor)

Regret(T) < VH2SAT + H°SA

with a memory complexity of O(SAH)

e regret-optimal with burn-in cost O(SApoly(H))
o optimal in SA, suboptimal in H
e memory-efficient O(SAH)

e computationally efficient: runtime O(T")

32/ 75



A glimpse of our model-free algorithm design



early-settled
ucB variance variance
exploration reduction reduction

— |UCB-Q| =) [UCB-Q—Advantage] s

A glimpse of our model-free algorithm design



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation

Qn(sn,an) — (1= me)Qn(sn, an) + e Tr(Qni1)(sn, an)
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation

Qn(sn,an) — (1= me)Qn(sn, an) + e Tr(Qni1)(sn, an)

Te(Qn)(sh, an) = r(sn,an) + max Q(sp+1,a’)
a
using sample in k-th episode

34/ 75



Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of vVH J

Issue: large variability in stochastic update rules
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Q-learning with UCB and variance reduction

— Zhang et al. 20

Incorporates variance reduction into UCB-Q:
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Q-learning with UCB and variance reduction

— Zhang et al. 20
Incorporates reference-advantage decomposition into UCB-Q:

Qn(sh,an) < (1 —n1)Qn(sh,an) + ni bn(sh, an)
———

UCB bonus
0 (Te(@ur) = Te@n1) + T @us0)) (51, 0)
dvant f
advantage rererence

e Reference Q},,,, batch estimate T help reduce variability

36/ 75



Q-learning with UCB and variance reduction

— Zhang et al. 20
Incorporates reference-advantage decomposition into UCB-Q:

Qn(sh,an) < (1 —n1)Qn(sh,an) + ni bn(sh, an)
———

UCB bonus
0 (Te(@ur) = Te@n1) + T @us0)) (51, 0)
dvant f
advantage rererence

e Reference Q},,,, batch estimate T help reduce variability

UCB-Q-Advantage is asymptotically regret-optimal

36/ 75



Q-learning with UCB and variance reduction

— Zhang et al. 20
Incorporates reference-advantage decomposition into UCB-Q:

Qn(sn,an) < (1 —n)Qn(sh, an) + i b (sn, an)
——
UCB bonus

+ 1k (ﬁ(Qm—l) — T (@Qp11) + 7A'(@h+1)) (8hyan)

advantage reference

e Reference Q},,,, batch estimate T help reduce variability

UCB-Q-Advantage is asymptotically regret-optimal

Issue: high burn-in cost O(S5A*H?%)
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Diagnosis of UCB-Q-Advantage

Variance reduction requires sufficiently good references Q,,
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Diagnosis of UCB-Q-Advantage

Variance reduction requires sufficiently good references Q,,

{4

Updating references Q;, and V', many times
Large burn-in cost

Key idea: early settlement of the reference as soon as
it reaches a reasonable quality (e.g., V) < V¥ +1)

37/ 75



How to implement our early-settlement idea?

Vi(s) = Vi(s) <1
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How to implement our early-settlement idea?

Vi(s) = Vi(s) <1

i}

Vh(s) — VhLCB(S) <1 for some estimate V,:B < V*
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How to implement our early-settlement idea?

Vi(s) = Vi(s) <1

i}

Vi(s) — VIEB(s) <1 for some estimate V-8 < V¥

Optimistic V,VB(s)

Q-EarlySettled-Advantage:
maintains auxiliary sequences VhUCB & Vi (s)
VhLCB to help settle the reference early

Pessimistic V,-B(s)

38/ 75



memory

complexity
A
UCB-M-Q
(LT Y A — ® UCB-VI
: UCB-Q-Advantage
SAH @ ours @ burn-in cost

0 SApoly(H)  SPA*H®  §6A*H? .

Model-free algorithms can simultaneously achieve

(1) regret optimality; (2) low burn-in cost; (3) memory efficiency
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Summary for online RL

e model-based approach is regret-optimal w/ no burn-in cost

e model-free approach is regret-optimal w/ low burn-in and low
memory complexity
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optimal H-dependency too)?
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Summary for online RL

e model-based approach is regret-optimal w/ no burn-in cost

e model-free approach is regret-optimal w/ low burn-in and low
memory complexity

open problems:
e how to design model-free algorithms w/o burn-in cost (i.e., w/
optimal H-dependency too)?
e how to achieve full-range regret-optimal algorithms for:
o discounted infinite-horizon MDPs?

o finite-horizon stationary MDPs?

o ...

40/ 75
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Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

THECOMING INAUTONOMOUS VEHICLES

it

! ‘e l‘
> R A Vi
7 J -
’ & \/5 | I >
p § ~ ~= PERDAY...EACHDAY ——~

medical records data of self-driving clicking times of ads

42/ 75



Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

e But we have already stored tons of historical data

THECOMING INAUTONOMOUS VEHICLES
o

it

mEn

£ !
S PRON.ECHONY ):
ied) -

a <““
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ﬂ%

medical records data of self-driving clicking times of ads
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Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

e But we have already stored tons of historical data

THECOMING INAUTONOMOUS VEHICLES

it

= 20

.
mER
NS LS
s

Lls

PERDAY...EACH DAY ’)3

7 <“( 7

e
ﬂ%

medical records data of self-driving clicking times of ads

Question: can we learn based solely on historical data
w/o active exploration?
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A mathematical model of offline data

initial distribution behavior policy No longer transition kernel
arbitrary!
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A mathematical model of offline data

initial distribution behavior policy No longer transition kernel
arbitrary!

historical dataset D = {(s(,a(", s'))}: N independent copies of
s~ p, an~72(s), s~ P(-|s,a)
e p: initial state distribution;  7P: behavior policy
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A mathematical model of offline data

initial distribution behavior policy No longer transition kernel
arbitrary!

Goal: given a target accuracy level € € (0, H], find 7 s.t.

V*(p) — V?(p) = s[gp [V*(s)] — SINE,) [V?(s)} <e

— in a sample-efficient manner

43/ 75



Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under optimal 7*
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Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under optimal 7*

easier harder
| > distance(n®, 1)

e,

\ ?

\ )

@ | expert data : ﬁ 2
=S
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Challenges of offline RL
o Distribution shift

distribution(D) # target distribution under optimal

e Partial coverage of state-action space

y LN P ! ’ AN
. \\\ / Practically, N
A A
_-4 samples cover all (s,a) & all pO|ICIeS/ I historical dataset D A
>3 ‘, N N /
> ~ 3 S -
- \ ™2
o / N , Oo,
Sl N L SN
uniform coverage over entire space
(sufficiently explored)

partial coverage
(inadequately explored)

44/ 75



How to quantify quality of historical dataset D (induced by 7°)?
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occupancy distribution of 7*
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occupancy distribution of 7° ||
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

. d™ (s, a) occupancy distribution of *
C* = max —; = — B >1
sa d™ (s, a) occupancy distribution of 7® ||
e captures distributional shift
C*=0(1) large C*

;\ expert data
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

occupancy distribution of 7*

occupancy distribution of 7P

o0

e captures distributional shift

-
e allows for partial coverage

o as long as it covers the part
reachable by 7*

45/ 75



Prior art: sample complexity bounds

sample“
complexity
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H3sCH/

HSC*
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Prior art: sample complexity bounds

sample“
complexity ¢
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Prior art: sample complexity bounds
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complexity "
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Prior art:

sample complexity bounds

sample‘
complexity i "
¢
o2
$/@
>
H55C* ',bbm,}‘ Yan et al.
— X
””” §*§ %50
Ry g
: / 7 \)(\6
H3SC* o
72/ g et
‘ \O
1‘_, ’\‘(\’5’.
O
scr | « .
1 1 >
© < g2
A A
Z
< /(5,

Can we close t

he gap between upper & lower bounds?




Model-based (“plug-in”) approach?

I

L
’
7

&x'.
4
1
samples
(experience)

,,,,, >
\4“"}) -

— Azar et al. '13, Agarwal et al. '19, Li et al. '20

model 2
i.e. P e RISIAXISI N2
( ) g

wodel-based

value function

policy
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Model-based (“plug-in”) approach?

— Azar et al. '13, Agarwal et al. '19, Li et al. '20

[ empirical MDP

H NN
[ | [ |
| | |
H B : .
e B R 7
H H B
[ | . .
.. . e.g. dynamic programming
H BB
[ |
r

empirical p

1. construct empirical model P
N

]3(3’|8,a) - %Zﬂ{sl(i) =4}

=1

47/ 75
empirical frequency



Model-based (“plug-in”) approach?

— Azar et al. '13, Agarwal et al. '19, Li et al. '20

[ empirical MDP

H E N
| [ |
[ | - | =
BEE B plannilng —> 7
[ H B oracle
[ | . .
| | | B e.g. dynamic programming
H_ BN
|
r

empirical p

1. construct empirical model P

2. planning (e.g. value iteration) based on empirical MDP

— best under generative model (Li, Wei, Chi, Chen '20)

47/ 75



Issues & challenges in the sample-starved regime

N H N
]
| H
]
H =
H B
|
]
N
[] B
truth: P € RSAxS empirical P (simulator)

e can't recover P faithfully if sample size < S?A

48/ 75



Issues & challenges in the sample-starved regime

o H N H N
H
H H
|
H N
H BN |
|
L
H_ N H B
H B H
truth: P € R94xS empirical P (simulator) empirical P (offline)

e can't recover P faithfully if sample size < S?A

e (possibly) insufficient coverage under offline data

48/ 75



Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

online

upper confidence bounds
— promote exploration of under-explored (s, a)

offline

lower confidence bounds
— stay cautious about under-explored (s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

1. build empirical model P
2. (value iteration) repeat: for all (s, a)

~

Q(s,a) + max{ (s,a) +v(P(-]s,a),V), 0 }

where V(s) = max, Q(s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

Penalize those poorly visited (s, a) ...

1. build empirical model P

2. (pessimistic value iteration) repeat: for all (s, a)

Q(s,a) < max {r(s, a) +(P(-|s,a),V) = b(s,a; V), 0}
———
uncertainty penalty

where V(s) = max, Q(s, a)
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Key idea: pessimism in the face of uncertainty

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

Penalize those poorly visited (s, a) ...

1. build empirical model P

2. (pessimistic value iteration) repeat: for all (s, a)

Q(s,a) + max {r(s, a) +(P(-|s,a),V) = b(s,a; V), 0}

uncertainty penalty

compared w/ Rashidinejad et al. 21

e sample-reuse across iterations e Bernstein-style penalty

49/ 75



Sample complexity of model-based offline RL

Theorem 7 (Li, Shi, Chen, Chi, Wei’'22)

Forany 0 <e < ﬁ the policy T returned by VI-LCB using a
Bernstein-style penalty term achieves

V*(p) = V7(p) <&

with high prob., with sample complexity at most

o (i=y=)
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Sample complexity of model-based offline RL

Theorem 7 (Li, Shi, Chen, Chi, Wei’'22)

Forany 0 <e < ﬁ the policy T returned by VI-LCB using a
Bernstein-style penalty term achieves

V*(p) = V7(p) <&

with high prob., with sample complexity at most
~ SC*
o—"2__
(a-pa)

e depends on distribution shift (as reflected by C*)

e achieves minimax optimality
e full e-range (no burn-in cost)

50/ 75




sample“
complexity

Model-based offline RL is minimax optimal with no burn-in J
cost!




Is it possible to design offline model-free algorithms
with optimal sample efficiency?



Is it possible to design offline model-free algorithms
with optimal sample efficiency?

pessimism variance
(low confidence bounds) reduction

— | LCB-Q| = [LCB—Q—Advantage]




LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

Qt+1(5t»at) <~ (1 - nt)Qt(Staat) + 7]t7; (Qt) (Sn at) - ntbt(Sta (lt)
N—_——

classical Q-learning LCB penalty
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Qt+1(5t»at) <~ (1 - nt)Qt(Staat) + 7]t7; (Qt) (Sn at) - ntbt(Sta (lt)
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classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty
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LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

Qt+1(st»at) <~ (1 - nt)Qt(Staat) + 7]t7; (Qt) (Sn at) - ntbt(sta (lt)
N—_——

classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

sample size: 6(%) —>  sub-optimal by a factor of —(1_17)2 J

Issue: large variability in stochastic update rules

53/ 75



Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3

Theorem 8 (Yan, Li, Chen, Fan’22, Shi, Li, Wei, Chen, Chi’22)

Fore € (0,1 — ], LCB-Q-Advantage achieves V*(p) — V?(p) <e
with optimal sample complexity O(ﬁ)

54/°75
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. Reward-agnostic exploration

. Hybrid RL (policy finetuning)



Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each containing H steps

initial state choose & execute initial state choose & execute
iy licy 7! D ..o 2 Loy oK
1~p policy s ~p policy 7

episode 1 episode K
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each containing H steps

initial state choose & execute initial state choose & execute
si~p = policy 7 = ... = 5{( ~p = policy 7€

episode 1 episode K

Key: exploration-exploitation tradeoff

e Lai & Robbins'85

e Jaksch, Ortner, Auer’10

Azar, Osband, Munos'17

Chi, Allen-Zhu, Bubeck, Jordan'18

fig. credit: Berkeley CS188
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Reward-agnostic exploration?

The learner is unaware of the rewards during exploration ...
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The learner is unaware of the rewards during exploration ...

Motivation

o (significantly) delayed feedback
e reward functions keep changing
e offline RL

e many reward functions of interest
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Reward-agnostic exploration?

The learner is unaware of the rewards during exploration ...

Motivation

o (significantly) delayed feedback
e reward functions keep changing
e offline RL

e many reward functions of interest

Question: can we perform pure exploration just once but
achieve efficiency for many unseen reward functions at once?

58/ 75



Prior art: sample complexity upper bounds

Suppose there is a fixed (but unseen) reward function of interest . ..

horizon

A
Zhang et al. 20
) 2 I PO—

H3

S S2  #tstates
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Prior art: sample complexity upper bounds

Suppose there is a fixed (but unseen) reward function of interest . ..

horizon
A
Zhang et al. 20 Jin et al.’20
H
Menard et al. '21
H3

S S?  #states

59/ 75



Prior art: sample complexity upper bounds

Suppose there is a fixed (but unseen) reward function of interest . ..

horizon
A
Zhang et al. 20 Jin et al.’20

H®

\? Menard et al. 21
i fe

2
0 : >
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Prior art: sample complexity upper bounds

Suppose there is a fixed (but unseen) reward function of interest . ..

horizon
A
Zhang et al. 20 Jin et al.’20

H®

\? Menard et al. 21
i fe

2
0 : >
S S?  #states

Question: can we simultaneously optimize dependency on S & H? J

59/ 75



data samples

exploration stage
(w/o rewards) :>




data samples

exploration stage
(w/o rewards) :>

reward function
policy learning stage ~/

(w/ rewards) —— =
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data samples

exploration stage
(w/o rewards)

reward function

policy learning stage

(w/ rewards) <:| __.g

)
285

LESSON |

/"'*-W
ﬁfﬂiue RL



isolate & optimize
reward-independent quantity
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isolate & optimize
reward-independent quantity

lessons learned from offline RL: offline model-based alg. gives

Varh s a(‘/;* 1)
Vi(p) — Vi < dy, (s,a)min — MU g
1 \/7 Z h d/l:{ehawor(s7 a)

h,s,a
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isolate & optimize
reward-independent quantity

7

220N
s
Wit A

7%

S

lessons learned from offline RL: offline model-based alg. gives

V" (p) — Vi (p)

1 1
1 df (s, a) 2 * 2
< —— | me h22 — dy (s,a)Varp, s.a(Vi H
~ VK (Hl;rLXh —~ ﬁ +d2eha\/|or(s7a)> Z h (8 a) hss, ( h+1) +

h,s,a

reward-independent reward-dependent
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isolate & optimize
reward-independent quantity

rs

AL LENGN
A{f a
*

lessons learned from offline RL: offline model-based alg. gives

V" (p) — Vi (p)

h,s,a

1 1
dj (s, a) o :
\/—» ( max T e, q) Z dy (s,a)Vary s.qa(Vig1) + H

reward-independent reward-dependent

key: find behavior policy to optimize reward-independent quantity

61/ 75



Our algorithm

exploration stage
(w/o rewards)

policy learning
(w/ rewards)
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Our algorithm

forh=1,....H

draw samples to estimate
occupancy distributions dj for all =
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(w/o rewards)
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Our algorithm

forh=1,....H

draw samples to estimate
occupancy distributions dj for all =

exploration stage
(w/o rewards)

compute behavior policy 7

maximize Y log (ﬁ + W]E“ [Eﬁ(s,a)})

neA(det. policies) 77,

via Frank-Wolfe

policy learning
(w/ rewards)
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Our algorithm

forh=1,....H

draw samples to estimate
occupancy distributions dj for all =

exploration stage

(W/O rewards) - - execute 7 to
compute behavior policy 7 |:> draw sample episodes

maximize Y log (ﬁ + W]E“ [JE(S,@)D

e A(det. policies) 5,

via Frank-Wolfe

policy learning
(w/ rewards)
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Our algorithm

forh=1,....H

draw samples to estimate
occupancy distributions dj for all =

exploration stage

w rewart
( /0 ewa dS) - S execute ° to
compute behavior policy 7 |:> draw sample episodes

L 1 1 E,(
jReimize | 3 log (i + E [dh(2)])

via Frank-Wolfe

reward function
policy learning e

(w/ rewards) —— =
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Our algorithm

forh=1,....H

draw samples to estimate
occupancy distributions dj for all =

exploration stage

w rewar
( /0 ewa dS) - S execute ° to
compute behavior policy 7 |:> draw sample episodes

L 1 1 E,(
jReimize | 3 log (i + E [dh(2)])

via Frank-Wolfe

empirical MDP
N |

reward function
policy learning
(w/ rewards)
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Sample complexity of reward-agnostic RL

Theorem 9 (Li, Yan, Chen, Fan’23)

Suppose there are poly(H, S, A) fixed reward functions of interest,
and suppose ¢ is small enough. Using the same batch of samples w/

~(H3SA
O( z—:f >episodes,

our algorithm can find, for each reward function, a policy T obeying

Vi(p) — Vi(p) < e
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Sample complexity of reward-agnostic RL

Theorem 9 (Li, Yan, Chen, Fan’23)

Suppose there are poly(H, S, A) fixed reward functions of interest,
and suppose ¢ is small enough. Using the same batch of samples w/

~(H3SA
O( z—:f >episodes,

our algorithm can find, for each reward function, a policy T obeying

Vi(p) — Vi(p) < e

e optimal sample complexity

e collect data once — work for poly(H, S, A) reward functions

63/ 75




horizon
A
Zhang et al.'20 Jin et al. 20
H® o L

Menard et al. 21
@

H3

>

S S?  #states

The studies of offline RL inspire optimal reward-agnostic exploration! J
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Hybrid RL

In practice, one might have access to both offline data and online
sampling

e pre-training using offline data

e policy finetuning w/ aid of online data collection
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Hybrid RL

In practice, one might have access to both offline data and online
sampling

e pre-training using offline data

e policy finetuning w/ aid of online data collection

Question: what are the benefits of combining online & offline RL?

N
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Prior sample complexity

pure offline RL: imagine there exists a behavior policy generating all
offline data, then sample complexity is (Li et al. '22)

SC*H?
£2
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Prior sample complexity

pure offline RL: imagine there exists a behavior policy generating all
offline data, then sample complexity is (Li et al. '22)

SC*H?
£2

pure online RL: sample complexity is (Azar et al.'17, Li et al.'22)

SAH3
2

3
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Prior sample complexity

pure offline RL: imagine there exists a behavior policy generating all
offline data, then sample complexity is (Li et al. '22)

SC*H?
£2

pure online RL: sample complexity is (Azar et al.'17, Li et al.'22)

SAH3
2

€
prior work Xie et al.’21: sample complexity of hybrid RL is at most

Smin{C*, AYH3
2

9

e not better than best of pure online and pure offline though . ..

67/ 75



Does hybrid RL enjoy strict benefits over
the best of offline and online RL?



Single-policy partial concentrability

Definition 10 (Li, Zhan, Lee, Chi, Chen’23)

For any o € [0, 1] (mis-coverage level),

. dy(s,a)
C*(0) == min {195?}1 (sl,gfae}éh W {Gnt1<n<n C g(U)}

distribution shift
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Single-policy partial concentrability

Definition 10 (Li, Zhan, Lee, Chi, Chen’23)

For any o € [0, 1] (mis-coverage level),

C*(0) = min {11<I}La<XH (srzl)aé M | {Gnhi<n<m CG(o )}
distribution shift
where o
00) = {{Gharen S x A 1Y Y disa)<of

h=1(s,a)¢Gn

mis-coverage
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Single-policy partial concentrability

Definition 10 (Li, Zhan, Lee, Chi, Chen’23)

For any o € [0, 1] (mis-coverage level),

. dy (s, a)
C*(0) = mm{lgang (omR doffT ’ {Gnh1<n<n € G(o )}
distribution shift
where o
1
G(o) = {{gh}IShSH CSxA ‘ = S Y di(s.a) < a}

h=1(s,a)¢Gn

mis-coverage

o reflects trade-off btw partial coverage & distribution mismatch
e C*(0): non-increasing in o; C*(0) = C*

69/ 75



Provable benefits of hybrid RL

Theorem 11 (Li, Zhan, Lee, Chi, Chen’23)

Suppose Konline — foffine — K7/9 (for simplicity), and suppose ¢ is
small enough. For any o € [0,1], using an order of

2

9

H3SAmin{Ho,1} H3SC*(0)
max{ + 2

} episodes,

our algorithm can find a policy ™ obeying

Vi (p) — Vi(p) < e
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Provable benefits of hybrid RL

Theorem 11 (Li, Zhan, Lee, Chi, Chen’23)

Suppose Konline — foffine — K7/9 (for simplicity), and suppose ¢ is
small enough. For any o € [0,1], using an order of

2

9

H3SAmin{Ho,1} H3SC*(0)
max{ + 2

} episodes,

our algorithm can find a policy ™ obeying

Vi (p) — Vi(p) < e

H3SC*
22

e taking o = 0 gives (pure offline)
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Provable benefits of hybrid RL

Theorem 11 (Li, Zhan, Lee, Chi, Chen’23)

Suppose Konline — foffine — K7/9 (for simplicity), and suppose ¢ is
small enough. For any o € [0,1], using an order of

{H3SAmin{HU,1} H3SC*(0)
max +

5 } episodes,
€ €

our algorithm can find a policy ™ obeying

Vi (p) — Vi(p) < e

HSC

e taking o = 0 gives (pure offline)

HSA

e taking o = 1 gives (pure online)
e strict sample size saving over both pure offline & pure online!
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sample
complexity

4 pure offline pure online
°
®
°
‘\
™~ hybrid
0 1 i

o : mis-coverage level

e our algorithm automatically finds the best o (without knowing it)

e algorithm design: inspired by reward-agnostic exploration
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Federated and robust RL

1. Federated RL

2. Robust RL



Can we harness the power of federated learning?

S
AN
A.

IBM Federated Learning
Research - Extracting
Machine Learning te ac achinelearingto
Models From Multiple your data onyour phone.
Data Pools By KarenHao
N m December 11,2019

Federated supervised learning is deployed nowadays by companies in
many areas, e.g., on-device inference.



RL meets federated learning

Central server

:?: L1y = :&: :#?:

Agent 1 Agent2 " Agentk T Agentk

Federated reinforcement learning: enables multiple agents to
collaboratively learn a global policy without sharing datasets. J




This talk

Understand the sample complexity of Q-Learning in federated settings. J

Linear speedup:

Can we achieve linear speedup when learning with multiple agents?

Communication efficiency:

Can we perform multiple local updates to save communication?

Taming heterogeneity:

How to combine heterogeneous local updates to accelerate learning?



How to federate synchronous Q-learning?



Synchronous Q-learning

generative model

Stochastic approximation for solving Bellman equation Q* = T (Q*)

Qt+1(sva) = (1 - n)Qt(Sva) + nﬁ(Qt)(Saa)’ t>0

draw the transition (s,a,s’) for all (s,a)




Synchronous Q-learning

generative model

Stochastic approximation for solving Bellman equation Q* = T (Q*)

Qt+1(sva) = (1 - n)Qt(Sva) + nﬁ(Qt)(Sa a)’ t>0

draw the transition (s,a,s’) for all (s,a)

Ti(@)(s,@) = r(s,0) + 7 max Q(s', ')

T(Q)(s,a) =7(s,a) +v E [maxQ(s",a")]

s/ ~P(-|s,a) a



Federated synchronous Q-learning with local updates

® The agent k performs 7 rounds of local Central server
Q-learning updates:

Qi1+ (L—0)QF + 1T (Q))

and sends it to the server.

7¥7 :@E e Jm :ﬁ:

Agent 1 Agent2 " Agentk T Agentk
sz ) y b




Federated synchronous Q-learning with local updates

® The agent k performs 7 rounds of local Central server
Q-learning updates:

Qi1+ (L—n)QF +nTi(QF)

and sends it to the server.

® The server averages the local updates and
communicates it back to agents: [ ] [

L {8 #ﬁ m_am . :ﬁi

© Agentk
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Federated synchronous Q-learning with local updates

® The agent k performs 7 rounds of local Central server
Q-learning updates:

Qi1+ (L—n)QF +nTi(QF)

and sends it to the server.

® The server averages the local updates and

communicates it back to agents: [ l‘n‘t [
. &y 2 %
" Agentk
Q=2 O o

Can we achieve faster convergence, i.e. linear speedup, with low
communication complexity? J




Prior art
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Prior art

sample‘
complexity ‘ /
S7TA5
K- )
54 Li et al
Li et al.
1 )iz
(1=me \* single-agent
Q-learning
K=1 1/K

The benefit of linear speedup only becomes effective K > %




Prior art

sample“
complexity

SA
— )2
(T=)%e L) single-agent
Q-learning
K=1 1/K

Can we improve the dependency on the salient parameters?




Our theorem

Theorem (Woo, Joshi, Chi, ICML 2023)

For any 0 < e < 1=, federated synchronous Q-learning yields
HQ — QMo <€ w:th sample complexity at most

o(waa)

aslongast—1< =~ mln{lgj, 11{} and n = O(K(1 — 7)*?).

® Communication efficiency: when K 2 and €<

1
~ K(1-v)*’
choosing 7 <

W leads to e- mdependent communication

complexity T'/T = 9] (%)



Comparison with prior art

sample“
complexity /

S7AS
K1 =)

SA
K(1—y)é

5 single-agent
Q-learning

»

K=1 1/K
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Comparison with prior art

sample“
complexity /

S7AS
K1 =)

SA
K(1—7)5e
SA
(1=t . _’single»agent
Q-learning
‘ >
K=1 1/K
Linear speedup with near-optimal parameter dependencies! J

10



Asynchronous Q-learning

S0— S1— S2—; S3—, S4—~—55—
7 7 1 H 1 7
’ 4 4 ’

T
~— ~—e S—e N S -

ag a1 a2 as ay as

mo(-[s0) m(-|s1) mo(-[s2) mb(-[ss) o(-[sa) mo(|ss)

Stochastic approximation for solving Bellman equation Q* = 7(Q*)
using samples collected from a behavior policy m:

Qit1(st,a1) = (1 = n)Qu(st, ar) + nTe(Qe)(st,ar), t>0

only update (s¢,a¢)-th entry

11



Asynchronous Q-learning

S0— S1— S2—; S3—, S4—~—55—
7 7 1 H 1 7
’ 4 4 ’

T
~— ~—e S—e N S -

ag a1 a2 as ay as

mo(-[s0) m(-|s1) mo(-[s2) mb(-[ss) o(-[sa) mo(|ss)

Stochastic approximation for solving Bellman equation Q* = 7(Q*)
using samples collected from a behavior policy m:

Qit1(st,a1) = (1 = n)Qu(st, ar) + nTe(Qe)(st,ar), t>0

only update (s¢,a¢)-th entry

Te(Q)(st,at) = 7(st; ar) + v max Q(st1, a’)

T(@)(s;a) =r(s,a)+v E [nia}xQ(s/,a’)}

s/ ~P(-|s,a)

11



How to federate asynchronous Q-learning?



Federated asynchronous Q-learning with local updates

® The agent k performs 7 rounds of local
Q-learning updates:

Q1 (s, ar) < (1=0)QF (s¢, ar)+nT(QF) (s¢, ar)

and sends it to the server.

Central server

=] =
puR)| + )
~ milEE =81 — 1
" F 2
Agent 1 Agent2 " Agentk " Agentk
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i w2 s s

13



Federated asynchronous Q-learning with local updates

® The agent k performs 7 rounds of local Central server

Q-learning updates:

Q¥ 1 (s, ae) « (1=m)Qy (se, ar)+nTi(QF) (se, ar)
and sends it to the server.

® The server averages the local updates and

communicates it back to agents:

_alfzs e
£ & =B

K 1 ] :%:
1 L £S &)
Qt - E Z Qt Agent 1 Agent2 7 Agentk " Agentk
k=1 .
T T mh e
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Federated asynchronous Q-learning with local updates

® The agent k performs 7 rounds of local
Q-learning updates:

Q1 (s, ar) < (1=0)QF (s¢, ar)+nT(QF) (s¢, ar)

and sends it to the server.

® The server averages the local updates and
communicates it back to agents:

1 K
Qt:E;Qf

Can we achieve faster convergence with heterogeneous local behavior

Central server

i) = ‘
@ T = &
X L4 =S £
Agent 1 Agent 2 Agentk T Agentk

: K
i w2 s s

policies with low communication complexity?

J




Prior art

sample‘
complexit
plexity S{

1
Bmin(1 = 7)1e?

\_, single-agent
Q-learning

>

K=1 1/K

Key quantity: minimum state-action occupancy probability
Hmin := IMin /1,7‘.;(8, a)
1,8,a
——

stationary distribution

The benefit of linear speedup only becomes effective K > #2_7)5 J
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Prior art

sample
complexit
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1
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Q-learning
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K=1 1/K

Key quantity: minimum state-action occupancy probability
Hmin := IMin /1,7‘.;(8, a)
1,8,a
——

stationary distribution

Can we improve the dependency on the salient parameters? J
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Our theorem

Theorem (Woo, Joshi, Chi, ICML 2023)

For sufficiently small € > 0, federated asynchronous Q-learning yields
|Q — Q*|lco < € with sample complexity at most

~ C
0O ( het - 2>
Kﬂmin (1 - 7) €
ignoring the burn-in cost that depends on the mixing times, where

k
Chet = K max 7Ié¢b(s;a) :
Ros0 ) ke Hp (5, @)
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Our theorem

Theorem (Woo, Joshi, Chi, ICML 2023)

For sufficiently small € > 0, federated asynchronous Q-learning yields
|Q — Q*|lco < € with sample complexity at most

~ C
0O ( het - 2>
I(//Lmin(l - 7) €
ignoring the burn-in cost that depends on the mixing times, where

k
Chet = K max 7}&(3:1) :
Ros0 ) ke Hp (5, @)

o 1 <Chet < % measures the heterogeneity of local behavior
policies.

® Near-optimal linear speedup when the local behavior policies are
similar, Chet =~ 1.

15



Comparison with prior art

sample

. A
complexity

1

Linear speedup with near-optimal parameter dependencies!

S{

Kul, (1=

/

N
&
<
,,,,,,,,,,,,,,,,, o e
kS C
,,,,,,,,,,,,,,, N het
5 single-agent
Q-learning
" >
K=1 1/K
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Benefit of heterogeneity?

® Curse of heterogeneity? performance degenerates when local
behavior policies are heterogeneous (i.e. Chet > 1).

® Full coverage: require full coverage of every agent over the entire

state-action space (i.e. fimin > 0).

= | — l l
%P = [

Agentk 7 Agentk

LH

Agent 1 Agent 2
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Benefit of heterogeneity?

® Curse of heterogeneity? performance degenerates when local
behavior policies are heterogeneous (i.e. Chet > 1).

® Full coverage: require full coverage of every agent over the entire

state-action space (i.e. fimin > 0).

= | — l l
%P = [

Agentk 7 Agentk

LH

Agent 1 Agent 2

Is it possible to alleviate these requirements?

17



Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

1

LA
+

!

1
IQ-
1
L-

18



Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

higher weights

-

P n =l - L L =

1
I
t
L

Importance averaging: the server averages the local updates based on
importance via

K
s,a Z (5,a)QF (s,a),

where
e (- p)~Nera(sa)

S (L) V)

& __number of visits
Niri(s,0) = in the sync period -

18



Our theorem

Theorem (Jiin, Joshi, Chi, ICML 2023)

For sufficiently small € > 0, federated asynchronous Q-learning with
importance averaging yields ||Q — Q*[|cc < € with sample complexity at

most
< )
’I&/"Lan(l ) €

ignoring the burn-in cost that depends on the mixing times, where

K
1 &
Havg = Hsnan 7K 2 ,ub(s, a) = Mmin-

® |inear speedup without requiring local behavior policies to cover the

entire state-action space, as long as they collectively cover the entire
state-action space.

19



Equal averaging versus importance averaging

sample

. A
complexity

/

Chet

Kpimin(1 — 7)°€?

K payg(1 = 7)°€?

-

»

K=1 1/K
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Equal averaging versus importance averaging

sample

. A
complexity

/

Chet
Kpimin(1 — 7)°€?

-

1
K payg(1 = 7)°€?

»

K=1 1/K

Importance averaging does not require full coverage of individual agents!J

20



Federated and robust RL

1. Federated RL
2. Robust RL



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment =+ Test environment

22



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment =+ Test environment

Sim2Real Gap: Can we learn optimal policies that are robust to
model perturbations? J

22



Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°

U (P°)y ={P: p(P,P°) <o}
P A SN
T T \\
\
( \
Vg ./\ o *
| ) P %
\ ~ /
r— \ /
( \_~-
\ I
< /
=<_ p° I\_//
2 J/
~
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)y={P: p(P,P°) <o}

P~
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)y={P: p(P,P°) <o}

- P S RN us(pP°)
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)y={P: p(P,P°) <o}

- P S RN us(r°)

® Examples of p: f-divergence (TV, x2, KL...)

23



Robust value/Q function

action
state s N
------- oo =1 noonoonmon o
| |
reward :> S0 S1 S2 S3 S4
re=7(sear I SIS
4--- environment — ag ay as as a4
N
St ~ P(“st;at)
Robust value/Q function of policy 7:
oo
. t
Vs e S: VTo(s) = inf Erp E vre | So =S5
PEUT (Po) —
oo
inf Erp E ’ytrt | So = S,a0 = a
PeuUo (Po) —

V(s,a) eSxA: QT(s,a) =

Measures the worst-case performance of the policy in the uncertainty set.



Distributionally robust MDP

Find the policy ™ that maximizes V'™ l

(lyengar. '05, Nilim and El Ghaoui. '05)

25



Distributionally robust MDP

Robust MDP J

Find the policy ™ that maximizes V™%

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™ 9 satisfy

Q7 (s,a) =r(s,a) +y inf (Ps,a, V*7),
Psa€Uo(P2,)

V*7(s) = max Q*7(s,a)

25



Distributionally robust MDP

Robust MDP
Find the policy ™ that maximizes V™%

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy 7*
and optimal robust value V*7 := V™ 9 satisfy

Q7 (s,a) =r(s,a) +y inf (Ps,a, V*7),
Psa€Uo(P2,)

V*7(s) = max Q*7(s,a)
Distributionally robust value iteration (DRVI):

Q(s,a) < r(s,a) +7 inf (Ps.a, V),
Py €U (P2 )

where V (s) = max, Q(s,a).

25



Learning distributionally robust MDPs

arbitra ry

(s,a)

Nowminal Transition
kernel

26



Learning distributionally robust MDPs

arbitra ry

(s,a)

Nowminal Transition
kernel

Goal of robust RL: given D := {(s;,a;, s.)}Y, from the nominal
environment PP, find an e-optimal robust policy 7 obeying

Vre V%,U <e

— in a sample-efficient manner
26



A curious question

empirical MDP

Learn the optimal policy of
Pl the nominal MDP?

\~* Learn the robust policy
around the nominal MDP?

27



A curious question

. N . Learn the optimal policy of
.. . = /¢" the nominal MDP?
’/

- - »”’ i
HE B &
H H N @

"o ®-
~, -
. ] - \\* Learn the robust policy
. - around the nominal MDP?
empirical MDP

Robustness-statistical trade-off? Is there a statistical premium that
one needs to pay in quest of additional robustness? J




Prior art: TV uncertainty

Sample complexity 4

SA

(RN

SA

Upper bound [Clavier et al.] s

Standard MDPs

(1 —~)3e2

SA

= ]

upper & minimax lower bound "~~~

1

Lower bound [Yang et al.]

® | arge gaps between existing upper and lower bounds

O(l-7) o)

® Unclear benchmarking with standard MDP

28



Prior art: %2 uncertainty

'
Sample complexity
Upper bound 5?Ao

S2A [Panaganti and Kalathil] (IT—=7)%e?
(1 =)t

SA Standard MDPs
m N i N upper & minimax lower bound =

Lower bound [Yang et al.]
(1 =7)e? 1 1 1 >
o1-7 0(1)  0(/1-)

® Large gaps between existing upper and lower bounds

® Unclear benchmarking with standard MDP



Our theorem under TV uncertainty

Theorem (Shi et al., 2023)

Assume the uncertainty set is measured via the TV distance with radius
o € [0,1). For sufficiently small e > 0, DRVI outputs a policy 7 that
satisfies V*7 — V™7 < € with sample complexity at most

o ((1 —)? mi:{ll - %0}62)

ignoring logarithmic factors. In addition, no algorithm can succeed if the
sample size is below

. ((1 - 7)2m£§1 - %0}62> '

® Establish the minimax optimality of DRVI for RMDP under the TV
uncertainty set over the full range of o.

30



When the uncertainty set is TV

Sample complexity 1

SA
=y

SA
T—)e

sS4
172 ]

SA(1—~) |

| — Upper bound [Clavier et al.] s

i ] ____ Standard MDPs .

upper & minimax lower bound

Upper & minimax lower bound
(this work)

Lower bound [Yang et al.]

g2 0

>
>

1

g
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When the uncertainty set is TV

Sample complexity 4
SA
1 —~42 Upper bound [Clavier et al.] =
(1 —)ie? | — bound [Clavi 1]
|
|
|
SA ] R &Sta.ncfard I\IADPs p—
1 _ 3.2 upper & minimax lower boun
(1—7)%?
Upper & minimax lower bound
L (this work)
=2
M , Lower bound [Yang et al.]
2 >
o0 on-m o) 17

RMDPs are easier to learn than standard MDPs.
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Our theorem under x? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x? divergence with radius
o € [0,00). For sufficiently small e > 0, DRVI outputs a policy  that
satisfies V*7 — V™9 < € with sample complexity at most

6<SA(1+U))

(1 —)te?

ignoring logarithmic factors.
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Our theorem under x? uncertainty

Theorem (Upper bound, Shi et al., 2023)

Assume the uncertainty set is measured via the x? divergence with radius
o € [0,00). For sufficiently small e > 0, DRVI outputs a policy  that
satisfies V*7 — V™9 < € with sample complexity at most

5<SA(1+0))

(1 —)te?

ignoring logarithmic factors.

Theorem (Lower bound, Shi et al., 2023)

In addition, no algorithm succeeds when the sample size is below

Q min{17(1767§i4(1+0)4}62 ) otherwise

32



When the uncertainty set is x> divergence

Sample complexity 4

S2A

Upper bound 5%Ac
[Panaganti and Kalathil] (1 —n)*e?

(1 —7)te?

54 4
(1—=m)te?

54
(1=7)%e

SA

SAa
Ty

Upper bound
(this work)

SAa
(1= +0)*

SA
T-7%

Lower bound
(this work)

Standard MDPs
“ upper & minimax lower bound

Lower bound [Yang et al.]

O(1—7)

o  o@/(1-9)

> o
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When the uncertainty set is x> divergence

Sample complexity 4 )
Upper bound S? Ao
S2A [Panaganti and Kalathil] (1 —)te?
Lower bound
(1 — 7)452 (this work)
Upper bound SAa
(this work) (1 —7y)te?
SA E
(1—=m)te?
SAc SA
T+ )" 2
SA Standard MDPs
(1- 7)382 T "7 === “ upper & minimax lower bound =
SA _ Lower bound [Yang et al.]
(1—7)e? 1 1 1

> o

O(l—v) o)  0O@1/(1-9)

RMDPs can be harder to learn than standard MDPs.
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Policy optimization and Markov game

1. Policy optimization

2. Markov game



Policy optimization in practice

maximizey value(policy(#))

e directly optimize the policy, which is the quantity of interest;
e allow flexible differentiable parameterizations of the policy;
e work with both continuous and discrete problems.

%X NN L R

/ A a z

N TN T I IG—
i S~ \l\

input layer output layer



Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, €.g. (Fazel et al., 2018; Bhandari and Russo,
2019; Agarwal et al., 2019; Mei et al. 2020), and many more.

Our goal:
e understand finite-time convergence rates of popular heuristics;

e design fast-convergent algorithms that scale for finding
policies with desirable properties.



Backgrounds: policy optimization in tabular
Markov decision processes



Searching for the optimal policy

Reinforcement
Learning
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Goal: find the optimal policy 7* that maximize V™ (s) J

o optimal value / Q function: V* := V™, Q* := Q™



Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7™ (p) := Esupy [V (5)]
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7™ (p) := Esupy [V (5)]

Parameterization:
T = Ty J

maximizeg  V7"(p) := Eqsup, [V (5)]

Policy gradient method (Sutton et al., 2000)

Fort=0,1,---
(*)
01D = 9 L VeV (p)

where 1 is the learning rate.




The policy gradient theorem

Theorem (Policy gradient theorem, Sutton et al., 2000)

The policy gradient can be evaluated via

1
VOV (0) = 7Bt oy 4| @7 (5 )V lom (a5

1

N |

where
° dgg is the discounted state visitation distribution,

e Yy(s,a) := Vlogmy(als) is the score function, and
o A™(s,a) = Q7 (s,a) — V7 (s) is the advantage function.

Provides a general scheme for policy gradient evaluation
(e.g., REINFORCE).



Softmax policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

@ softmax parameterization:
mo(als) ox exp(8(s, a)) J

maximizeg V7 (p) 1= Eqsu, [V7(5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,-
9(t+1) — 9(15) + nvevﬂ.ét) (p)

where ) is the learning rate.




Finite-time global convergence guarantees



Global convergence of the PG method?

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],JA], 1=, -) O(2) iterations

» T—y>

Is the rate of PG good, bad or ugly? )
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A negative message

Theorem (Li, Wei, Chi, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

I2f

\ S

iterations

to achieve ||V — V*||o < 0.15.
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A negative message

Theorem (Li, Wei, Chi, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

sz

\ S

iterations

to achieve ||V — V*||o < 0.15.

e Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

e Also hold for average sub-opt gap \3| Sees [V (s) = V*(s)].

11
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‘Seriouslj}, lady, at this hour you'd make a
lot better time taking the subway.”



Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---
6D = 9O 4 p(FO) T,V (p)
where 1 is the learning rate and }'g is the Fisher information matrix:
Fl.=FE

p

[(V@ log mg(als)) (Vg log 7T9(CL|S>)T] .
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Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in
training RL algorithms, with KL regularization

KL($? ) ~ %(9 — 0T FI 0 —0")
via constrained or proximal terms:
0+ = argmax V™4 () + (0= 00) VoV () = KL (! )
~ 00 1 (FO) T,V (p),

leading to exactly NPG!
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Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in
training RL algorithms, with KL regularization

KL($? ) ~ %(9 — 0T FI 0 —0")
via constrained or proximal terms:
0+ = argmax V™4 () + (0= 00) VoV () = KL (! )
~ 00 + p(FO) TV (p),

leading to exactly NPG!

NPG =~ TRPO/PPOQO! )

14



NPG in the tabular setting

Natural policy gradient (NPG) method (Tabular setting)
Fort=0,1,---, NPG updates the policy via

7D (s) oc 7B (]s) exp (nQ(t)(s,-))
N—_—— 1-— Y

current policy
soft greedy

where Q(t) = Q’Tm is the Q-function of #®), and n>0.

e invariant with the choice of p

¢ Reduces to policy iteration (Pl) when n = cc.

15



Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set ©(©) as a uniform policy. For allt > 0, we have

log |A| 1
+ 2
n (1=

VO (p) > V¥ (o) - (

)
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Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set ©(©) as a uniform policy. For allt > 0, we have

log | Al 4 1 > 1
n (1—9)?

VO (p) > V¥ (o) - ( L

Implication: set n > (1 — v)2log|.A|, we find an e-optimal policy
within at most
5~ iterations.

2
(1—7)%

Global convergence at a sublinear rate independent of |S|, |A|! J
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Booster #2: entropy regularization

state s o aﬁtl?rn 150) To 1 T2 r3 T4
- l | 1 | |
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sip1 ~ P([se,ar)

To encourage exploration, promote the stochasticity of the policy
using the “soft” value function (Williams and Peng, 1991):

VseS: ny Tt—l-TH (\st)|so—s

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

17



Booster #2: entropy regularization
T3 T4

state s a; aﬁt'?rn [st) e o -
s 010 F 0
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sie1 ~ P(lsg,a0)

To encourage exploration, promote the stochasticity of the policy

using the “soft” value function (Williams and Peng, 1991)

ny Tt—l-TH (\st)|so—s

VseS:
where H is the Shannon entropy, and 7 > 0 is the reg. parameter
V() =Eonp V() |

maximizey




Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient Natural Policy Gradient

D) =8
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=2
log (ar) log m(ar)



Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

UOT)RZIIR[NSSI 9SBIIOUT

Policy Gradient

Natural Policy Gradient

2-3 m

-
-1

Y

.
:

N
0

) -3 -2

Policy Gradient

—

Ny
E"%/
g‘ls — //

pat -3 -2 -1
log m(ay)

log 7(a1)

Can we justify the efficacy of entropy-regularized NPG?
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Entropy-regularized NPG in the tabular setting

*
7T7.

<
Q@

Entropy-regularized NPG (Tabular setting)
Fort=0,1,---, the policy is updated via
nT

a0 ([s) oo 7O () 1T exp(QW (s, ) /7) T
——— S———

current policy soft greedy

where Q(Tt) = Q’;m is the soft Q-function of 7, and 0 < n < 1_77

e invariant with the choice of p

e Reduces to soft policy iteration (SPI) when 5 = =2

T

19



Linear convergence with exact gradient

Exact oracle: perfect evaluation of Qﬁ(t) given 7(0);
— Read our paper for the inexact case!

20



Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZM given 7(0);

— Read our paper for the inexact case!

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate 0 < n < (1 —~)/7, the entropy-regularized
NPG updates satisfy

¢ Linear convergence of soft Q-functions:
15 — Q¥ V]l < Cry (1 —nr)*

for all t > 0, where Q)% is the optimal soft Q-function, and

T *
C1 = 10: = QP+ 27 (1= {7 ) 1o —log .

20



Implications

To reach ||Q% —

(1) HOO < ¢, the iteration complexity is at most

i 1—7y.
 General learning rates (0 <n < —7):

1 <Cl’7>
— log
nT €

e Soft policy iteration (n = 1_77)

L (n@:—@(f)um)
0g
1—7 €

21



Implications

To reach ||Q% — (1) HOO < ¢, the iteration complexity is at most

o General learning rates (0 < 7 < +=2):
1 <C’17>
nt €

* Soft policy iteration (1 = —7)

* _ 00)
! bg(n@T QF Hm)
1—7 €

Global linear convergence of entropy-regularized NPG
at a rate independent of |S], |A|!

21



Comparisons with entropy-regularized PG

Natural Policy Gradient Log Policy Difference

Natural Policy Gradient

Policy Gradient

log 7(a1)

0 1000

2000 3000 4000 5000
#iterations

(Mei et al., 2020) showed entropy-regularized PG achieves

V() = Vi) < (Vo) = Vi ()

1=

4 >
¢ 7

cexp | —

(8/7 + 4+ 8log|A|)|S|

P 0<k<t—1 s,a
oo

2
min p(s) ( inf minw(k)(a|s))
S

can be exponential

in |S| and ll—,y

Much faster convergence of entropy-regularized NPG

at a dimension-free rate!

22



Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

Q- QY

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)
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Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

Q- QY

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)

Entropy regularization enables fast convergence! J
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A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

——
immediate reward
+v E max [ Q(s',a") leogW(a'|5’)} ,
§'~P([s,a) | T(Is") a/~m(|s") b S~ —

next state's value entropy

24



A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

immediate reward

+v E [ max [ Q(s',a") —r7log 7r(a'|s’)}] ,
—— ————

s'~P(-|s,a) | m(:|8") @/~ (-|s")

next state's value entropy

Soft Bellman equation: ()7 is unique solution to

TH(Q7) = Q7

~-contraction of soft Bellman operator: \jﬁ
| 7-(Q1) — T (Q2)]| oo < ¥||Q1 — Q2|00 Richard
Bellman

24



Analysis of soft policy iteration (7

Policy iteration

Bellman operator

25



Analysis of soft policy iteration (n = 1=2)

T

Policy iteration Soft policy iteration

7 70

Bellman operator Soft Bellman operator

25



Beyond entropy regularization

Leverage regularization to promote structural properties of the

learned policy.

5

¥
% gl
cost-sensitive RL

weighted 1-norm

For further details, see:

sparse exploration constrained and safe RL

Tsallis entropy log-barrier

(Lan, PMD 2021) and (Zhan et al, GPMD 2021)

26



Policy optimization and Markov game

1. Policy optimization

2. Markov game



Multi-agent reinforcement learning (MARL)

To collaborate or to compete, that is the question.

28



Challenges in MARL: nonstationarity
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Challenges in MARL: nonstationarity

& * if:‘i\
L—‘ '_A

From a single-agent perspective:
the environment is time-varying and nonstationary!

29



MARL = Game theory + RL

Scissors
@ beas paper @

action
ay ~ 7(:|s¢)

-

reward

|
e =1(8¢, a1 |
1 environment |« — —

next state

@ St41 P(-|st,at)
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Challenges in MARL: curse of multiple agents

|

<

" i
|
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Challenges in MARL: curse of multiple agents
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Challenges in MARL: curse of multiple agents

17

31



Backgrounds: two-player zero-sum Markov games



Competitive games

,__

s

=

I
G

o

“panda”
57.7% confidence

Adversarial Training

— G — Gz) Real
D —or
Fake

X

Generative Adversarial Networks

33



Competitive games

Black v.s. White

Noise v.s. Neural Net

Generator v.s. Discriminator

33



Zero-sum two-player matrix game

0 -1 1
ds’p

Zero-sum two-player matrix game

&

a p@/'

S®0

max min p' Av
LEA(A) vEA(B)

A, B: action space of the two players;

w € A(A), v € A(B): policies of the two players;
A(A), A(B): set of probability distribution over A, B;
o A RMIXIBl: payoff matrix.

34



Two-player zero-sum Markov games (finite-horizon)

state sp, ction ap
[ ) max-player -_— —I

state Sp_ — action by, I
'Ii m|n—p|ayer'— —_— —I

| environment -

<
<

&
<

e S: shared state space

e H: horizon

e A: action space of max-player

e [3: action space of min-player

35



Two-player zero-sum Markov games (finite-horizon)

state sp

ction an
___________ max-player — _I
state Sh_ e action by,
___________ ?! min-player f— — —'—|
reward -7,

“===7 environment -
4

e S: shared state space e A: action space of max-player

e H: horizon e 3: action space of min-player

e immediate reward: max-player r(s,a,b) € [0, 1]
min-player —ry (s, a,b)

35



Two-player zero-sum Markov games (finite-horizon)

ﬂ; action ap,
—— TR

| reward 7

1
1 state sp

action by, I

L-—-¢-- environment —

shy1 ~ Pu(- | snyan, bn)

e S: shared state space e A: action space of max-player

H: horizon e 3: action space of min-player

immediate reward: max-player (s, a,b) € [0, 1]
min-player —ry (s, a,b)

Py(-|s,a,b): unknown transition probabilities



Value function of policy pair

w: policy of max-player;  v: policy of min-player

state Sp, ho) .
r reward 7j, Th Thil Tht2 TH
: acti(on‘ )
h ~ Vh(* | Sh
He — .I E> f’s-—lﬁ!—b;{hﬂﬁl—??wr?\—l—» wee (‘SH,FII
\an “‘Z"’tl/ \dita ) \iw !
I by [ e by
: next state
shy1 ~ Pu(- | s, an, bn)
Value function of policy pair (u,v):
H
v . —
VEY(s) :=FE E (¢, ag, by) ’ s1 =5
t=1
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Value function of policy pair

w: policy of max-player;  v: policy of min-player

— no
B !l-—max—p ayer —
f reward 7}, Th Thet1 Th+2 TH
i action
~un(ls
o~ n( | sn) o M . s
" — " LA WG, 1"
s s v i _s1
is=7 o1 A& N
i ) N, g
by, bhs1 h+2 by
—

" next state
Sha1 ~ Py | sy an, bp)

Value function of policy pair (u,v):
H
VEY(s) :=FE Z'rt(st,at,bt) ’ s1 =35
t=1

e {(at, by, s¢+1)}: generated when max-player and min-player
execute policies p and v independently (i.e. no coordination)

36



Target policy

9
'

which action b which action a L
——»

“--1 to take? k_w to take?
& state s °oe
gl TS

e Each agent seeks optimal policy maximizing her own interest

e But two agents have conflicting goals . ..

37



Target policy

_ !\\'\
@;«-l

which action b
to take?

-
-

state s

which action a
to take?

°®
K

oy
\~~‘

e Each agent seeks optimal policy maximizing her own interest

e But two agents have conflicting goals . ..

Zero-sum two-player Markov game

max

min

HEA(A)IS| veA(B)IS]

VHY(s)

37



Nash equilibrium (NE)

An NE policy pair (u*, v*) obeys

max VAV = yH
1

John von Neumann

. *
= min V# ¥
14

John Nash

38



Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys

* * ok . *
max VAY = VHF Y =minVH* ¥
m v

e no unilateral deviation is beneficial
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Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys

* * ok . *
max VAY = VHF Y =minVH* ¥
m v

e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)
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Nash equilibrium (NE)

John von Neumann John Nash
An e-NE policy pair (i, V) obeys

max VHY —e <VHY <minV*Y +¢
M v

e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)

38



Nash value iteration (finite-horizon)

Nash value iteration: for h=H,...,1

Qus ) (5,00 + B | maxmin(s)TQue (5I0(s) |,
s/~ Py (-|s,a,b) | m(s) v(s)

matrix game

where Qp,(s) = [Qn(s, -, -)] € RA*B.

e The matrix game can be solved efficiently.

e Requires knowledge of the transition kernel Py (:|s, a,b).
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Nash value iteration (finite-horizon)

Nash value iteration: for h=H,...,1

Qusab) (s ab)+ B | maxminu(s) T Quar(s)(s) |,
s'~Pp(+]s,a,b) n(s) v(s)

matrix game

where Qp,(s) = [Qn(s, -, -)] € RA*B.

e The matrix game can be solved efficiently.

e Requires knowledge of the transition kernel Py (:|s, a,b).

How do we learn the NE without access to the model in a
statistically efficient manner?

39



Model-based approach w/ non-adaptive sampling

(Zhang et al., 2020)

for each (a,b)

planning

oracle
empirical | ()
model P

-’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s, a,b, h), call generative models N times

40
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planning

oracle
empirical | ()
model P

_’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s, a,b, h), call generative models N times
2. build empirical model P

40
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Model-based approach w/ non-adaptive sampling

(Zhang et al., 2020)

for each (a,b)

planning

oracle
empirical | ()
model P

_’ _____________________ , call generative model
N times
for any (s, h)

1. for each (s,a,b, h), call generative models N times

2. build empirical model ]3 and run classical planning algorithms

. 4
sample complexity: % J

40



Breaking the curse of multi-agents?

(Song, Mei, Bai, 2021; Jin et al., 2021; Basar et al., 2021)

~

for every (s,h)
o) “ &

b
-

A

V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H
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for every (s,h)
& &

~

b
-

A

V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H

1. adaptive sampling: sampling A based on 1i(+|s)
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Breaking the curse of multi-agents?

(Song, Mei, Bai, 2021; Jin et al., 2021; Basar et al., 2021)

for every (s,h)
‘@ » E’*
L_‘ '_A

~

b
n-n

A

V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H

1. adaptive sampling: sampling A based on 1i(+|s)
2. estimate V-function only with Hoeffding bonus (of size .S)
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Breaking the curse of multi-agents?

(Song, Mei, Bai, 2021; Jin et al., 2021; Basar et al., 2021)

for every (s,h)
-@. » 'ir
L_‘ '_A

~

b
n-n

A

V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H
1. adaptive sampling: sampling A based on 1i(+|s)
2. estimate V-function only with Hoeffding bonus (of size .S)
3. update policy via adversarial learning subroutine, e.g. FTRL



Breaking the curse of multi-agents?

|
B

N~

N |

(Song, Mei, Bai, 2021; Jin et al., 2021; Basar et al., 2021)

for every (s,h)
B0 -

(o
e s O —— e

V-learning (online setting): MARL meets adversarial learning:
for the max-player, for h=1,... , H

1. adaptive sampling: sampling A based on p(+|s)

2. estimate V-function only with Hoeffding bonus (of size .S)

3. update policy via adversarial learning subroutine, e.g. FTRL

sample complexity: ﬂlﬂ J

€
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Summary of prior arts

horizon
r' N
V-learning
H6 .......... ..
: model-based

4

5 O SO '
0 ' : >

A+ B AB  4factions
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Summary of prior arts

horizon
' N
V-learning
H6 .......... .‘
7 model-based
| g
H | ® e o
£
0 : : e
A+B AB  #actions

Can we simultaneously overcome

curse of multi-agents & barrier of long horizon?
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Our algorithm (with a generative model)

(Li et al., NeurlPS 2022)

~

for every (s,h)
o 5

b
| B

A

Nash-Q-FTRL (ours): for the max-player, for h = H,...,1
e collect k=1,..., K samples:
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A
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Nash-Q-FTRL (ours): for the max-player, for h = H,...,1
e collect k=1,..., K samples:

1. adaptive sampling: sample A based on ¥ (-|s)
2. estimate single-agent Q-function Q (s, ) via Q-learning
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Nash-Q-FTRL (ours): for the max-player, for h = H,...,1
e collect k=1,..., K samples:

1. adaptive sampling: sample A based on ¥ (-|s)
2. estimate single-agent Q-function Q (s, ) via Q-learning
3. update policy uf "1 (|s) via FTRL
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Our algorithm (with a generative model)

(Li et al., NeurlPS 2022)

for every (s,h)
@ . 5

% &~

~

b
| B

A

Nash-Q-FTRL (ours): for the max-player, for h = H,...,1
e collect k=1,..., K samples:

1. adaptive sampling: sample A based on ¥ (-|s)
2. estimate single-agent Q-function Q (s, ) via Q-learning
3. update policy uf "1 (|s) via FTRL

e output a Markov policy up and Vj with Bernstein bonuses
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Main result: two-player zero-sum Markov games

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < e < H, the policy pair (i, V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

) 2

~<H4S(A + B)

)
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Main result: two-player zero-sum Markov games

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < e < H, the policy pair (i,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

6<H4S(A+ B))_

€2

¢ minimax lower bound: Q(W)

e breaks curse of multi-agents & long-horizon barrier at once!
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Theorem (Li, Chi, Wei, Chen '22)

For any 0 < e < H, the policy pair (i,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

6<H4S(A+ B))_

€2

~ 4
o minimax lower bound: Q(Z24+5))
e breaks curse of multi-agents & long-horizon barrier at once!

e full e-range (no burn-in cost)
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Main result: two-player zero-sum Markov games

Theorem (Li, Chi, Wei, Chen '22)

For any 0 < e < H, the policy pair (i,V) returned by the proposed
algorithm is e-Nash, with sample complexity at most

6<H4S(A+ B))_

€2

minimax lower bound: Q(W)

breaks curse of multi-agents & long-horizon barrier at once!

full e-range (no burn-in cost)

other features: Markov policy, decentralized, ...

44



horizon
A
V-learning
JCl '

model-based
our algorithm

H4

0 : E g
A+B AB  4tactions

Our algorithm breaks curses of multi-agents and long-horizon
barrier simultaneously!




Policy optimization for games



Policy optimization: saddle-point optimization

Given an initial state distribution s ~ p, find policy ™ such that

a in VAY(p):i=E,, [V
uerAn(.j;lSI ,,egl(%a (p) P[ (3)]
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Entropy regularization in MARL

action
state sp ap ~ pip(- | sn)
______ max-player: —
r reward 7, ) Th Th+1 The2 T
1 ot action
| state Sp, by~ vl | s _L’
o~ vn(- | h)_ T §h+1—|—>sh+ SHrl
e——— 'f,“| "’1“1!’"/‘ i/
1 '~
I reward -1y, \ap N N/ !
L 2 by bhg1 bhy2 by
D environment _— pn(anlsn)?
* next state Vh(balsn)

Sha1 ~ P | sn,an, br)

Promote the stochasticity of the policy pair using the “soft” value
function (Williams and Peng, 1991; Cen et al., 2020):

H

Vi (s):=E Z (Tt + TH (e (+|5¢) — TH(Vt('|St)) ‘ S0 =5|,
h=1

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.
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Entropy regularization in MARL

action
state 5n an ~ (- | sn)
______ max-player: —
r reward 7, ) Th Tht1 Th+2 TH
1 tat action
I state s, b ~ (- | s1)
e e el e
- [ANS B L N B A n__s1
} roward - s M ) i/
& I L
L by bhg1 bhy2 by
e S environment _— pn(an|sn)?
" next state vh (b |sk)

Sha1 ~ P | sn,an, br)

Promote the stochasticity of the policy pair using the “soft” value
function (Williams and Peng, 1991; Cen et al., 2020):

H

VEY(s):=E Z (re + TH (e (|5¢) — TH(ve (-] s0)) ‘ so=s|,

h=1

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

1 VH}V
ueIAn(aj;IS\yerAn(ll’j’r;lsl »() J
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Quantal response equilibrium (QRE)

Quantal response equilibrium (McKelvey and
Palfrey, 1995)

08
The quantal response equilibrium (QRE) is the policy e

ek . . .
pair (uk,vr) that is the unique solution to QUANTAL
EQUILIBRIUM
max min _ VH"(p).
PEA(A)ISI veAB)Isl T

e Unlike NE, QRE assumes bounded rationality: action
probability follows the logit function.
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Quantal response equilibrium (QRE)

Quantal response equilibrium (McKelvey and
Palfrey, 1995)

The quantal response equilibrium (QRE) is the policy
pair (px, vx) that is the unique solution to

max min VY (p).
HEA(A)IS| veA(B)IS]

e Unlike NE, QRE assumes bounded rationality: action

probability follows the logit function.

Translating to an e-NE: setting 7 =< O (¢/H).

QUANTAL
RESPONSE
EQUILIBRIUM



Soft value iteration

Soft value iteration: for h=H,... 1
Qn(s,a,b) <ry(s,a,b)+

: maxmin u(s') " Q1 (s)v(s') + TH(u(s") — TH((s) |,
s'~Pp(+]s,a,b) = v

Entropy-regularized matrix game

where Qn(s) = [Qn(s, )] € RAXE,
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Soft value iteration

Soft value iteration: for h=H,... 1
Qn(s,a,b) <ry(s,a,b)+

: maxmin u(s') " Q1 (s)v(s') + TH(u(s") — TH((s) |,
s'~Pp(+]s,a,b) = v

Entropy-regularized matrix game

where Qn(s) = [Qn(s, )] € RAXE,

Entropy-regularized matrix game

. T
A H —T7H
(e o Av+ T (p) — TH(Y)
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A prelude: entropy-regularized matrix game

Optimistic multiplicative weights update (OMWU) method
(Related to OMD, Rakhlin and Sridharan, 2013): for t =0,1,---,

predict : A oc [T exp ([A’j(t)]/T)m
p(t+1) [V(t)}l—m exp (—[ATﬂ(t)]/T)m
(t+1) (&) 11—nT Ap(t+1) nr
Update : M(t+1) > [:U’(t) ]1 - P ([ V‘r(i{f;) nt
v x W] exp (—[A i ]/7')
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A prelude: entropy-regularized matrix game

Optimistic multiplicative weights update (OMWU) method
(Related to OMD, Rakhlin and Sridharan, 2013): for t =0,1,---,

predict : ) o [uO]E exp ([ AV“) /T)m
D) o [pO]1=n Texp (—[A /T)nT
(t+1) t)1— At/

B (e P
D) o [pOP=1T excp (—[AT a+D] /7)™

Theorem (Cen, Wei, Chi, 2021)

Suppose that n < min{2 +2hA”w, 4“2“ } then for all t > 0, the

last-iterate converges to e-QRE within 9) ( log = ) iterations.

Linear, last-iterate convergence to the QRE!
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Soft value iteration via nested-loop OMWU
Soft value iteration: for h=H,... 1

Qn(s,a,b) <rp(s,a,b)+

B i ()T Qi () M)~ THOA) |

Entropy-regularized matrix game

where Qp,(s) = [Qn(s, -, -)] € RA*B.
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Soft value iteration via nested-loop OMWU
Soft value iteration: for h=H,... 1

Qn(s,a,b) <rp(s,a,b)+

. E lmaxminu(S')TQhH(5’)1/(8/)+TH(M(S'))TH(V(S’)),
s'~Pp(+|s,a,b) © v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B,

® _®

Nested-loop approach: (k1,5 vp, ) ¢ OMWU(Qp)
-
Periodic value update Policy update via
\ - OMWU

Qn + SVI(Qn+1)
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Soft value iteration via nested-loop OMWU
Soft value iteration: for h=H,... 1

Qn(s,a,b) <rp(s,a,b)+

. E lmaxminu(S')TQhH(5’)1/(8/)+TH(M(S'))TH(V(S’)),
s'~Pp(+|s,a,b) © v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B,

® _®

Nested-loop approach: (k1,5 vp, ) ¢ OMWU(Qp)
-
Periodic value update Policy update via
\ - OMWU

Qn + SVI(Qn+1)

However, not easy to use in online settings...
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A two-timescale single-loop approach?

Soft value iteration: for h = H,...,1
Qn(s,a,b) <rp(s,a,b)+

B masmin )T Quan (4 + 7 H(() = THO) |
s'~Py(-|s,a,b H v

Entropy-regularized matrix game

where Qp,(s) = [Qn(s, -, -)] € RA*B.
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A two-timescale single-loop approach?

Soft value iteration: for h = H,...,1

Qn(s,a,b) <rp(s,a,b)+

- E [maxminM(S')TQhH(S')V(S') +7H(u(s') — TH(V(S'))]’
s'~Pp(+]s,a,b) " v

Entropy-regularized matrix game
where Qy,(s) = [Qnu(s, -, )] € RA*B.

Single-loop, two-timescale approach:

> Smooth value update Policy update via <
_______ q oMWU ;

QWD (1 - a)Q® + a - lookahead (u@D, D)  oMwu(Q®)
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Main result: episodic setting

Theorem (Cen, Chi, Du, Xiao, 2022)

The last-iterate of the two-timescale single-loop algorithm finds an
e-QRE in ,
~(H 1
0] < log )
T €

iterations, corresponding to 0] (H?B) iterations for finding an e-NE.

v

o First last-iterate convergence result for the episodic setting.

¢ Almost dimension-free: independent of the size of the
state-action space.



Main result: discounted setting

Theorem (Cen, Chi, Du, Xiao, 2022)

For the infinite-horizon ~-discounted setting, the last-iterate of the
single-loop algorithm finds an e-QRE in

G

iterations, and in O (ﬁ) iterations for finding an e-NE.

e . . ~ 5 1/2
e This significantly improves upon the prior art O (%)

of (Wei et al., 2021) and O (M> of (Zeng et al.,

(I—7)Hcte3
2022) in all parameter dependencies.
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Concluding Remarks



Concluding remarks

state .
action
\ Fm—— agent —_—

Reinforcement |\ Dynamic Programming H
Learning and Optimal Control H

& i: reward

N [EP . .

i -—¢——1 environment
next state

Designing RL algorithms and understanding their
non-asymptotic performances are fruitful!

FIRST-ORDER METHODS
IN OPTIMIZATION

Amir Beck

Promising directions:

e function approximation e safe RL
e multi-agent/federated RL ® many more...
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Thanks!

https://users.ece.cmu.edu/~yuejiec/
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